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Summary. We design numerical schemes for systems of conservation laws
with boundary conditions. These schemes are based on relaxation approxima-
tions taking the form of discrete BGK models with kinetic boundary condi-
tions. The resulting schemes are Riemann solver free and easily extendable to
higher order in time or in space. For scalar equations convergence is proved.
We show numerical examples, including solutions of Euler equations.
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1 Introduction

In this paper, we study a new class of numerical approximations of the
initial-boundary value problem for the one-dimensional conservation law:

∂tu + ∂xF (u) = 0,(1)

where u(t, x) ∈ I , a domain of R
p (p ≥ 1) for x ≥ 0, t ≥ 0, and F ∈ C1(I ).

We denote u0 the initial data:

u(0, x) = u0(x), x ≥ 0,(2)

and ub the boundary data. It is well known that the condition

u(t, 0) = ub(t), t ≥ 0(3)

Correspondence to: D. Aregba-Driollet
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cannot be imposed in general. For example, consider the scalar equation with
F(u) = −u. The problem (1)(2) owns a unique global solution u(x, t) =
u0(x + t) in ]0,+∞[×]0,+∞[, so that (3) is not consistent. A contrario, if
F(u) = u, condition (3) has to be imposed. More generally, one looks for a
condition which is to be effective only in the inflow part of the boundary.

Several attempts have been done in this direction, in the scalar case as
well as for systems. In the scalar case, Bardos, Le Roux and Nédélec use the
viscosity approach and write the boundary condition as [3]:

max {sgn(u(t, 0) − ub(t))(F (u(t, 0)) − F(k)) : k ∈ I (ub(t), u(t, 0))} = 0.
(4)

Here, I (ub(t), u(t, 0)) is the interval defined by ub(t) and u(t, 0). Functions
with bounded variation have strong traces, so that (4) makes sense in this
context. Existence and uniqueness of BV solutions of (1,2,4) is proved in [3].

It is easy to see that if (4) is satisfied and u(t, 0) 
= ub(t), then
F ′(u(t, 0)) ≤ 0: the characteristic line is outgoing. Hence, the boundary
condition applies as soon as F ′(ub) is positive. In this article, we make the
convergence analysis for the scalar case in this framework.

More recently, F. Otto gave a formulation which allows to prove existence
and uniqueness for bounded measurable data. We refer the reader to the note
[40] and the book [33].

For systems, one may generalize the viscosity method by requiring that

u(t, 0) ∈ E(ub(t))(5)

where

E(ub(t)) =
{
w ; G(w) − G(ub) − η′(ub)(F (w) − F(ub)) ≤ 0
∀(η,G) entropy, entropy flux pair

}

Another possibility is to consider the half Riemann problem in the quarter
space x > 0, t > 0. Let w(x/t; ul, ur) be the solution of the Riemann
problem with left and right initial states ul and ur . We denote R(ul) the
set of all admissible states u ∈ I such that there exists ur ∈ I such that
u = w(O+; ul, ur). The boundary condition ub is imposed in the following
way:

u(t, 0) ∈ R(ub(t)).(6)

This condition is related to the use of Godunov scheme for solving the initial
boundary value problem. In [16], F. Dubois and P. Le Floch introduce both
(5) and (6), and compare them. For scalar or linear problems they are equiv-
alent. In general, (6) is stronger than (5), as proved by A. Benabdallah and
D. Serre in [5]. This result was completed recently by P.T. Kan, M.M. Santos
and Z. Xin [25]. Moreover these authors give some important trace properties
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of solutions generated by Godunov and viscosity approximations, and show
that Godunov scheme may produce numerical boundary layers, even for a
scalar convex equation.

The numerical approximation of the initial boundary value problem for a
conservation law has been studied by several authors: in [28], the author anal-
yses Godunov and Lax-Friedrichs one dimensional schemes. Multi-dimen-
sional discretizations for scalar equations have been developped and their
convergence has been proved in various situations: the stream-line diffusion
finite element method in [44], the finite volume method in [12], [6], [45]. See
also the references in these papers.

The kinetic viewpoint gives naturally rise to boundary conditions, since
inward and outward characteristics are easy to identify. One can see for exam-
ple the reference [39] for an analysis of the scalar case with the kinetic equa-
tion of Perthame and Tadmor.

Our numerical schemes are based on a kinetic approximation of the
problem (1). Consider the BGK-like system:

∂tf
ε
k + λk∂xf

ε
k = 1

ε
(Mk(Pf

ε) − f ε
k ), k ∈ {1, . . . , N}(7)

where the λk are fixed velocities, P is defined by Pf = ∑
k fk, and ε is a

positive parameter. Each f ε
k takes values in R

p. In addition, we impose the
initial and boundary data:

f ε
k (0, x) = Mk(u

0(x))(8)

and

f ε
k (t, 0) = Mk(ub(t)) if λk > 0.(9)

FunctionsMk are continuous, piecewiseC1 Maxwellian functions depend-
ing on the macroscopic quantities uε = Pf ε , the flux F and the velocities
λk. The following compatibility conditions link systems (1) and (7):

N∑
k=1

Mk(w) = w,

N∑
k=1

λkMk(w) = F(w)(10)

for all w ∈ I . One example of model (7) satisfying conditions (10) is given
in the next paragraph, and some others are described in Section 6. Denoting

vε =
N∑
k=1

λkf
ε
k , system (7) gives:



∂tu

ε + ∂xv
ε = 0,

∂tv
ε +

N∑
k=1

λ2
k∂xf

ε
k = 1

ε
(F (uε) − vε) ,

(11)
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so that if f ε converges (in a strong enough sense) to f when ε tends to zero,
then uε converges to a solution of system (1).

Rigorous convergence results exist for the scalar case p = 1. In [46],
W.C. Wang and Z. Xin study the relaxation model:


∂tu

ε + ∂xv
ε = 0,

∂tv
ε + λ2∂xu

ε = 1
ε
(F (uε) − vε),

(12)

where λ is a positive constant, with boundary and initial conditions:


uε(t, 0) = ub(t),

uε(0, x) = u0(x),

vε(0, x) = F(u0(x)).

(13)

The system (12) can be put in a diagonal form (7) with N = 2, λ1 = −λ,
λ2 = λ and

M1(u) = 1

2

(
u − F(u)

λ

)
, M2(u) = 1

2

(
u + F(u)

λ

)
.(14)

It was introduced for numerical purposes by S. Jin and Z. Xin [24].W.C.Wang
and Z. Xin [46] show the existence and uniqueness of the solution of (12)(13).
Convergence holds under strong restrictions: the initial boundary data must
be a small perturbation of a constant state u∗, which is supposed to be non
transonic (i.e. F ′(u∗) 
= 0).

For system (12) the boundary condition uε(t, 0) = ub(t) can be written:

f ε
2 (t, 0) = M2(ub(t)) − α

[
f ε

1 (t, 0) − M1(ub(t))
]

with α = 1. For all α ∈ [−1, 1], the initial boundary value problem is
well-posed for fixed ε > 0, but convergence to a solution of (1)(2)(4) is not
insured. The boundary condition (9) is obtained when α = 0 and in this case
R. Natalini and A. Terracina proved convergence without any restriction on
the data nor on the flux function F , see [37]. It is also known that α 
= −1 is
a necessary condition for convergence, see [49], [32].

R. Natalini and A. Terracina’s result of has been extended to the case of
any set of velocities by V. Milisic [34].

The case of systems is an open problem. The recent work of F. Berthelin
and F. Bouchut [7] concerning a kinetic approximation for isentropic gas
dynamics is to be mentionned.

A necessary and crucial point for the kinetic approximations to be stable,
as well as to be compatible with entropy conditions, is the monotonicity of
the Maxwellian function in the following sense:
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Definition 1.1 The function M is Monotone Non Decreasing (MND) on I if
the eigenvalues of M ′

k(u) are non negative for all k and all u ∈ I .

