December 24, 2024 14:43 WSPC/INSTRUCTION FILE main
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The framework of this article is cell motility modeling. Approximating cells as rigid spheres we take into
account for both non-penetration and adhesions forces. Adhesions are modeled as a memory-like microscopic
elastic forces. This leads to a delayed and constrained vector valued system of equations. We prove that
the solution of these equations converges when ¢, the linkages turnover parameter, tends to zero to the a
constrained model with friction. We discretize the problem and penalize the constraints to get an uncon-
strained minimization problem. The well-posedness of the constrained problem is obtained by letting the
penalty parameter to tend to zero. Energy estimates a la De Giorgi are derived accounting for delay. Thanks
to these estimates and the convexity of the constraints, we obtain compactness uniformly with respect to
the discretisation step and &, this is the mathematically involved part of the article. Considering that the
characteristic bonds lifetime goes to zero, we recover a friction model comparable to [Venel et al, ESAIM,
2011] but under more realistic assumptions on the external load, this part being also one of the challenging
aspects of the work.
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1. Introduction

Cells migration is driven by various extracellular guidance cues which are of chemical or mechanical
type. The first kind of response is due to gradient of diffusible cues that are either attractive or
repulsive, we call this mechanism chemotaxis. The chemotaxis may include bacteria migrating for
nutrients €206, lymphocytes responding to chemokines gradients in order to locate sites of immune

SBLGI0 1y WPMWO2 the authors prove that molecules of Family Growth Factor of type 4

response
and 8 respectively control the attractive and repulsive chemotaxis during the chicken gastrulation.
In recent years durotazis (mechanical substrate compliance) has been investigated in many papers.
In BEMB22 the elastic properties of the migratory substrate bias single and collective cells migration.
The authors proved as well that cells exert higher traction and increase the areas when exposed to
stiffer surfaces or stiff gradient and may alter their contractility to withstand the mechanical prop-
erties of the migratory substrate. Furthermore the authors of #4222 prove that human cancer cells
have stronger phenotypes when exposed to stiffer substrate, and collective epithelial cells undergo
durotaxis even if the cells taken individually do not necessarily do so. These mechanisms, chemotaxis
and durotaxis are are both investigated in 222, There the authors underline the similarity but also

the remarkable diversity of cells’ response to their local environment.
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In order to account for this locality, we model contacts between neighboring cells. When consider-
ing the literature related to this field, sweeping processes are the starting point. In his seminal paper
MorTl Noreau considers a point ¢(¢) in a moving closed and convex set C(t) of a Hilbert space H
without external perturbation. The particle stays at rest as long as it happens to lie in the interior of
C'; and once caught up by the boundary 0C(t), it can only move in the inward normal direction : it
always belongs to C(t). Many other authors have been attempting to either weaken the hypotheses
or add some external perturbation into the Moreau’s system since. For instance in “PHV93 in finite
dimension, the authors considered the set valued function C as the complement of a convex set.
Moreover, the authors introduced a bounded, closed and convex valued multifunction. In ¢MM95
the perturbation is supposed to be upper semi-continuous with linear compact growth, and C' is
Hausdorff continuous and satisfies the so-called interior ball condition. To weaken the convexity of
C(t), Colombo et al. introduce prox-regular sets. A prox-regular set (defined below in a more formal
way) can be of any shape (non-convex for instance) but it is possible to project points on it if these
are close enough. The authors deal first with an unperturbed problem before adding external pertur-
bations. More recently, Juliette Venel uses similar arguments to deal with non-penetration models
in the case of human crowd motion and emergency exits €108, Pedestrians are idealized as rigid
disks whose radii centers are respectively r; > 0 and ¢; € R? and the individuals centers are collected
in a single vector called global configuration. Venel models crowd’s dynamics where individuals do
not overlap. She perturbs the model by adding an individualistic (or idealized) velocity (the velocity
that individuals aim in the absence of others) represented by Lipschitz bounded function. The actual
velocity is then the closest velocity from the idealized one.

Here we model adhesions using a microscopic description of bounds as a continuous deterministic
death and birth process. This approach was used in the pioneering work of Oelz and Schmeiser @10,
The model is based on the microscopic description of the dynamics and interactions of individual
filaments, called the Filament-Based Lamellipodium Model. The adhesion forces inside this model
rely on a microscopic description of proteic linkages. The authors in ‘@21 derived a formal limit
(when the rate of linkages turnover ¢ is small enough). They end up with a gradient flow model
with classical friction terms for adhesion of actin filaments to the substrate and cross-links. Using
minimizing movements a la De Giorgi, they prove that the semi-discretisation in time of the
problem converges and provides existence and uniqueness of the limit problem. Since then various
attempts were made to make this formal computation rigorous MO IMOL6| IMOLS/IMil20 T simplify
the problem, a single adhesion point was considered. Its position is the first unknown of the problem
and a population of bonds related to this point is the second one. The equation for the position is
a Volterra equation accounting for forces balance between the elastic forces of the linkages and an
external load. The population density solves an age-structured problem with a non-local birth term
modelling saturation of bonds. This equation depends as well on . In M @16 the authors considered
the fully-coupled case (the death-rate of linkages depends on the unknown position). They proved
that if the balance between the on-rate of the linkages and the external force is violated then the
velocity of the particles blows up as the density vanishes. This blow-up mimics detachment of the
binding site from the substrate. In a further step, space-dependence was taken into account as
well (see MOL8 [M1l200) Mil20l 5 delayed harmonic map is considered on the sphere. A complete
asymptotic study of a scalar fourth order penalized and delayed problem was achieved recently M>24,
the authors considered limits with respect to € and for large times.