Under some hypothesis which are trivial in the scalar case, it is easy to
show that if M is MND on I , then the following condition is satisfied for all
m ∈ {1, . . . , p} and all u ∈ I :

min
k

λk ≤ am(u) ≤ max
k

λk(15)

where the am(u) are the eigenvalues of F ′(u). Such subcharacteristic con-
ditions are well-known in the general setting of relaxation problems [47],
[30]. In the scalar case the fact that M is MND is a sufficient condition for
convergence, for the Cauchy problem (see [36]), as well as for the initial
boundary value problem. For systems, F. Bouchut [8] investigates the BGK
models which are compatible with a family of entropies for (1). He proves
that if the system owns at least one strictly convex entropy, and if M is MND
and has a symmetry property, then one can associate kinetic entropies to
the entropies of (1). Also for systems, D. Serre [43] shows a convergence
result a la DiPerna for the Cauchy problem: under the the same hypothesis
as DiPerna [15], which are mainly that (1) is genuinely nonlinear and owns
a convex positively invariant domain and a convex entropy, the relaxation
approximation obtained with (12) converges to an entropy solution of (1) as
soon as condition (15) is satisfied.

From the numerical viewpoint, we discretize the problem (7), (8), (9) in
such a way that when ε tends to zero, we obtain a numerical scheme for
the initial boundary value problem for the conservation law (1). Such kinetic
schemes are known for the Cauchy problem. They were first introduced in
the framework of the Boltzmann approach of hydrodynamic problems, see
for example [42], [41]. We also mention the important paper of A. Harten,
P.D. Lax, and B. van Leer [22] where a kinetic interpretation of flux splitting
schemes is given. For general conservation laws, S. Jin and Z. Xin intro-
duced a relaxation approximation in 1995 and constructed related numerical
schemes for the Cauchy problem [24] . In one space dimension, Jin and
Xin’s system reduces to (12). Numerical schemes based on the system (7)
were constructed, and their convergence was studied in [2] for the Cauchy
problem. By a splitting technique, one first solves the transport part. Thanks
to linearity and diagonality, this can be done easily. Note that this operator
does not depend on ε. Then, a conservation property of the macroscopic vari-
ables during the collision allows to solve the singular source-term step with
an explicit formula which has the correct asymptotic behaviour when ε tends
to zero. A Riemann-solver free scheme is thus obtained, for a scalar equation
(u ∈ R), as for systems. Higher order precision in space as well as in time
can be reached easily.
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Here, our goal is to extend these techniques to the semi-bounded domain
case. The numerical schemes are constructed for a general system of conser-
vation laws, while stability and convergence are studied for the scalar case
only. Due to the boundary condition, the stability estimates, especially those
on the total variation, involve some new tools.

The paper is organized as follows: in Section 2, we explain the construc-
tion of our kinetic schemes. Then in Section 3, we show that in the scalar
case numerical convergence holds to a weak solution of (1). In Section 4, first
order scalar approximations are proved to converge to the entropy solution
of the problem (1)(2)(4), that is in the sense of [3]. In Section 5, we show
how to construct specific second order schemes for the boundary problem.

It is not a difficult task to extend the ideas of this paper, at least formally,
to higher space dimensions, considering the multidimensional kinetic models
constructed in [2]. In Section 6, we present some numerical experiments for
a scalar equation and for Euler system, in one and two space dimensions.
Various examples of kinetic models (7) are described and used in this last
Section.

2 Kinetic schemes for the initial boundary value problem

2.1 Notations

First we introduce some useful notations. In this work we restrict ourselves
to an uniform grid, that is

R
+ =

⋃
i∈N

[i"x, (i + 1)"x[,

(0, T ) =
⋃

0≤n≤L−1

[n"t, (n + 1)"t[.

The coefficients "t , "x are time and space steps, and we denote :

xi− 1
2

= i"x, xi = (i + 1
2 )"x, tn = n"t.

We look for a discrete solution under the form

u"(t, x) =
L−1∑
n=0

∑
i∈N

uni I[x
i− 1

2
,x

i+ 1
2

[×[tn,tn+1[(t, x)

where uni is an approximation of

1

"x

∫ x
i+ 1

2

x
i− 1

2

u(tn, x) dx.
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We define in the same way

un"(x) =
∑
i≥0

uni I[x
i− 1

2
,x

i+ 1
2

[(x).

The notations for f are similar. The data are approximated by

unb = un−1 = 1
"t

∫ tn+1

tn
ub(t)dt, 0 ≤ n ≤ L − 1,

u0
i = 1

"x

∫ x
i+ 1

2
x
i− 1

2
u0(x)dx, i ∈ N,

and we take for all k:

f n
b,k = f n

−1,k = Mk(u
n
b), 0 ≤ n ≤ L − 1,

f 0
i,k = Mk(u

0
i ), i ∈ N.

2.2 First order in time discretizations

We discretize the problem (7)(8)(9) by carrying out an operator splitting,
solving first the transport part, and afterwards the collision one.

Transport
We discretize on [tn, tn+1] the set of transport equations:


∂tfk + λk∂xfk = 0, k = 1, . . . , N ,

f (tn, x) = f n
"(x),

fk(t, 0) = f n
b,k if λk > 0.

(16)

The scheme is written in conservation form. For all i ≥ 0:

f
n+ 1

2
i,k = f n

i,k − λk
"t
"x

(
f n

i+ 1
2 ,k

− f n

i− 1
2 ,k

)
, k ∈ {1, . . . , N}.(17)

The numerical flux λkf
n

i+ 1
2 ,k

is a Lipschitz continuous function λkFk of

{f n
i+j,k, −1 ≤ j ≤ 2} and satisfies the consistency condition

F(f, . . . , f ) = f.(18)

More precisely, we use schemes which can be written as a convex combina-
tion in Harten’s formulation [21]:

i ≥ 0,



λk > 0 f

n+ 1
2

i,k = f n
i,k(1 − Dn

i− 1
2 ,k

) + Dn

i− 1
2 ,k

f n
i−1,k,

λk ≤ 0 f
n+ 1

2
i,k = f n

i,k(1 − Dn

i+ 1
2 ,k

) + Dn

i+ 1
2 ,k

f n
i+1,k.

(19)
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As a first order scheme the upwind approximation is chosen:

Dn

i+ 1
2 ,k

= |λk|"t

"x
.

In that case, formula (19) is well defined for all the cells, including i = 0.
At higher order, Dn

i+ 1
2 ,k

is a nonlinear function of {f n
i+j , −1 ≤ j ≤ 2}. We

postpone this study to Section 5. In all cases the time step restriction is:

max
1≤k≤N

|λk|"t

"x
≤ 1.(20)

Collision
We now solve on [tn, tn+1] and for all i ≥ 0 the ODS:


∂tfk(t) = 1

ε
(Mk(u) − fk(t)) ∀k ∈ {1, . . . , N},

f (tn) = f
n+ 1

2
i ,

u = Pf =∑k fk.

(21)

As we look for a scheme owning the correct relaxation limit, we have to
be careful with the singularity with respect to ε. Actually, the compatibility
relations (10) allow us to solve exactly the system:

un+1
i = u

n+ 1
2

i(22)

and

fi,k(t
n+1) = (1 − e−"t

ε )Mk(u
n+ 1

2
i ) + e−"t

ε f
n+ 1

2
i,k , i ≥ 0.(23)

Thus, when ε tends to zero, the limit exists and this collisional step reduces
to a projection on equilibrium state:

f n+1
i,k = Mk(u

n+ 1
2

i ) = Mk(u
n+1
i ), i ≥ 0.(24)

We underline that the collision step is solved at the border cell in the same
way as it is inside the grid. Thus, we have defined a whole time step, and we
can write the complete scheme in macroscopic variables:

un+1
i = uni − "t

"x
(gn

i+ 1
2
− gn

i− 1
2
), i ≥ 0(25)

where

gn
i+ 1

2
=

N∑
k=1

λkf
n

i+ 1
2 ,k

, i ≥ 0.

This scheme is consistent since

gn
i+ 1

2
= G(uni−1, . . . , u

n
i+2) =

N∑
k=1

λkFk(Mk(u
n
i−1), . . . ,Mk(u

n
i+2))
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and by relations (10) and (18):

G(u, . . . , u) = F(u).

When transport is approximated by the upwind first order scheme, the previ-
ous fluxes can be written as

gn
i+ 1

2
=
∑
λk>0

λkMk(u
n
i ) +

∑
λk<0

λkMk(u
n
i+1),

while the flux on the boundary interface is

gn− 1
2

=
∑
λk>0

λkMk(u
n
b) +

∑
λk<0

λkMk(u
n
0).

Note that there is no ghost cell, and that on the whole grid we apply the same
scheme. The time step restriction is the one given by the transport part of the
scheme, namely condition (20). As we always suppose that the Maxwellian
functions are MND, the subcharacteristic condition (15) is satisfied. Hence,
we have also the usual condition:

max
1≤m≤p

|am(u)|"t

"x
≤ 1.