In the present work, we model time dependent positions of several cells. These minimize an

. In
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energy functional under non-linear overlapping constraints. The energy contains two parts : a delay
term representing the adhesive energy and a coercive and strictly convex function representing the
energy of the external load. The adhesive terms in the total energy rely on the same memory models
presented above. Their presence does not allow straightforward proofs of existence neither provides
compactness. This is why we discretize the problem with respect to time and age. This approach
leads to delayed minimizing movements in the spirit of #%2Y We extend energy estimates provided
by classical minimizing movements 2510 to the case with memory. The crucial property enabling
this step is the monotonicty of the binding kernels. These estimates and convexity assumptions on
the source term (the position dependent external load) are used in order to prove compactness.
Precisely we prove that the time derivative of the solution is bounded in L?(0,T) for any T > 0.
We prove that the discrete minimization scheme is equivalent to a variational inclusion and show
that the discrete approximation of the solution converges toward the solution of the continuous
problem. We show as well that when ¢, the instantaneous turn-over parameter of our model tends to
zero then the limit function solves the model investigated in 1-ents
Nevertheless, as we only assume coercivity and convexity of the external load, we cannot apply
Ven08 . while the Lipshitz assumption made on the external load allows
for the use of Uzawa’s method in Y298 this assumption is not made here and we propose a new

weighted by friction coefficients.
the same techniques as in

alternative approach. Indeed in V€208 the Lipschitz hypothesis is contradicted even for the simplest
quadratic potentials. Instead, here, at each time step, we penalize the discrete constraint and let
the penalty parameter to tend to zero. This extends the well-posedness of our discrete constrained
problem and applies as well to €208 Moreover in V€208, the Lipschitz feature of the external load
guarantees the boundedness of the discrete time derivative of the solution. Here, since we weakened
this hypothesis, the arguments of V€208 do not apply in the asymptotics with respect to e (the delay
operator is not uniformly bounded with respect to €). In order to overcome this difficulty, we test the
FEuler-Lagrange equations against a regular enough test function and transpose the delay operator
on it M20

The paper is organized as follows: in Section 2, we set the framework of the problem. We first
remind the notion of non-overlapping introduced in Y¢72%8 then we define the contact adhesion
model and lastly we set some assumptions on the data. Section 3 is devoted to the results of this
paper. In this section we prove first the well-posedness of the discrete solution, we then establish
a compactness criterion which we use to prove the convergence of our model toward a weighted
differential inclusion. All the results are extended on the torus as well. We end section 3 by some
numerical simulations.

2. Definition of the model
2.1. Preliminaries

Consider N, particles which we idealize as rigid disks whose centers coordinate in the (x, y)-axis and
radii are ¢; := (¢f,¢?) and r; > 0, i = 1,--- , N, respectively. We identify the ith particle (g;,7;).
The global configuration of all particles is given by

q = (Q1,Q27 T 7qu) € lRQNp- (21)

For ¢ < j, we define D;;(q) the signed distance between (g;,7;) and (g;,7;) by

Dij(q) = |g; — qi| — (ri +15), (2.2)
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Fig. 1. The signed distance

see Figure [1| Here | - | denotes the Euclidean norm.
Therefore the gradient vector of D;; naturally involves the oriented vector e;;(q) in Figure [1|and
reads

J

4j — qi .
Gij(q) == VDi;(q) = (0’ -0, —¢;,(q),0---0,€,(q),0,- - ,0> ;o eig(q) = ﬁ’ Vi <j.
[ 7 7

The particles should not overlap, so that we define @ the set of global configurations for which D;
is nonegative for any distinct particles. Precisely

Qo= {q e R*", Dij(q) >0,Vi<j}. (2.3)

Q, is called the set of feasible configurations.

2.2. Definition of the adhesion contact model

Let T' > 0 be any time value and ¢ be a nonnegative parameter. In this article the positions of N,
particles in R? at time ¢ are represented by z.(t) € R?» and solve the minimization problem:

ze(t) = argmin E; (q), t € (0,77,
q€Q, (24)
z.(t) = z,(t), V<0,

where the energy functional reads

N.
1 p
BH@) = 5o 3 [ o= st - 0 plada + Fa)
i=1 +

zp represents the positions for negative times and F' : R?M> — R is the energy associated to the
external load. The parameter € represents the maximal lifetime of the linkages (an adimensionalized
parameter representing a ratio between a characteristic time divided by a characteristic age of the
bonds) and its inverse is assumed to be proportional to the linkages’ stiffness.

Furthermore we assume that the linkages density is independent of time and e and solves an age
structured equation. Precisely for any particle, p; solves the following equation

dapi(a) + (Gipi)(a) =0, a>0,
- (2.5)
pi(0) = B; (1 —/0 Pi(a)da>,
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where the linkages’ off-rate ¢; : Ry — R, and the on-rates 3; € R are given constants.

We mention that the non-local term between the parentheses in is a saturation term: if the
integral is close enough to 0, more births occur while if it is large enough then p;(0) is small. We
define the vector density of linkages p € (Ry)™», as well as the vector on-rates 3 and off-rates ¢.

2.3. Main objective

We aim in this paper at proving that the global configuration z. satisfies

L.z:]+VF(z:) € =N (K(z:),2.), ae.te(0,T],

(2.6)
ze(t) = zp(t), VYVt <O,
where the delay operator reads
1 [ .
Leilz(t) == g/ (22,i(t) — ze,i(t — €a)) pi(a)da, Vi. (2.7)
0
Moreover we prove that z. — zg in C ([O, TY; [R2NP) where the limit function zg solves
e—0
wi0zo + VE(z0) € =N (K(20),20), a.e. t€ (0,77, (2.8)
z0(0) = 2zp(0). '

and
oo
10tz0 = (11,:0:20,i)i=1,.- N, and py; 1= / api(a)da € R, Vi.
0

We mention that K(z.) (respectively K(zo)) is the interior convex approximation of Q, at z.
(respectively at zg) and N(K(z.),z.) (respectively N(K(zg), zp)) is the proximal-normal cone of
K (z.) (respectively K(zg)) at z. (respectively at zg).