2.3 Higher order in time

To construct higher order in time approximations we remark that the we have
obtained numerical flux functions g such that formula (25) may be viewed
as a first order discretization of the differential equation:

u′
i = ui −

gi+ 1
2
− gi− 1

2

"x
.(26)

Here gi+ 1
2

is the limit of gi+ 1
2

when "t → 0 and "x is fixed. This limit exists
if one uses for (16) an upwind first order scheme or a higher order MUSCL
reconstruction-transport-projection scheme, see the examples below. There-
fore, one may discretize (26) with any high order (for example Runge-Kutta)
method. The stability condition remains the same. As usual the order in time
has to be related with order in space.

3 Stability results in the scalar case

For Sections 3 and 4, we restrict ourselves to the convergence of kinetic
numerical schemes towards the unique entropy solution of (1) where u is a
scalar, and F a flux in C1(R; R). We first present some useful preliminary
results.
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3.1 Preliminaries

Definition 3.1 A function u ∈ BV (R+×]0, T [) is a weak entropy solu-
tion of problem (1)(2)(3) if for all c ∈ R and all non negative test function
φ ∈ C1([0, T [×[0,+∞[) with compact support, it satisfies the following
inequality :∫

R+

∫ T

0
|u − c|∂tφ + sgn(u − c)(F (u) − F(c))∂xφ dt dx(27) ∫

R+
|u0(x) − c|φ(0, x) dx +

∫ T

0
sgn(ub(t) − c)(F (u(t, 0))

−F(c))φ(t, 0) dt ≥ 0.

This definition is given in [3], where uniqueness of such a solution is proved
by using Kružkov’s techniques. A weak entropy solution satisfies condition
(4).

Now we present a very useful tool, specific to kinetic approximation, see
[8] for more general formulation. The following theorem links the entropy
functions of (1) and the existence of kinetic entropy functions associated to
(7). Note that all results use only an invariant interval I in the phase space
(u ∈ I ), this is coherent with the boundary problem.

Theorem 3.1 Let I be an invariant interval for (1) and Ik = Mk(I). The two
following properties are equivalent :

i) The Maxwellian function is monotone non decreasing (MND) on I .
ii) For a given entropy pair (S,G) of (1), there exist kinetic entropies Sk

defined on Ik for k = 1, . . . , N such that :
(E1) for all k, Sk is convex,
(E2) for u ∈ I ,

∑
k Sk(Mk(u)) = S(u) + C and C is a constant.

(E3) if uf =∑k fk ∈ I , then :∑
k

Sk(Mk(uf )) ≤
∑
k

Sk(fk).

For example, if S is a Kružkov entropy S(u) = |u − c|, then we can define
Sk(fk) = |fk −Mk(c)|. If M is MND, it is clear that properties (E1) and (E2)
are satisfied. So is (E3):

N∑
k=1

Sk(Mk(uf )) = |uf − c|

=
∣∣∣∣∣

N∑
k=1

(fk − Mk(c))

∣∣∣∣∣
≤

N∑
k=1

Sk(fk).
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3.2 Assumptions

Our hypothesis are the following :

* On the data, we suppose that

(H1)



u0 ∈ L∞(R+) ∩ BV (R+) ∩ L1(R+)

ub ∈ L∞(0, T ) ∩ BV (0, T ) ∩ L1(0, T )

* On the Maxwellian function, we need monotonicity (MND), that is for
all k:

(H2) M ′
k(u) ≥ 0 ∀u ∈ I, I = [−µ∞, µ∞]

with

µ∞ = max(||ub||L∞(R+
t )
, ||u0||L∞(R+

x )
)

* On the transport part of the scheme we impose that

(H3) ∀i, n, k Dn

i− 1
2 ,k

∈ [0, 1]

3.3 L∞ bounds

Lemma 3.1 Under the assumptions (H1)-(H3), the kinetic schemes (25) are
L∞ stable: for all n and all i ≥ 0:

uni ∈ I.

Proof. Note that by (H2), the boundary condition can be estimated for every
n as

Mk(−µ∞) ≤ f n
b,k ≤ Mk(µ∞).

Results are shown by induction. Suppose that for all i ≥ 0:

−µ∞ ≤ uni ≤ µ∞.

Then
Mk(−µ∞) ≤ f n

i,k ≤ Mk(µ∞).

Thus, using the convex formulation on transport:

(1 − Dn

i− 1
2 ,k

)Mk(−µ∞)

+Dn

i− 1
2 ,k

Mk(−µ∞) ≤ (1 − Dn

i− 1
2 ,k

)f n
i,k + Dn

i− 1
2 ,k

f n
i−1,k ≤

≤ (1 − Dn

i− 1
2 ,k

)Mk(µ∞) + Dn

i− 1
2 ,k

Mk(µ∞).
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for the positive velocity components, for example, which gives

Mk(−µ∞) ≤ f
n+ 1

2
i,k ≤ Mk(µ∞).

The first remark enables us to claim the same property on the first cell as

well. Because u
n+ 1

2
i =∑k f

n+ 1
2

i,k we have

−µ∞ ≤ u
n+ 1

2
i = un+1

i ≤ µ∞

which ends the proof. ��

3.4 BV bounds

This part is the most difficult to establish, because it is specific to the bound-
ary problem. In fact, when applying the Green-Gauss formula for the Cauchy
problem there is no border term, while for the initial-boundary value prob-
lem there is, and it needs to be controlled. For our scheme, the estimates
do not involve the same techniques as in the continuous case (developed in
[34]). In fact in the discrete case, the BV bounds are obtained thanks to an
“entropy-like” relationship, as in the continuous case one uses the kinetic
equations.

In the following proposition we give an estimate of the total variation in
space of the numerical solution. In contrast with what is done in [37], the
total variation in time on the boundary is not needed.

Proposition 3.1 Under hypothesis (H1)–(H3), we have

T V (un+1
" ) = T V (f n+1

" ) ≤ T V (u0
") + T V (ub,") + |u0

0 − u0
b|

≤ T V (u0) + T V (ub) + 2µ∞

where T V (f n+1
" ) =∑k T V (f n+1

k," ).

Proof. 1 Collision
Using (H2), it is easy to show that

T V (un+1
" ) = T V (f n+1

" ) ≤ T V (f
n+ 1

2
" ).

2 Transport
. Consider λk > 0. For the first cell we have :

|f n+ 1
2

1,k − f
n+ 1

2
0,k | ≤ (1 − Dn

− 1
2 ,k

)|f n
1,k − f n

0,k| + Dn

− 1
2 ,k

|f n
0,k − Mk(u

n
b)|.
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For the whole grid, we then have

∞∑
i=1

|f n+ 1
2

i,k − f
n+ 1

2
i−1,k| ≤

∞∑
i=1

(1 − Dn

i− 1
2 ,k

)|f n
i,k − f n

i−1,k|

+
∞∑
i=1

Dn

i− 1
2 ,k

|f n
i,k − f n

i−1,k|

+ Dn

− 1
2 ,k

|f n
0,k − Mk(u

n
b)|

≤
∞∑
i=1

|f n
i,k − f n

i−1,k| + Dn

− 1
2 ,k

|f n
0,k − Mk(u

n
b)|.

. Consider λk < 0. In the same way:

∞∑
i=1

|f n+ 1
2

i,k − f
n+ 1

2
i−1,k| ≤

∞∑
i=1

(1 − Dn

− 1
2 ,k

)|f n
i,k − f n

i−1,k|

+
∞∑
i=2

Dn

− 1
2 ,k

|f n
i,k − f n

i−1,k|

≤
∞∑
i=1

|f n
i,k − f n

i−1,k| − Dn
1
2 ,k

|f n
1,k − f n

0,k|.

. For λk = 0:
∞∑
i=1

|f n+ 1
2

i,k − f
n+ 1

2
i−1,k| =

∞∑
i=1

|f n
i,k − f n

i−1,k|.

The total variation of the transport part can thus be written as∑
k

T V (f
n+ 1

2
k ) ≤

∑
k

T V (f n
k ) +

∑
λk>0

Dn

− 1
2 ,k

|f n
0,k − Mk(u

n
b)|

−
∑
λk<0

Dn
1
2 ,k

|f n
1,k − f n

0,k|.