We remind that for any closed and nonempty set S of a Hilbert space H and x € S, the proximal-
normal cone of S at x (represented in Figure [2)) is defined as

N(S,z):={ve H; Ja>0s.t. x € Pg(x +av)}. (2.9)

To reach this main objective we proceed as follows: consider the discrete version of our problem,
and prove that it converges to (2.6)) by letting the discretization step to go to 0 for fixed & which in
turn converges when ¢ goes to 0.

2.4. Notations and assumptions on the data
2.4.1. Notations

For any T > 0, we note the following spaces: C := C([0,T];R*N»), H' := H'([0,T]; R®*M»), L? :=
L2((0, T); R2Ne), L = L=([0, T]; R%V).

2.4.2. Assumptions

(i) The off-rate is assumed to be Lipschitz i.e. there exists a constant L¢ > 0 such that
(@) = ¢B)] < Lela—bl, Vabe R



December 24, 2024 14:43 WSPC/INSTRUCTION FILE main

6 Thierno Mamadou Baldé and Vuk Milisic

Fig. 2. The proximal-normal cone of S at z € 5’, z,y € 0S and a ¢ S.

Moreover for any particle there exist ¢; and (; such that 0 < Gi < Gila) < (. We define
¢ :=min(; (respectively ¢ := max(;) as well.
- 1 - K3

(ii) The source term F is coercive (cf. Definition [Alf5)), strictly convex and continuous.

(iii) The past configurations satisfy z, € Lip(R_; Q) : z,(t) € Qq, ¥t < 0 and there exists
Cz, > 0 such that

|zp(t2) — zp(t1)] < Cz, |t2 — 1

;o Vit < 0.

Note as well that in this particular case, the closed form of the linkages density is at hand. Precisely

Pi - J3G@da
i(a) = T o Gil@da g — 1 ... N, 2.10
P = T e e, ' P (2.10)

And by assumptions (1), the moments py, ; := fooo a*p;(a)da, k € N are well defined. Particularly
for any particle, there exists 1 i, fix,; such that

0 < gy < pieyi < fikys-

2.5. Time and age discretization and numerical approximations

The age interval R, is divided with constant discretization step Aa such that

s

Ry == J [lAq, (14 1)Aa),

I
=)
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T
as well as the time interval with a discretization grid satisfying At = eAa and N := {AtJ and thus

N-1
0,7) = ] [nAt, (n+1)At).
n=0
We set t" := nAt and q; := [Aa for n,l € {0,1--- ,N} x N.
We discretize (2.5) using an implicit Euler scheme. This provides R;; as a function of R;_;; and
reads:

Rii=Ri—1;/(14+ Aal), (1,i) e N*x{1,2,--- N} (2.11)
while on the boundary
Ry ; .
Ry, =—~~—, Vie{l,2,--- N, 2.12
YT By t o} (2.12)
For any particle ¢, the non-local condition relates Ry ; to the mean of the density po a,; as
(oo}
Ryi=Bi(1—Aa) Rii) = Bi(1 — po.ai)- (2.13)
1=0

By induction over [ in (2.11)) we have

l
1 .
Rl,i = (H HA%[) RO,i7 Vi € {1727 o aN[)}v

r=1
so that we have the following system of two equations with two unknowns (Rj; and Ry ;) can be
set :

Ry — (14 Aalop;) Roi =0

00 l
1
Rb,i + Aaﬁi (1 + Z H HA@C) Ro,i = 51‘7

1=1r=1

which can be solved explicitly giving :

o 1 -

I=1r=1 (2 14)
Ry = Bi(1 + Aado,i) ‘
N 1 .
1 A ( i i i Oi l, 7)
+AalBi +Coi+Bid> o0 [0 1+ Aad,s
The discrete version of the minimization process (2.4) is performed
Aa A&
n . a e
Zs = argmin En,s(q) ZTZZ|qZ_ZE,zl|2RZZ+F(q) 9 TL:].,2,"' 7N

quo € i=1 =1 (215)

Zr =20, n<o,

where the discrete average of positions for negative times is :

1 (n+1)At
zZ, = Al /nm zp(s)ds, VneZ_.
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We define as well

e the piecewise constant approximation functions

N n=0
zea(t) =Y Zl g1 (1), zpa(t) = Y 2 L1 (1), (2.16)
n=1 n=-—oo
e the piecewise linear interpolation
al t— ¢t

257A(t) = 7; {Zgl + Tt(zg - Z?l)} ]].(tnfl’tn](t), (217)

e the piecewise linear constant of the linkages density
pala) = Z Ri1na,(14+1)aa)(@)- (2.18)

1=0

3. Results
We first prove that the piecewise constant approximation of the linkages density converges towards

p when the age stepsize Aa is small enough.

Proposition 1. Under the CFL conditions, for any particle, the solution R;; of (2.11) is nonneg-
ative.

Proof. We perform the proof by induction over I € N. Indeed

e | = 0 since the birth-rate and death-rate are nonnegative, we have that R ; > 0 and Ry ;

for any particle (see (2.14))

o Assume that the claim hold until I — 1.
e Let us prove that the claim is valid for I. We use the induction hypothesis (R;; > 0) and
the fact that ¢;; is nonnegative in the definition (2.11)). O

Lemma 1. Under the CFL condition At = eAa, if linkages’ density is defined as in (2.11)),
Rii>0&pon: <1, Vie{l,...,Ny}

Proof. The claim follows from the definition of the first order moment and the fact that the on-rate
and the off-rate are nonnegative. Indeed,
=) assume that R;; >0, V([,7) € Nx{1,2,---,N,}. By (2.12) and (2.13), we have that

Ry i
Ry; = —2 —
0, 1 + AaCO,i

We’ve used the fact that (p; > 0 in the latter denominator. The latter inequality gives needed result.

<) Assume that po a; < 1. Since 3; > 0 for all 4, by (2.13) we have that
Ry; = Bi(1 — po,a:) >0, Vi,

so that Rp; > 0 for all particles. This in turn by (2.12) and the fact that the death rate (o, is
nonnegative gives that the initial linkages density R ; > 0 for all 7. This, by induction over [ € N

>0 = Ryp; =:Fi(l —po,a) >0, Vi
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into equation ([2.11)) gives the nonnegative feature of the discrete linkages density. Furthermore note

in this case that pp.a; > 0 for all the particles. g
Define

> 1 0+

ZRl]l(lAa (1+1)Aa) (@) where R, = Aa/ pla)da

1=0

_ 1 a+1)aa
where p solves (2.5) as well as iy A = Az Jira wo(a)da. We have
' a

Lemma 2. Under the same hypotheses as above if p solves (2.5)), we have that
lpa = Palp < O(Aa) and [pp — pl;, < O(Aa),
where L} := L' (Ry,R™?) and py is defined in (2.18).

Proof. Indeed due to the consistency of the scheme (2.11)), we have that

Aa Aa

_ b
T Aa
We’ve used the fact that

- - 1 (1+1)Aa .~ 1 (14+1)Aa
OR;; +Aag Ry = — (14 Gila)e™ J5 Q(S)dspi(a)da - — / pi(a)da
IA

(14+1) -
[ (B0(Gi = Gl@) + 0(8a) pila)da < LellGlyz = Aa?F

1 (I+1)Aa
o=@l < 3o [ 16l -~ Glaldo, Vo€ (80,14 1)A0) Vi = 1,000 N,

so that for any particle

G
Gi-G@l< 5o [ la=d]

(I+1)Aa
SLe 0 0uGlsy do < Aall0Glly

Gi(o) — Gila) d

g—a

On the other hand, setting E; :== Aa ;= (Ri41, — Ri4+1,1) for any particle, we have that

> Rli — Aa > — —
Ei|l=A ——— — R < —— | Bi + 14+ Aaly ) Ri11: + Ris
Bl “ — 1+ AaQ41, L, 1+ Aagi ( ; ’( adra) R, L ‘)
AG,EZ‘ C 2

< .
- 1—|—Aa£i + 1—|—Aa§iAa AL

which gives |E;| < CAaq, Vi € {1,2,--- ,N,} implying that |E| S C'Aa. It follows that

/ ‘pA pA| da</ Z|Rl*Rl|]l(lA l+1)Aa)( )dagCAa,
0

so that [pan — pal;: < O(Aa), which is the ﬁrst claim. Next

o

| pa@ - plalda= [ Jota) - 5 > ( / T ()0 )Ly (@)dalda

lAa

(I+1)Aa
B Aa Z/ / (U)da‘ﬂ(lAa,(lJrl)Al)(a)da.
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Define the space U := {f € L} s.t. lim SUP/ |M’da < oo} endowed with the norm

o—0 0 g

151l = 17l + sy [~ | D=0 g,

“ o—0 Jo g

we have by the Lemma Appendix B.2 p.36 Mu20 that
(oo}
| ale) = pa)lda < Al

Thus, taking Aa small enough, gives the second claim. a

3.1. Existence and uniqueness of solution of the constrained problem

Since Q, is nonconvex (see Figure 4| below), we consider its interior convex approximation K (Z" ')
defined as follows

K(Z!7") = {qeR™ : ¢(q) <0, Vi< j}, (3.1)
where for any n and ¢ fixed, the constraints functions cp?j’s : R?Ne — R are affine and read
wiiT(q) == —Dy(Z7Y) = Giy(Z227) - (¢ = 2271, i< (3.2)
The minimization problem over this convex set reads : find Z7 € R*"» s.t.

Z! = argmin E,.(q), n>1,
qe K(Z2 1) (3.3)
VARES Z;, n < 0.

Due to Lemma [f] below we have that (2.15) is equivalent to (3.3), so that instead of (2.15), we may
deal with (3.3]) in the following investigations.

Theorem 1. Lets fiz the integer n > 1 and assume that Z" ' € K(Z™ ). Moreover suppose that
assumptions (i)-(iii) hold and consider the penalised problem : find Z7 5 such that

n . 1 n 2
25 = agmin{ B} (a) i= Ene(q) + 5= > max (¢157(0),0)° 1.

e — (3.4)
::5 = Z’g, n S 0.

Then there exists a unique Z:”(; € R2N» solving the above problem. Moreover when letting the penalty

parameter & to go to 0, Z7 5 converges to Z solving (3.3). Again, one has that Z_ € K(Z). The
result is then true for any n € N*

Proof. Thanks to asumption M(iii), one has that Z° = z,(0) is such that Z? € K(Z?2) which
is thus non-empty. We check hereafter the hypotheses of Theorem Indeed

(1) for e > 0 and n € N* fixed, g — E,, (q) is continuous, coercive and strictly convex. Indeed, this
is by definition since the sum of continuous (respectively coercive, strictly convex) function is
continuous (respectively coercive, strictly convex). Let us mention that this ensures the existence
and uniqueness of Z7 5 solution of (3.4).
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(2) Let’s define K(p) :={q € R*N» : ¢;;(p,q) <0, i < j}, where ¢;;(p,q) := —D;;(p) — Gi;(p) -
(g — p). Assume that p € R*™» is s.t. D;;(p) > 0 for all i < j. Then we claim that K(p) is
a closed convex, non-empty set. Indeed, p € K (p) which implies that it is non-empty. Since
g — D;;j(q) is convex, it is easy to check that K (p) is convex as finite intersection of convex
sets. It is closed as finite intersection of closed sets : as

K(p) = ((¢i(p, )" (=00, 0)),
i<j
so that since the maps q — ¢;;(p, q) are continuous and (—o0, 0] is a closed interval, K(Z?_l)
is closed as intersection of reciprocal images of closed subsets by continuous functions. Thus,
K (Z7 1) is a closed, convex and non empty set since Z” ' € K(Z"!).
(3) The map 1™ : R*¥» — R defined by

¢na : Zmax 901_7 70)27

z<]

satisfies ((A.1]), namely it is continuous, convex and satisfies
Y™e(q) > 0 for every g € R?» and ¥"™(q) =0 < qc K(Z" ™).