For the whole step we have,∑
k

T V (f n+1
k ) ≤

∑
k

T V (f n
k ) +

∑
λk>0

Dn

− 1
2 ,k

|f n
0,k − Mk(u

n
b)|(28)

−
∑
λk<0

Dn
1
2 ,k

|f n
1,k − f n

0,k|.

In order to control the two last terms in this inequality, we need the following
key argument:
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Lemma 3.2 Under the same hypothesis, we have∑
λk>0

Dn

− 1
2 ,k

|f n
0,k − Mk(u

n
b)| −

∑
λk<0

Dn
1
2 ,k

|f n
1,k − f n

0,k|

≤
∑
k

|f n
0,k − Mk(u

n−1
b )|

−
∑
k

|f n+1
0,k − Mk(u

n
b)| + |unb − un−1

b |

Proof. In a standard way, we have∑
k

|f n+1
0,k − Mk(c)| =

∑
k

|Mk(u
n+ 1

2
0 ) − Mk(c)| = |un+ 1

2
0 − c|

≤
∑
k

|f n+ 1
2

0,k − Mk(c)|.

Now taking c = unb , we have that∑
k

|f n+1
0,k − Mk(u

n
b)| ≤

∑
k

|f n+ 1
2

0,k − Mk(u
n
b)|.

For the transport part, we have∑
k

|f n+ 1
2

0,k − Mk(u
n
b)| ≤

∑
λk>0

|(1 − Dn

− 1
2 ,k

)f n
0,k + Dn

− 1
2 ,k

Mk(u
n
b) − Mk(u

n
b)|

+
∑
λk≤0

|(1 − Dn
1
2 ,k

)f n
0,k + Dn

1
2 ,k

f n
1,k − Mk(u

n
b)|

≤
∑
λk>0

(1 − Dn

− 1
2 ,k

)|f n
0,k − Mk(u

n
b)|

+
∑
λk≤0

[
D 1

2 ,k
|f n

0,k − f n
1,k| + |f n

0,k − Mk(u
n
b)|
]

≤
∑
k

|f n
0,k − Mk(u

n
b)|

+
∑
λk<0

D 1
2 ,k

|f n
0,k − f n

1,k| −
∑
λk>0

D− 1
2 ,k

|f n
0,k − Mk(u

n
b)|

≤
∑
k

|f n
0,k − Mk(u

n−1
b )| +

∑
k

|Mk(u
n
b) − Mk(u

n−1
b )|

+
∑
λk<0

D 1
2 ,k

|f n
0,k − f n

1,k| −
∑
λk>0

D− 1
2 ,k

|f n
0,k − Mk(u

n
b)|,

which ends the proof. ��
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Thanks to the last result, (28) becomes

T V (f n+1
" ) ≤ T V (f n

") +
∑
k

|f n
0,k − Mk(u

n−1
b )|

−
∑
k

|f n+1
0,k − Mk(u

n
b)| + |unb − un−1

b |

which by induction can be written as:

T V (f n+1
" ) ≤ T V (f 0

") +
∑
k

|f 0
0,k − Mk(u

0
b)| + T V (ub,")

≤ T V (u0
") + |u0

0," − u0
b,"| + T V (ub,").

We projected the initial condition on the equilibrium manifold, which gives
the desired result. ��

3.5 L1(R+) bounds

We use now the T V stability to establish the L1 estimates.

Lemma 3.3 Under the assumptions (H1)-(H3), the kinetic schemes (25) are
L1 stable.

||un+1
" ||

L1(R+) = ||f n+1
" ||

L1(R+) ≤ ||u0||L1(R+) + ||ub||L1(0,T ) + T CK

where ||f n+1
" ||

L1(R+) =∑k ||f n+1
k," ||

L1(R+), C is proportional to sup
k

|λk|, and

K = T V (u0,R+) + T V (ub, (0, T )) + 2µ∞.(29)

Proof. 1 Collision
By (H2) we have

||un+1
" ||

L1(R+) = ||f n+1
" ||

L1(R+) ≤ ||f n+ 1
2

" ||
L1(R+).

2 Transport part
For positive velocity components, we can see that

|f n+ 1
2

i,k | ≤ |f n
i,k| + Dn

i− 1
2 ,k

|f n
i,k − f n

i−1,k|

for all i ≥ 1, while on the edge, we have

|f n+ 1
2

0,k | ≤ (1 − Dn

− 1
2 ,k

)|f n
i,k| + D− 1

2 ,k
|Mk(u

n
b)|.
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So that after summing over i, one has

∑
i≥0

|f n+ 1
2

i,k | ≤
∑
i≥0

|f n
i,k| + T V (f n

i,k) + |Mk(u
n
b)|.

For the non entering characteristics, we have no boundary terms, so that
for every i ≥ 0 we have

|f n+ 1
2

i,k | ≤ |f n
i,k| + Dn

i+ 1
2 ,k

|f n
i,k − f n

i+1,k|,

which after summing over the whole grid gives

∑
i≥0

|f n+ 1
2

i,k | ≤
∑
i≥0

|f n
i,k| + T V (f n

k,").

For all components we can write

∑
k

||f n+ 1
2

k," ||
L1(R+) ≤

∑
k

||f n
k,"||

L1(R+) + "x
∑
k

T V (f n
k,")

+ "x
∑
λk>0

|Mk(u
n
b)|

which gives, on u

||un+1
" ||

L1(R+) ≤ ||un"||L1(R+) + "xT V (un",R
+) + "x

∑
λk>0

|Mk(u
n
b)|

≤ ||u0||L1(R+) + n"xK + ||ub||L1(0,T )

where K is defined in (29). We conclude by noting that "t and "x satisfy
the CFL condition (20) and their ratio is fixed.

��

3.6 Convergence results

Lemma 3.4 Let u" be the numerical solution given by (25). If the assump-
tions (H1)-(H3) are satisfied, then the following time estimate holds for u":

||un+1
" − un"||

L1(R+) ≤ CK"x

where K is defined in (29).
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Proof. For the transport part, we take for example the positive velocity
components, for i ≥ 1 :

|f n+ 1
2

i,k − f n
i,k| ≤ Dn

i− 1
2
|f n

i,k − f n
i−1,k|

≤ |f n
i,k − f n

i−1,k|

whereas for the boundary cell one has :

|f n+ 1
2

0,k − f n
0,k| ≤ |f n

0,k − Mk(u
n
b)| ≤ 2Mk(µ∞).

Summing over i ≥ 1 we obtain:

∑
i≥0

|f n+ 1
2

i,k − f n
i,k| ≤ T V (f n

k ,R
+) + 2Mk(µ∞).

The same computation on other components leads to:

|f n+ 1
2

i,k − f n
i,k| ≤ Dn

i+ 1
2
|f n

i,k − f n
i+1,k|

≤ |f n
i,k − f n

i+1,k|

which gives finally,

||un+1
" − un"||

L1(R+) = "x
∑
i

|un+1 − uni | = "x
∑
i

|un+ 1
2 − uni |

≤ "x(
∑
k

T V (f n
k ,R

+) + 2
∑
λk>0

Mk(µ∞))

≤ "x(T V (un",R
+) + 2µ∞).

��

As a corollary, we have the equicontinuity in time :

Lemma 3.5 Under the assumptions (H1)-(H3):

∀t, t ′ ∈ [0, T ], ||u"(t) − u"(t
′)||L1(R+) ≤ CK("t + |t − t ′|)(30)

where K is defined in (29).
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We are now able to prove convergence of subsequences of (u")" towards
weak solutions of (1). By continuity with respect to time, the limits satisfy
the initial condition (2). At this point we have no estimates allowing to prove
that entropy solutions are obtained and the limits of the scheme are not nec-
essarily unique. As the boundary condition is known, via formulation (4),
only for entropy solutions, it is not always satisfied by a limit of the scheme.
This result is completed in the next Section, where convergence to weak
entropy solutions of the problem (1)(2)(4) is proved for a class of first order
approximations.

Theorem 3.2 Suppose that hypothesis (H1)-(H3) hold and let T > 0 be
fixed. Consider a sequence "xj → 0, (j → +∞) with "tj

"xj
kept constant.

There exists a subsequence of (u"j
)j≥0 which converges in L∞(0,T ; L1

loc(R
+))

to a solution u of (1)(2), and u ∈ C0([0, T ],L1
loc(R

+))∩L∞(0, T ; L∞(R+)).

Proof. We follow exactly the method of [13] and just give a sketch of the
proof: for all t ≥ 0, {u"(t), "t > 0} is bounded in L1 ∩ L∞. More-
over, by Proposition 3.1, we can apply Fréchet-Kolmogorov theorem and
obtain a relatively compact set of L1

loc. Using the equicontinuity property
(30) as in the proof of Ascoli-Arzela’s theorem we obtain convergence in
L∞(0, T ; L1

loc(R
+)) and a.e. Every limit is a solution of the problem by

Lax-Wendroff’s theorem. ��

4 First order approximation (FO) and entropy solution

In this section, we restrict ourselves to the first order in space approximation,
that is

Dn

i− 1
2 ,k

= ξk = |λk|"t

"x
.(31)

In that case, assumption (H3) is equivalent to the time step restriction (20)
so that Theorem 3.2 can be written as:

Theorem 4.1 Suppose that hypothesis (H1)-(H2) are satisfied together with
conditions (31),(20). Let T > 0 be fixed. Consider a sequence "xj → 0,

(j → +∞) with "tj

"xj
kept constant.

There exists a subsequence of (u"j
)j≥0 which converges in

L∞(0, T ; L1
loc(R

+)) to a solution u of (1)(2), and u ∈ C0([0, T ],L1
loc(R

+))
∩ L∞(0, T ; L∞(R+)).
Using the upwind scheme to discretize the transport equations (16) has two
consequences: we are able to estimate the trace of the numerical solution
and we have discrete entropy inequalities. These are the tools allowing us to
prove that the scheme converges towards the unique weak entropy solution
of the initial boundary value problem (1)(2)(4).
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4.1 Estimates on the trace

To show the consistency of the trace with the boundary condition (see [3]),
we need the following estimates on the trace of the solution given by the first
order scheme.

Lemma 4.1 Suppose that hypothesis (H1)-(H2) are satisfied together with
conditions (31),(20). Let T > 0 be fixed and consider n ≥ 1 such that
n"t ≤ T . One has:
n∑

p=1

∑
λk<0

ξk|Mk(u
p

0 ) − Mk(u
p−1
0 )| ≤ T V (ub,", (0, T )) + T V (u0

",R
+)

+ |u0
0 − u0

b|

≤ T V (ub, (0, T )) + T V (u0,R+) + 2µ∞.

Proof. Consider λk > 0. We have for all i ≥ 0 :

|f n+ 1
2

i,k − f
n− 1

2
i,k | ≤ (1 − ξk)|f n

i,k − f n−1
i,k | + ξk|f n

i−1,k − f n−1
i−1,k|

which gives after summing over all cells of the grid:
∞∑
i=0

|f n+ 1
2

i,k − f
n− 1

2
i,k | ≤

∞∑
i=0

|f n
i,k − f n−1

i,k | + ξk|Mk(u
n
b) − Mk(u

n−1
b )|

. For λk < 0 and i ≥ 0 :

|f n+ 1
2

i,k − f
n− 1

2
i,k | ≤ (1 − ξk)|f n

i,k − f n−1
i,k | + ξk|f n

i+1,k − f n−1
i+1,k|

so that
∞∑
i=0

|f n+ 1
2

i,k − f
n− 1

2
i,k | ≤

∞∑
i=0

|f n
i,k − f n−1

i,k | − ξk|Mk(u
n
0) − Mk(u

n−1
0 )|

. For λk = 0 and i ≥ 0 :

|f n+ 1
2

i,k − f
n− 1

2
i,k | = |f n

i,k − f n−1
i,k |.

The whole transport step yields :∑
i,k

|f n+ 1
2

i,k − f
n− 1

2
i,k | ≤

∑
i,k

|f n
i,k − f n−1

i,k |

+
∑
λk>0

ξk|Mk(u
n
b) − Mk(u

n−1
b )|

−
∑
λk<0

ξk|Mk(u
n
0) − Mk(u

n−1
0 )|.
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For the projection step, for i ≥ 0 :

∑
k

|f n+1
i,k − f n

i,k| ≤
∑
k

|f n+ 1
2

i,k − f
n− 1

2
i,k |.

That gives

∑
λk<0

ξk|Mk(u
n
0) − Mk(u

n−1
0 )| ≤ |unb − un−1

b |

+
∑
i,k

|f n
i,k − f n−1

i,k | −
∑
k

|f n+1
i,k − f n

i,k|.

By summation one gets :

n∑
p=1

∑
λk<0

ξk|Mk(u
p

0 ) − Mk(u
p−1
0 )| ≤ T V (ub, (0, T )) +

∑
i,k

|f 1
i,k − f 0

i,k|

with

∑
i,k

|f 1
i,k − f 0

i,k| =
∑
i,k

|Mk(u
1
2
i ) − Mk(u

0
i )| =

∑
i

|u
1
2
i − u0

i |

and this can be estimated by

∑
i

|u
1
2
i − u0

i | ≤ T V (u0,R+) + |u0
0 − u0

b|

��

Let us define for all k such that λk < 0:

ωk,"(t) = ωn
k = Mk(u

n
0) if t ∈ [tn, tn+1[.

Corollary 4.1 Under the assumptions of Lemma 4.1, {ωk,","x > 0} is
bounded inBV (0, T ) and for all"xj →j→+∞ 0, we can extract anL1(0, T )
convergent subsequence of (ωk,"j

)j≥0.

4.2 Discrete entropy inequalities

In order to apply the usual tools of the Lax-Wendroff theorem, we use the stan-
dard discrete entropy inequalities already established for the Cauchy problem.
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Lemma 4.2 Suppose that hypothesis (H1)-(H2) are satisfied together with
conditions (31),(20). Let (S,G) be a given entropy pair of (1). Let T > 0 be
fixed and consider n ≥ 0 such that (n + 1)"t ≤ T . For all i ≥ 0, we have :

S(un+1
i ) − S(uni ) + "t

"x
[Gn

i+ 1
2
− Gn

i− 1
2
] ≤ 0(32)

where

Gn

i+ 1
2

=
∑
λk>0

λkSk(Mk(u
n
i )) +

∑
λk<0

λkSk(Mk(u
n
i+1))

while the boundary flux reads

Gn

− 1
2

=
∑
λk>0

λkSk(Mk(u
n
b)) +

∑
λk<0

λkSk(Mk(u
n
0)).

Here the functions Sk are the ones given by Theorem 3.1.

Proof. We use the transport-projection formulation as in (19) and in (24).
Then it is enough to use the transport convex form and to apply a convex
entropy.

λk > 0 : Sk(f
n+ 1

2
i,k ) ≤ Sk(f

n
i,k)(1 − ξk) + ξkSk(f

n
i−1,k)

λk ≤ 0 : Sk(f
n+ 1

2
i,k ) ≤ Sk(f

n
i,k)(1 − ξk) + ξkSk(f

n
i+1,k)

(33)

Summing up over k :∑
k

Sk(f
n+ 1

2
i,k ) −

∑
k

Sk(f
n
i,k) ≤ −

∑
λk>0

ξk(Sk(f
n
i,k) − Sk(f

n
i−1,k))(34)

+
∑
λk<0

ξk(Sk(f
n
i+1,k) − Sk(f

n
i,k)).

As f n
i,k = Mk(u

n
i ), by Theorem 3.1:∑

k

Sk(f
n
i ) = S(uni ) + C.

Now, un+1
i =∑k f

n+ 1
2

i,k , so that the same theorem gives:

S(un+1
i ) − S(uni ) ≤ −

∑
λk>0

ξk(Sk(f
n
i,k) − Sk(f

n
i−1,k))

+
∑
λk<0

ξk(Sk(f
n
i+1,k) − Sk(f

n
i,k)).

We obtain the desired discrete entropy inequality by recalling that ξk
= |λk| "t

"x
. ��



22 D. Aregba-Driollet, V. Milišić

4.3 Passing to the limit towards a continuous inequality

We now claim our main convergence result:

Theorem 4.2 Suppose that hypothesis (H1)-(H2) are satisfied together with
conditions (31),(20). Let T > 0 be fixed. When the discretization step "x

goes to 0 and "t
"x

is constant, the solution given by the first order scheme (25)
converges in L∞(0, T ; L1

loc(R
+)) towards the unique weak entropy solution

of problem (1)(2)(4).

We recall that according to Definition 3.1, the solution is characterized by
the inequality (27). With the help of Lemmas 4.1 and 4.2, we first establish a
continuous entropy inequality where kinetic entropies are involved. We find
the same result as in [37].