We prove first the continuity. Indeed for any n € N and ¢ > 0 fixed, the maps f;:°(q) :=
max(-,0)? o ¢i;°(q), i < j are continuous as composition of continuous functions, so that
YrE(g) = Y fi°(q) is continuous. For the convexity we use properties of composition
and sum of convex functions. Indeed the functions fZE are convex as composition of con-
vex functions, so that ¢™° is convex as sum of convex functions. Furthermore, by definition
Y™e(q) > 0,Yq € R?N» and ¢™°(q) =0 <= q € K(Z" ). Indeed

Z =0 = max (¢;;°(),0) =0, Vi <j = ¢;5°(q) <0, Vi<j.
1<J

Conversely let g € K(Z?il), we have
Pl(q) 0, Vi< j = max(p}i°(q),0° =0, Vi<j = Y f+*(q)=0.
i<j
This shows the claim.

Now having fulfilled all hypotheses of Theorem we have that the solution Z7' of (3.3) exists
as limit of Z?’é, the unique solution of (3.4) when 6 goes to 0. Since Z_ satisfies the constraint,
Z" € K(Z" ") the proof extends to every n € N* by induction. a

3.2. The constrained problem in term of primal-dual problem

We aim at proving there exists (in general not a unique) a dual variable called the Lagrange variable
such that the primal problem (3.3) (whose variable Z7 is called the primal variable) is equivalent
to a involving both primal and dual variables : the primal-dual problem.

Definition 1. (Feasible direction) Let q € K(Z” ') be a feasible configuration and w € R*Nr | we
say that w is a feasible direction if and only if there exists 7 > 0 such that for any 0 < s < n we
have ¢ + sw € K(Z" ).

In other words, g is a feasible direction if from g one can move at least of n by still staying in
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K (Z?il). In figure [3| we have the possible directions for g strictly interior in the domain on one
hand and q on the boundary of the domain on the other hand.

Let q, ¢ € K(Z" ') such that q # q. Since K(Z" ') is convex, we have [q,q] ¢ K(Z" ') and
w = q — q is a feasible direction.

K(z:™!

Fig. 3. feasible directions for q strictly interior to K (Z?~!) (left) vs. g on the boundary (right).

Definition 2. 4105 [et g € K(Z2™'), for any fixed ¢ > 0 we define the cone of feasible directions
at q by

C(q) = {w eRNe, 3¢" € (K(27 )" ,36" € (RN, q" = q, 6" — 0 and lim & - 9 _ w} :
r—00 r

Remark 1. C(q) is a cone in the sense that 0 € C(q) (take ¢" = q for any r) and if w € C(q) we
have that Aw € C(q) for any A > 0. Moreover we have the followings

e If q is strictly interior to the domain K (Z” '), we have that C(q) = R*M». Tt suffices to take

1
q" = q+ —w for all w € R?™» and r large enough (see figure the left hand side of.
r

e Since K(Z2™ ") is convex C(q) = {w — g for all w € K(Z2™")}. It suffices to take ¢" = q +

1
—(w — q) for all r.
r

For any g € K(Z"™'), the cone C(q) in Definition [2| can be seen as the set of all vectors which
are tangent at g to a curve lying in K(Z?_l) and passing through g. More precisely C(q) is the
set of all possible directions of variation from g which guarantee that one stays in K(Z"!). But
the main issue here is the fact that we cannot always handle a closed form of C(q). Nevertheless in
some specific cases; called the qualification conditions one may obtain an explicit form of C(q).
For any q € K(Z"™"), we have that:

o if 0;7°(q) <0, for any direction w € R*"» and 1) > 0 small enough, we have that ¢;7°(g+nw) < 0
(see Figure [2| on the left hand side). We say that the constraint ij is nonactive.

o If ¢;°(q) = 0 we want the direction w to satisfy the condition ¢;;*(q +nw) < 0 for i < j, in
order to ensure that all the constraints are satisfied for g + nw (see Figure [2| on the right hand
side). Such conditions are called qualification conditions.
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But since the functions ga%’e are affine, for any w € R?"» and 1 > 0 we have
) 5 —1 . .
¢ (@) =0 = ¢;" (g +nw) = G (Z!77) - w, Vi<j.

So that if there exists a direction @ € R*N» such that ¢;7°(q + nw) < 0, we necessarily have
G,;(Z"')-w > 0. Such a direction exists : it suffices to take @ = 0. We say that the constraints

(3.1) are qualified at q.

Remark 2. Note that g above is chosen arbitrarily. Moreover Z” belongs to K (Z”~') for any time
step so that, the constraints (3.1]) are qualified at Z”.

Definition 3. 4105 Let g € K(Z" '), we define the set of active constraints by
Ind(q) == {1<i<j<N,:¢/(q)=0}.
Ind(q) is also called the set of saturated constraints.
Remark 3. Let ¢ € K(Z"'). We have that
Clg)={weR™ : Gy(Z' ") w>0,VijecIndZ)}. (3.5)

Definition 4. ‘1982 Tet V and M be two subsets consider L : V x M — R.

The couple of points (u, A) € V' x M is called saddle point of L if w is the minimum of L(-,A) : v €
V +—— L(v,\) € R and A is the maximum of L(u,-) : p € M —— L(u, 1) € R. In other words (u, A)
is a saddle point of L if it satisfies

sup L(u,p) = L(u,\) = inf L(v, ).
weM veV

From now on V := R?*"» and M := (R} )™ where N, := N,(N, — 1)/2 is the maximal number
of contacts. We introduce the Euler-Lagrange equations associated with (3.3) and investigate the

existence of optimal points. To this end for g = (p1;;)i<;, we define the Lagrangian L : R?"» x [Rf" —
R by

N, o
Aa e
Lig, p) = 75;;| 7 l\ R+ F(q —&-;/LU@ } (3.6)

Since for all n, the mappings E,, and ¢.;° ;» 1 < j are convex, continuous in R2N> and dlfferentlable in
K (Z" 1) and the constraints are qualified at Z”, the KKT theorem (cf. Theorem |[Al9) guarantees
that ( is equivalent to the existence of AL = ()\?jg)KJ (R4)™* such that (ZZ,A7) is a saddle
point of the Lagrangian in R2V» x IRfC. This can be rephrased as Z7 is a solution of if
and only if there exists Al = AI(Z7) such that

@ (Z0) S0, AL(ZD) 2 0, N(ZL) - p(Z70) = 0 B, (Z0) + D NGH(Z0)(¢)7) (Z22) = 0, (3.7)

1<J

where ¢ (q) := (@Z’E)Kj : R2N» — RNe is vectorized form of the constraints functions.
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3.3. Energy estimates and compactness criterion

Proposition 2. Under assumptwns if (R))ien and (Z7)p=12... N are defined as above, there
exrists a constant Ky independent either OfE or Aa such that

Np oo n
%ZZ’ZS 207 R+ ALY DI+ F(Z7) < Ko + F(ZY), (3.8)
=1 1=1 m=1

where the dissipation term reads

N

A A _ 1 . ) .

D¢ =~ > N U PR G, and U = E(Zg,i_Za,il)v Vi=1,---,Np, L€ N".
i=1 1=1

Proof. By definition of the minimization process

En(Z") < B, (2771 ZZ| — Z'T PR+ F(Z27),
i=1 1=2

so that by a change of index,

Np [e'e]
n Aa - n—1— n—
Ine+F(Z2) < 523 3 12057 = 207 PR + F(Z27Y),
i=1 [=1

where we’ve set

Aa n &

_ a n n—1|2 )

Ine =5 ZZ |22 — 22" R
=1 1l=1

Since R;; solves ([2.5), we have that

Aa At _ 1 -
I..+ F(Z7) +t o ZZ 1207 = Z27 T PR, S Tnmr e + F(Z27Y),
i=1 I=1
so that by induction over n

P

Np oo
DX N2 = 22 T PR iG < Do + F(Z)).

1i=11=1

ny Aa At &
ITLE+F(Z +7?Z

Now we need to find an upper bound for Iy ;. Indeed for any i € {1,2,--- , N, } fixed,
|22, — ZZ}| < eAaC., 1,

so that
Aa 0 &
p = QZZ\Z&—Z 1R < Z 2 2
i=1 I=1
It then follows that

InE+AtZDm+FZ" Z C2 i +F(Z)),

m=1

=Ky
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which is the claim. O
Lemma 3. Under the same hypotheses as in Proposition@ the sequence (Z7)nen is bounded.

Proof. Assume that there exists a subsequence (ZI*)rpen such that |Z7*| o o Since F is
— 00

coercive, we have for all M > 0, there exists kg € N such that Vk > ko, F'(Z7*) > M, which
contradicts the fact that F(Z”) < Ko+F(ZY). This prove that any sub-sequence (Z"* ), is bounded.
Thus Z7 is bounded. a

Theorem 2. (Compactness) Under assumptions (i)-(iii), there exists a constant C' > 0,
depending only on Ty, jio, Tio, C such that

N N,
n=1i=1
_1 _1
Before perform the proof, we set the following notations §Z¢ 2 := Z" Z”fl, L =L —

L2~ where the discrete delay operator is £ = (L£); and L= Zl (22, =z DRy, Vie
{1,...,N,}.

2
<c. (3.9)

an

Proof. First we easily check that the global elongation variable solves

_ n—1 n—1 _ n—1 n n—1
Ue,l + Us,l Ua,l—l _ Za — ZE

At Aa At

So by multiplying this equation (taken component-wisely) by R;; and summing over index | € N*,
we have

o)

n— 1 - n—i
6£ €, é Z Uenl 7,1 Ugtl_fll,i)Rl’i - E (Aaz Rlvi) 6ZE,i 57 i = 1, e aNp' (310)
=1

=04

Moreover, since R;; solves (2.11)), we have that

00 o0
n—1 n— n—1 u” 1 n—1
E : Uslz al 12 R11 E :Uel'LRll E :Usl llel § : alleZ 2 :Us,l,iRlJFLi
=0

=1 =1

iAaZ lzgl-‘rlzRH-lu ’i:l’...7Np7

which plugged into (3.10]) gives

1
e e VAN
E6£87i2+Aa’Z 11Cl+1le+1z_9Az gt ) 2217"'7Np'

On the other hand, setting

HTy o= A (o) (22)

k<j



December 24, 2024 14:43 WSPC/INSTRUCTION FILE main

16  Thierno Mamadou Baldé and Vuk Milisic

the ith component of the non-penetration velocity, we have by the optimality conditions (3.7 that

1
5Z:;§ n n 1 €
HA,’i At At (Hs 4 Hs, = Aa Z l R ClJrl ZRI+1 % E

[F{(Z?) —F{(Z?‘l)} , Vi (3.11)

4 All05

Since the mappings (30ng> are convex and differentiable, using Proposition 10.1. we have
k<j

! n—3% n, n — n,e\’ ¢ rzn n—%
(o) (Z271) 02272 < ot (Z2) — o (Z270) < () (Z2) - 622,
Moreover since for any time step, 5, _; \p@p (Z7) = 0 with ¢, (g) < 0 and A" > 0, for any
k<3,
0< - SNz e e e 2y < (- HE) ozt
k<j

_1
We multiply (3.11)) by 6Z- 2 in order to obtain

‘5Z;_§ g 4 ’ —1 n—i
o — < (st - G F (z0) - F(zr)) 0277, (3.12)
where ¢ := min; §; and S, := Aa Z}ﬁl Ejl Git1,iRi41,4, for all i. As F is strictly convex we have
(F’(zg) - F'(zg—l)) (2"~ Z"Y) > 0, so that

2
‘SZE_% 1 o112
oL <srooz <At \S”| + L \52 T vy,
where we’ve used the Young’s inequality. It follovvs that
bz |
0Zc 2‘ At

— ) —— < — |87, VYy>0.