Lemma 4.3 We make the same assumptions as in Theorem 4.2. Let (S,G)

be a given entropy pair of (1). Let T > 0 be fixed. Consider a sequence
"xj → 0, (j → +∞) with "tj

"xj
kept constant. There exists a subsequence

of (u"j
)j≥0 which converges to a weak solution of (1)(2) satisfying :

∫
(0,T )×R+

S(u)∂tφ + G(u)∂xφ dt dx

+
∑
λk>0

λk

∫
(0,T )

Sk(Mk(ub(t)))φ(t, 0) dt

+
∑
λk<0

λk

∫
(0,T )

Sk(ωk)φ(t, 0) dt +
∫

R+
S(u0(x))φ(0, x) dx ≥ 0

for all φ ∈ C1
0([0, T [×[0,+∞[). Here ωk is a limit of (ωk,"j

)j≥0 obtained
by Corollary 4.1.

Proof. We call φn
i the piecewise constant approximation of a positive test

function of C1
0([0, T [×[0,+∞[).

φn
i = 1

"x"t

∫ x
i+ 1

2

x
i− 1

2

∫ tn+1

tn
φ(t, x) dt dx with φ ∈ C1

0([0,+∞[×[0, T ))

We multiply the inequalities (32) obtained above by φn
i and we sum all

them over the space-time domain R+ × (0, T ):

∞∑
i=0

L∑
n=0

(S(un+1
i ) − S(uni ))φ

n
i + "t

"x

∞∑
i=0

L∑
n=1

(Gn

i+ 1
2
− Gn

i− 1
2
)φn

i ≤ 0
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Integration by parts gives in the first term the following quantities :

−"x

∞∑
i=0

S(uL+1
i )φL

i + "x

∞∑
i=0

L∑
n=1

S(uni )(φ
n
i − φn−1

i ) + "x

∞∑
i=0

S(u0
i )φ

0
i

+"t

L∑
n=0

∞∑
i=0

Gi+ 1
2
(φn

i+1 − φn
i ) + "t

L∑
n=0

Gn

− 1
2
φn

0 ≥ 0

The first term vanishes for "x small enough, and the previous expression
becomes : ∫

R+

∫ T

0
S(u")

φ"(t, x) − φ"(t − "t, x)

"t
dt dx

+
∫

R+
S(u"(0, x))φ"(0, x) dx

+
∫ T

0

∫
R+

G"(t, x)
(φ"(t, x + "x) − φ"(t, x))

"x
dx dt

+
∫ T

0
G"(t,

"x

2
)φ"(t,

"x

2
) dt ≥ 0

where

G"(t, x) =
∑
λk>0

λkSk(Mk(u"(t, x))) +
∑
λk<0

λkSk(Mk(u"(t, x + "x)))

By the stability arguments established before, and regularity of the test func-
tions and their approximations the previous expression tends to :∫ ∞

0

∫ T

0
S(u)∂tφ dt dx +

∫ ∞

0
S(u(0, x))φ(0, x) dx

+
∫ T

0

∫ ∞

0
G(t, x)∂xφdx dt

+
∫ T

0
Gb(t, 0)φ(t, 0) dt ≥ 0

where

G(t, x) =
∑
k

λkSk(Mk(u(t, x)))

and

Gb(t, 0) =
∑
λk>0

λkSk(Mk(ub(t))) +
∑
λk<0

λkSk(ωk).

The last term is obtained thanks to Lemma 4.1, because estimates are uniform
in "x. ��
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Here we recall a lemma used in [34]:

Lemma 4.4 Suppose that the Maxwellian functions are MND. If we call
Sk(fk) = |fk − Mk(c)|, the microscopic entropy functions associated to the
Kružkov entropy for (1) we have∑

λk>0 λk|Mk(ub) − Mk(c)| +∑λk<0 λk|fk − Mk(c)|

≤ sgn(ub − c)[
∑

λk>0 λkMk(ub) +∑λk<0 λkfk − F(c)]
(35)

Proof of Theorem 4.2 Now we apply the Lemma 4.3 to the Kružkov entropy
functions and using (35), we have the following estimate∫

(0,T )×R+
|u − c|∂tφ + sgn(u − c)(F (u) − F(c))∂xφ dt dx

+
∫

R+
|u0(x) − c|φ dx

(36)

+
∫
(0,T )

sgn(ub − c)


∑

λk>0

λkMk(ub) +
∑
λk<0

λkωk − F(c)


φ(t, 0) dt ≥ 0.

Taking a special test function φ, such that

φ(t, x) = ρ(t)max{0, 1 − x

η
}, η ∈ R

+ ,

where ρ is a positive test function in C∞
0 (0, T ), one gets :∫ T

0
sgn(u(t, 0) − c)(F (u(t, 0)) − F(c))ρ(t)dt

≤
∫ T

0
sgn(ub(t) − c)


∑

λk>0

λkMk(ub) +
∑
λk<0

λkωk(t) − F(c)


 ρ(t)dt,

letting η tend to zero. As this is true for every positive test function ρ(t), it is
true almost everywhere so that one has :

sgn(u(t, 0) − c)(F (u(t, 0)) − F(c))

≤ sgn(ub(t) − c)


∑

λk>0

λkMk(ub) +
∑
λk<0

λkωk(t) − F(c)


 .

Taking c > sup(u(t, 0), ub(t)) and c < inf(u(t, 0), ub(t)) it yields :∑
λk<0

λkωk(t) = F(u(t, 0)) −
∑
λk>0

λkMk(ub(t)),
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we replace
∑

λk<0 λkωk(t) by its value in (36) and we get the inequality
(27). Consequently, the extracted subsequence converges towards the unique
entropy solution of the problem (1)(2)(4). Hence, the whole sequence also
converges towards this solution and the proof is complete. ��

5 Stability of second order schemes

In this part, we focus our attention on second order discretizations constructed
by MUSCL methods on the transport part. In general, such schemes do not
satisfy discrete entropy inequalities so that convergence to the entropy solu-
tion of the problem is hopeless. Nevertheless, we can obtain convergence
to a weak solution of (1)(2) by satisfying the requirements of Section 3,
namely the assumption (H3). A particular interest is given to the boundary
coefficients.

5.1 Second order convection

We look for coefficientsDn

i+ 1
2 ,k

(i ≥ −1 if λk > 0, i ≥ 0 otherwise) such that

(19) is a second order approximation of problem (16). We use a reconstruc-
tion-transport-projection method. Given the f n

i,k, we construct a piecewise
linear function

f n
i,k(x) = f n

i,k + (x − xi)σ
n
i,k, x ∈]xi− 1

2
, xi+ 1

2
[, i ≥ 0.

The σn
i,k are limited slopes, see Subsection 5.2 below. For λk > 0, let f n

b,k(t)

be a reconstructed boundary function.
Then we solve exactly the transport equations on [tn, tn+1] with data f n

i,k

and f n
b,k and we project the result on the set of functions which are constant

on each cell.
If the velocity λk is positive, we obtain for all i ≥ 1:

f
n+ 1

2
i,k = (1 − ξk)f

n
i,k + ξkf

n
i−1,k − "x

ξk(1 − ξk)

2
(σ n

i,k − σn
i−1,k).(37)

For i = 0, we find:

f
n+ 1

2
0,k = (1 − ξk)f

n
0,k − "x

ξk(1 − ξk)

2
σn

0,k + λk

"x

∫ tn+1

tn
f n
b,k(t)dx.

Therefore, it is not useful to approximate the boundary data by a piecewise

linear function under the form f n
b,k(t) = f n

−1,k + σn
−1,k

(
t − tn + tn+1

2

)
: it
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has the same average as the constant f n
−1,k. Following this argument we take

for the boundary:
σn

−1,k = 0.

With this notation, the formula (37) is also true for i = 0. Note that this does
not reduce the boundary cell to first order approximation because on the other
interface the slope σn

0 is still active.
For non positive velocities, we have for all i ≥ 0:

f
n+ 1

2
i,k = (1 − ξk)f

n
i,k + ξkf

n
i+1,k − "x

ξk(1 − ξk)

2
(σ n

i+1,k − σn
i,k).(38)

Comparing with (19), we can write Dn

i+ 1
2 ,k

explicitly:

Dn

i+ 1
2 ,k

= ξk


1 + sgn(λk)"x

(1 − ξk)

2

σn
i+1,k − σn

i,k

"f n

i+ 1
2 ,k


(39)

with the convention that if "f n

i+ 1
2 ,k

= 0 then Dn

i+ 1
2 ,k

= ξk. If λk is positive

(39) is available for i ≥ −1, otherwise it is available for i ≥ 0.