@-Fg - < Siszp. v
Moreover

2
1S7|? = ZAG ZUZLE i Rip1,iGai| < 28alR [ —- ZZ| i PR G | < KiDZ,
Py =1 \:;{1—“ i=1 =1
where the first inequality is due to Jensen. It follows that
ozt
0—~y)—— < —AtD?, ¥Yn=1,2--- N.
=137 < 5 d V=12,
So that the sum over n in the latter inequality gives
ozt ok Al
1 n
(Q_W)Z AL S (AtZQ) V>0,
n=1 n=1

which by the energy estimate (3.8)) gives

1 2
N
0> g < Ko+t (F(Z)) - F(z)), vi >0

n=1
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By Lemma [3] there exist two constants K> and K3 independent of ¢ and At
K K
Ky = " Ky and Ky > L (F(zg) - F(fo)) :
Y Y
so that

112
N ‘522‘5
Oy gy K2t Ks ¥y>0.

n=1

Hence there exists a constant C' := Kg%f?’ such that (3.9) holds. This gives a bound on the discrete
time derivative of Z. o in L?((0,7)) and ends the proof. a

3.4. Convergences toward variational inclusions

This part is devoted to the convergence of the discrete model’s solution toward the solution of the
continuous variational inclusion when Aa goes to 0 and ¢ > 0 is fixed. Then we let € to go to 0
and prove that the resulting limit z( solves a weighted differential inclusion. To this end, we prove
that the constrained minimization problem is equivalent to a variational inclusion (by the use of
projections onto closed, nonempty and convex sets) in order to deal with the convergence of the
discrete problem to the continuous one, when Aa is small enough.

We mention that the set of admissible configurations is not convex (see Figure [4)) so that the
projection onto @, is not well defined. Nevertheless as shown in €208 | there exists 7 > 0 such that
Pq,q is well defined for q € R2N» satisfying dist(Qy,q) < 1. We say that Q, is n-proz-regular or
uniformly proz-regular, see Appendix or ¥enl8 for more details.

q2

Lg+q)

Q
Il

q=(q1,q2) qd= (1, )

Fig. 4. Lack of convexity of Q.

3.4.1. Ezpression of the contact model as a variational inclusion

We use the fact that K(Z" ') is convex to write the constrained minimization problem as a pro-
jection on a convex set.

Proposition 3. Suppose that assumption (iii) hold. For any e > 0, the solution of (2.15)) also
satisfies :

Z7 = Prgn (zg — AL — AtF’(zg)) . n=0,- N—1. (3.13)
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Proof. Since K (Z?il) is nonempty closed and convex and the map q — E, .(q) is differentiable
at Z”, by Euler inequality (see ‘4192 we have that

(Bn:) (27),q—27) >0, VgeK(Z!™).
This, since At > 0, is equivalent to
(22— AU(E,.) (ZD) - Z22,q - Z2) <0, Vge K(Z27).

The latter inequality is nothing but the characterization of the projection onto K (Z2~1)Brelll j ¢,

2% = Pigzor) (22 = BUE,) (2D))

which gives the claim. O

By definition of the proximal-normal cone (see (2.9))) for convex sets, (3.13)) is equivalent to
L+ F(Z%) e N (K(Z'Y,2"). (3.14)
Proposition 4. Assume that assumption[2.].4 (iii) holds, the discrete inclusion (3.14) has a unique

solution Z.

Proof. The existence and uniqueness of solutions of (2.15) is given in Theorem (1} by Proposition
this solution also satisfies (3.13]) which ends the proof. a

3.4.2. Convergence for a fivred € > 0 when Aa goes to 0

Let € > 0, we need to check that the above inclusion is satisfied for the stepsize linear function z. A
and then take the limit when Aa goes to 0. Consider the time stepsize constant functions

wA|(tn—17tn] = inil, 0A|(tn—17tn] :=1", and YA (0) =0, Oo(0) = 0.

Lemma 4. Under the same condition as in Proposition |4}, given the sequence (Z{)neqo,ny, the
piecewise linear interpolation Z. A defined in (2.17)) satisfies the following inclusion

Loa)+F(2.a0) € ~N(K (Zes0a®) Zea0a(1)) ae te0,T],  (315)

where L A is the linear interpolation of L.

Proof. Indeed we have that
L+ F(Z") e —N (K(2"Y),Z),¥n < N.

On the other hand, evaluating the latter inequality at two time steps t” and ¢t"~! and using the
definition of z. Ao and L. A, we have that

~ t _ tn—l t _ tn—l

Lo at)FA A(t) € —TN (K(Z?‘l),Z?)—(l—T)N (K(Z27%),Z27Y), te ("'t
_qgn—l ’ ’

where A, a(f) = %F (Z7) + (" — 1) ] ADF (2771, 0

Let € > 0 be fixed we prove that the piecewise constant function (2.16)) uniformly converges
toward the solution of our continuous problem as the subdivision step Aa goes to 0. Moreover the
limit function satisfies a variational inclusion.
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Lemma 5. Y108 [et g € Q,, we have equality between the cones

N(Qo,q) = N(K(q),q). (3.16)

So that we shall consider N (Qy, Z~) instead of N(K(Z2™"), Z%) in what follows.