5.2 Stability and convergence properties

The condition (H3) is satisfied if the slopes σn
i,k are chosen in the following

way. If i ≥ 1:

σn
i,k = minmod

(
X1,k,i

"f n

i+ 1
2 ,k

"x
,X2,k,i

"f n

i− 1
2 ,k

"x

)
.

where

minmod(a, b)=min(|a|, |b|)sgn(a) + sgn(b)

2
and "f n

i+ 1
2 ,k

= f n
i+1,k−f n

i,k.

The two coefficients X1,k,i , X2,k,i amplifying the gradients can be chosen
to make the upwind scheme closer to the central scheme, without loss of
stability, see [14].

It remains to determine σn
0,k for all k ∈ {1, . . . , N}. If λk is positive, we

have the imposed boundary condition at the edge of the cell and f n
0,k at the

center, so that we can consider that the slope σn
0,k can be defined as

σn
0,k = minmod

(
X1,k,0

f n
1,k − f n

0,k

"x
, 2X2,k,0

f n
0,k − Mk(u

n
b)

"x

)
.(40)

For the others characteristics, we have only the values inside the spatial
domain, that is f n

1,k − f n
0,k, so that we propose the following slope

σn
0,k = X1,k,0(f

n
1,k − f n

0,k)
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Proposition 5.1 Suppose that the condition (20) is satisfied. If for λk > 0:

0 ≤ X2,k,0 ≤ 1

ξk
and f or all i ≥ 0 :

0 ≤ X1,k,i ≤ 2

1 − ξk
, 0 ≤ X2,k,i+1 ≤ 2

ξk
,

and if for λk < 0:

f or all i ≥ 0 : 0 ≤ X1,k,i ≤ 2
ξk

, 0 ≤ X2,k,i+1 ≤ 2

1 − ξk
,

then for any i and k:
Dn

i+ 1
2 ,k

∈ [0, 1].

Proof. By classical arguments the result is true for i ≥ 1 and all k, see [14].
Let us study the cells near the boundary.

1) λk < 0, i = 0.
In this case, the Harten’s convex coefficients are :

Dn
1
2 ,k

=ξk

[
1 − (1 − ξk)

2

(
minmod(X1,k,1

f n
2,k − f n

1,k

f n
1,k − f n

0,k

, X2,k,1) − X1,k,0

)]

If X1,k,0 ≤ 2
ξk

we have Dn
1
2 ,k

≤ 1, and if X2,k,1 ≤ 2
(1−ξk)

, Dn
1
2 ,k

is greater

or equal to 0.
2) λk > 0, i = −1.

As σn
−1,k = 0 and σn

0,k is defined by (40) we have :

Dn

− 1
2 ,k

= ξk

[
1 + (1 − ξk)

2

(
minmod(

X1,k,0(f
n
1,k − f n

0,k)

f n
0 − Mk(u

n
b)

, 2X2,k,0)

)]

and obviously Dn

− 1
2 ,k

is positive, while Dn

− 1
2 ,k

≤ 1 if X2,k,0 ≤ 1
ξk

.

3) λk > 0, i = 0.
Using similar arguments we obtain that Dn

1
2 ,k

∈ [0, 1] if

0 ≤ X1,k,0 ≤ 2

1 − ξk
and 0 ≤ X2,k,1 ≤ 2

ξk
.

��
Consequently, we have convergence to weak solutions, and by Theorem 3.2:

Theorem 5.1 Suppose that hypothesis (H1)-(H2) are satisfied together with
the conditions of Proposition 5.1. Let T > 0 be fixed. Consider a sequence
"xj → 0, (j → +∞) with "tj

"xj
kept constant.

There exists a subsequence of (u"j
)j≥0 which converges in L∞(0, T ;

L1
loc(R

+)) to a solution u of (1)(2), and u ∈ C0([0, T ],L1
loc(R

+))∩L∞(0, T ;
L∞(R+)).
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6 Numerical experiments

6.1 The scalar case

First we study the equation (1) in the scalar case with

F(u) = u3

3

which admits sonic points. From the work of Z. Xin and W.C. Wang [46], it
results that stability and uniqueness were obtained under the strong constraint
that the data must be a small perturbation of a constant nontransonic state.
Here we show first that numericaly, the scheme associated to a boundary
condition of [46] still gives significant results. Moreover we show that it is
possible to provide, thanks to our new formulation, a three velocities scheme
that enhances the precision of the solution, even using first order schemes.

In order to test first and second order schemes we take an oscillating
boundary condition, while the initial condition is a constant:


ub(t) = sin(6t) t ∈ R

+,

u0(x) = 0 x ∈ R
+,

Actually, the exact solution can not be obtained easily. We can also remark
that the sonic point is frequently crossed.

6.1.1 Kinetic approximations

• Two velocities model
We approximate (1) by the relaxation system (12) which reads

∂tf± ± λ∂xf± = 1

ε
(M±(u) − f±)

with

M±(u) = 1

2
(u ± F(u)

λ
).

This model discretized at the first order gives a Lax Friedrichs type scheme.
The Maxwellian functions are MND if and only if the subcharacteristic
condition is satisfied:

λ > sup
u∈I

|F ′(u)|.(41)

In fact, we reset the value of λ at each time step, by taking the maximum
of |F ′(un")| on the whole grid.
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As explained in the introduction, there is a freedom degree while imposing
the boundary condition that reads

f n
b,+ = M+(unb) − α(f n

0,− − M−(unb)).

We show tests for two particular values of α. For α = 0 we have the
equilibrium on f+ that was studied above (called NT on the figures). The
boundary condition studied in [46,10] is obtained for α = 1 (called XW).
All numerical tests show that schemes for those two values provide differ-
ent approximation for a fixed discretization step "x. However, they both
tend to the same solution as "x goes to 0.

• Three velocities model
In order to improve the approximation, we now use the following kinetic
system, already proposed in [2]:



∂tf
ε
+ + λ∂xf

ε
+ = 1

ε
(M+(u) − f ε

+)

∂tf
ε
0 = 1

ε
(M0(u) − f ε

0 )

∂tf
ε
− − λ∂xf

ε
− = 1

ε
(M−(u) − f ε

−)

with λ > 0 and 


M+(u) = (
∫ u

0 [F ′(s)]+ ds)/λ,

M−(u) = −(
∫ u

0 [F ′(s)]− ds)/λ,

M0(u) = u − (
∫ u

0 |F ′(s)|ds)/λ,
where [·]± is the positive (resp. negative) part. We impose at the boundary
only :

f+(t, 0) = M+(ub(t)).

Here, M is MND if and only if the condition (41) is satisfied, as for the
relaxation model.
At first order, this model gives an Engquist-Osher type scheme. On the
pictures this scheme is called 3Veq. Note that as F ′(u) = u2, M−(u) = 0
and the scheme is purely upwind.

6.1.2 First order schemes and results We display the different schemes (NT,
XW and the three velocity model 3Veq) on grids with 200 and 500 points
in Figure 1. In Figure 2 we increase the number of points up to 2000. One
can observe that the convergence rate for relaxation schemes (XW and NT)
is much slower than the three velocity one (3Veq). This is due to the better
upwinding contained in the three velocities model.
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Fig. 1. First order schemes for the cubic flux: 200 & 500 points, t = 4, CFL = 0.7
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Fig. 2. First order schemes: 1000 & 2000 points, t = 4, CFL = 0.7

6.1.3 Second order schemes and slope limiters For the same data, we pres-
ent numerical results for the second order schemes. We use two types of slope
limiters. The first one is the well-known min mod limiter that reads

σ(a, b) = min mod (a, b) = sgn(a) + sgn(b)

2
min(|a|, |b|)

while the second is optimized to reduce the numerical dissipation of the
transport scheme, and can be written :

σ(a, b)

λk > 0 2 min mod ( a
(1−ξ)

, b
ξ
)

λk < 0 2 min mod ( a
ξ
, b
(1−ξ)

)

where ξ = λ"t
"x

. This limiter was introduced by F. Lagoutière and B. Després
in [16], and gives great precision as we can see on Figure 3 below. We notice
that a fast oscillating structure appears for x ∈ [0.1, 0.2] around the transonic
state u∗ = 0, it is a compression effect of slow waves by waves of greater
amplitude. We can also remark that the structure becomes more and more
complicated as "x goes to 0.
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Fig. 3. Second order schemes for the cubic flux: 500 points, t = 4, CFL = 0.7

6.2 Euler’s equations

We approximate a weak solution u of Euler’s system of gas dynamics, in one
and two dimensions. This system has the abstract form


∂tu +

D∑
d=1

∂xdFd(u) = 0 ∀(t, x) ∈ [0, T ] × <

u(0, x) = u0(x) ∀x ∈ <

and we would like to impose the following boundary condition where it is
possible :

u(t, x) = ub(t, x) ∀x ∈ ∂<, t ≥ 0

u(t, x) ∈ R
p, and p = 3 if x ∈ R, p = 4 if x ∈ R

2. The system is hyperbolic
(symmetrizable) and the fluxes Fd are smooth functions. In [2], the kinetic
models are presented in a multidimensional version to which we add here a
boundary condition:


∂tfk + −→
λk · −→∇ fk = 1

ε
(Mk(u) − fk) ∀(t, x)∈ [0, T ] × <; k∈{1, . . . , N}

fk(0, x) = f 0
k (x) ∀x ∈ <

fk(t, x) = Mk(ub(t, x)) ∀x ∈ ∂<, t ≥ 0 ∀k s.t. −→ν · −→
λk <0

Here −→ν is the outgoing normal vector, defined for every (t, x) in [0, T ]×∂<,
while

−→
λk are vectors of R

D, and Mk are Lipschitz continuous functions
defined on R

p with values on R
p. The compatibility conditions (10) are

extended as: for u ∈ I , some fixed rectangle of R
p :


∑

k Mk(u) = u,

∑
k(λk)dMk(u) = Fd(u) d = {1, . . . , D}.
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As in the one-dimensional case, we impose that M is MND in the sense of
Definition 1.1.

6.2.1 Euler’s equations in one space dimension We consider the one dimen-
sional Euler system, on the bounded domain [0, 1]:


∂tρ + ∂x(ρv) = 0 ∀x ∈ [0, 1],
∂t (ρv) + ∂x(ρv

2 + p) = 0,
∂tE + ∂x((E + p)v) = 0

(42)

where ρ, v, p and E are respectively the density, velocity, pressure and total
energy of a perfect gas:

p = (γ − 1)(E − 1

2
ρv2) .(43)

with γ = 1.4.

u =

 ρ

ρv

E


 and F(u) =


 ρv

ρv2 + p

(E + p)v


.

We use the relaxation model (12), that is the two velocities model described
in Subsection 6.1.1. Remark that the model is formally the same for a scalar
equation or for a system. The only difference is that functions f± and M±
take now values in R

3 instead of being scalar. The Maxwellian functions M±
are MND if

σ(M ′
±) > 0

wich reads on λ

λ > max
u∈I

|σ(F ′(u))|.(44)

We have tested our schemes with the two interacting blast waves bench-
mark. The initial data is built with three constant states of a gamma-law gas.
The domain is bounded by two walls separated by a distance of unity. The
density is uniform, while the pressure is :

p =




1000, x < 1
10 ,

0.01, x ∈ [ 1
10 ,

9
10 ],

100, x > 9
10 .
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Fig. 4. Density ρ and velocity u at t=0.01

To explain how we modelize reflecting walls with the kinetic model, let un0
be the vector value in the first cell of the grid. On the entering characteristics
we apply at x = 0 for example

f n
+,b = M+


 ρn

0
−ρn

0v
n
0

En
0


.

as at x = 1, we impose

f n
−,b = M−


 ρn

J

−ρn
J v

n
J

En
J


.

where J is the last cell of the grid. In fact, we inject a reflected state inside
the domain.

The grid is uniform, and contains 400 points, the CFL number is set to
0.35. We use the two velocities model (that is againM±(u) = 1

2 (u± F(u)

λ
)). To

discretize the transport port, we use a fifth order WENO scheme (S.W. Shu,
personal communication), that we compare with a second order one that uses
standard minmod limiters. Both schemes are integrated in time up to the third
order, and the MND condition (44) yields only locally inside the dependence
domain, (if we want to compute un+1

i we satisfy (44) only in a neighbourhood
of xi).

In the regions of huge variation the fifth order scheme brings more preci-
sion. Especially, the collapse of the two sets of waves (see fig 4) is described
with more accuracy. Both solution are relevant.

6.3 A Mach 3 Wind Tunel With a Step

This benchmark used in several papers (see [48]), begins with uniform Mach
3 flow in a wind tunnel containing a step. The wind tunnel is 1 length units
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Fig. 5. ρ and u at t=0.032

wide and 3 lengths units long. The step is 0.2 length units high and is located
0.6 length units long. At the left, we imposed a supersonic inflow bound-
ary condition, while at the right side we imposed an outgoing condition.
Initially the wind tunnel is filled with a gamma-law gas, with γ = 1.4, which
everywhere has 


ρ = 1.4
u = 3.0
v = 0.0
E = 1

2ρ(u
2 + v2) + p

γ−1 with p = 1.0

On the boundary we impose reflecting boundary condition , that is

−→ν · −→u = 0

where −→ν is the outgoing normal vector for points of the boundary. We let
evolve the other components, as in the 1D case. To solve the 2D Euler equa-
tions we use the following 4 velocities model

– As velocity vectors we use

−→
λ1 = λx

(
1
0

)

−→
λ2 = λy

(
0

−1

)

−→
λ3 = λx

(−1
0

)

−→
λ4 = λy

(
0
1

)
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– while the corresponding Maxwellian functions are

M1(u) = 1
4 [u + 2F

λx
]

M2(u) = 1
4 [u − 2G

λy
]

M3(u) = 1
4 [u − 2F

λx
]

M4(u) = 1
4 [u + 2G

λy
]

F and G are the x (resp. y) fluxes given by the Euler system.

The stability condition reads

λx > supu∈I |σ(F ′(u))|

λy > supu∈I |σ(G′(u))|
where σ(·) is the spectrum of the matrices.

The presented results are obtained with a second order approximation
in space and first order in time. We can see that a strong shock appears on
the bottom boundary, but its effects on the solution are rather small. The
approximation of the strong shock reflecting on the walls is quite efficient.

6.4 Double Mach Reflection of a Strong Shock

This test problem describes the reflection of a planar Mach shock in air,
hitting a wedge. The setup is a Mach 10 shock which initially makes 60◦

angle with the reflecting wall. Ahead of the shock the undisturbed air has
density 1.4 and pressure 1.0. The computational domain is [0, 4]× [0, 1] and
the reflecting wall lies at the bottom of the domain starting at x = 1/6. See
[48] for a more detailed description of the setup.

The kinetic model is a generalization of the previous one:

λjd = δjdλmd, λ2+j,d = δjdλpd, j = 1, 2, d = 1, 2,

where δjd is the Kroenecker symbol and λmd < λpd . The Maxwellian func-
tions are:


Md(u) = 1

λpd − λmd

(
λpd

2
u − Fd(u)

)
,

M2+d(u) = 1

λpd − λmd

(
−λmd

2
u + Fd(u)

)
.

d = 1, 2.
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densite

Fig. 6. Density with Despres & Lagoutiere limiters for CFL=0.2, at t = 3.5, and "x =
"y = 1

80

Fig. 7. Density at t = 0.2

If λmd = −λpd we recover the previous model. In general the function M is
monotone if, for all u ∈ I ,

λmd ≤ ald(u) ≤ λpd, d = 1, 2, l = 1, 4

where the ald(u) are the eigenvalues of F ′
d(u).
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Figure 7 shows the density at time t = 0.2, for a CFL number 0.3 and
for "x = "y = 1/120. The solution is displayed with 30 isolines, and is
obtained with a second order scheme in time as in space. This scheme uses
Van Leer’s limiters for the space second order approximation.

The double Mach reflection and the produced jet are clearly discernible on
the figure. The weak shock generated at the kink in the main reflected shock
and the contact discontinuity emerging from the three-shock interaction are
fairly broad.
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[27] Kružkov, S.N.: First order quasilinear equations in several independent variables.
Math. USSR Sb. 10, 217–243 (1970)

[28] Le Roux,A.-Y.: étude du problème mixte pour une équation quasi-linéaire du premier
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