Theorem 3. Lete > 0 be fived and T > 0. If the assumptions[2.4.9 (i)-(iii) hold, then the piecewise
linear interpolation Z. A uniformly converges in C ([0,T]; Q,) when Aa — 0. Moreover the limit
function denoted by z. satisfies

L.[z](t) + F (2.(t) € —N(Qq, z(t)), t > 0,

ze(t) = z,(t), t <0,

(3.17)

where L.(t) = (ﬂs’l(t), LN, (t)) and for any particle L. ; is defined in (2.7).

Proof. In this proof, we aim at using the theorem due to Ascoli. To this purpose, we use compactness
arguments as in V298 We have the followings

¢ By definition the piecewise linear interpolation Z. A is equicontinuous on [0, 7.
e Moreover by Lemma [3] Z7 is bounded uniformly with respect to the discretization step Aa for
any time t" = nAt. This implies that Z. A admits a L*-bound uniformly with respect to Aa.

Let (A)men be a sequence of discretization steps decreasing to 0. Thanks to Arzela-Ascoli’s theo-
rem, there exists a subsequence still denoted by (2¢ A, ),,c, Which uniformly converges to z. € C.
We prove first that the limit function belongs to Qg for all ¢ € [0, T]. Indeed since

_ t — tn—l n t— tn—l e
Ze Algn—14m) = (At) Z; + <1 - At> zr,

and Z", Z"' € K(Z" ') which is convex, we have that 2. A € K(Z"') C Q, for all n =
1,2,---,N. On the other hand, since Q is closed for the C-topology we have that
ze(t) = lim Z. A, (1) €Q,, Vtel0,T].
m—0o0
Combining this with the fact that z. € C, we claim that z. € C([0,T7], Q,)-
We prove now that w. := L.[z:] + F (z.) € =N (Q,, z). In fact, thanks to (3.16]), it suffices to
prove that L.[z.] + F (z.) € =N (K (z.),z:), Vte][0,T].

e Convergence: First, we prove that the linear interpolation of the delay operator converges to
the continuous limit with respect to the norm || - ||¢.
Indeed for any ¢ =1,2,--- , Np, we have that

N n—1
~ i n t—t n n—
Cons="20 3 (24 oz - 22 0

N oo
A t—tnt
=X { (Z;”t:l‘l A z:,;l—l)) R} Ly, (6) = Ix, — 13,
=0
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where we've set J, := ((n — 1)At, nAt). To deal with the convergence of IA ;, we use the fact
that [pa — pla = 0 which for any particle gives
a A—

A—0

1._ 1 & .
I = zaat) / pasla)da ——— Tz (1) / pi(a)da, in €,
€ R, e” 0

On the other hand, we split the second term as follows

N o %)
1 el t—nt . el
IR, = R {AGZ 20 R+ —ap Qe ozt -z 1)Rl,z} 1,,(t)

=0 =0

N _ n—1
<tAtt / (2a.i(nAt — ea) = 2p,i(nAt — eAa — €a)) PA,i(@da) 1, (t)
R+

1 1
Z </ Ze.Ai(RAL — eAa —ea)pa i(a )da) 1, (t) = EIZIZ + glizl

Let us now estimate |I% — Ia| where for any particle

1

jA,i == / Zei(t —eAa —cea)pa i(a)da

We prove that IQA, I~A € L?. Indeed

‘/0 ‘122 ‘d

2

zeAz (nAt — eAa —ea)pa,i(a)da| dt

< Z/ / pA’i(U)dO'/ |ze.ni(nAt — eAa — ea)|? pa i(a)dadt, Vi,
=17 IRy Ry
where we’ve used the Jensen’s inequality in the latter inequality. Furthermore, since
/ pai(a)da = poa; < oo, Vi,
R+

we have that

T
/ 1I3%(8)] dt<u0AZAtZAaZ|Z" SR,
0

n=1

which can be bounded uniformly with respect to ¢ since
N o)
AY A0S |22 R < T (eadlie + €+ 150 F) [ (aPpas(@da, Vim LN,
I= Ry

In the latter inequality, we’ve split the sum over the ages into I € {0,1,--- ,n—1} and | €
{n,n+1,---}. In the first part we’ve inserted the past data then use the bound provided by
and in the second part we use the Lipschitz condition of the past data. The same arguments
guarantee that I 22 and I belongs to L2

Furthermor since the past data are Lipschitz and we have the bound , it follows

T N oo
/ ‘Ig(t) - iA(t))dt <Aty aaY|z07 - 2072 Ry < O(Ba).
0

n=1 =0
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Thus || L. A, — £L.|lc — 0 as m grows to infinity.
Furthermore, using the fact that F' is continuously differentiable and Z. o,, — z., we have that

Fen, =Len, +F (3.n,) —— . = L[z] + F (22), Vte[0,T] and Ve > 0,

’ m—o0

which gives the convergence.
Inclusion: here we use the same arguments as in
We need to prove that

Ven08

w.(t) € =N (K(z:(t)),z:(t)), ae.t€]0,T].
By Lemma is equivalent to
(Feinm &) < |Fen, O|dr s n, (a, ) €+ Zen,, (0a,,(1), VEE R
Replacing & by —€ in the above inequality, we have that
(Tennm &) < |Ten, O)|drz. a, waiy)(— &+ Zea,, (04, (1), VEeRNr,

Let us now prove that |7 A, | is bounded uniformly with respect Aa. Indeed, on one hand since
Z. A,, and F is continuously differentiable, there exists a constant K independent of € and Aa
such that |F/(257Am)| < Kp. On the other hand, using the energy estimates and the Jensen’s
inequality, we have

ni2 - 2Co o Aa & n n—12 2Cy 0 n
1LZ]7 < TZ§Z|Z&¢_Z&¢ "Ry < T|KO+F(Z1))_F(Z€)|7 (3.18)
i=1 =1

5 K
so that |Le a,,| < — with K > 0 is independent of Aa and €, moreover

NG

_ : » K
el < [Cen |+ |F (ea)| < 2 + K (3.19)

NG

The sum of the two latter inequalities implies that

_ K _
[(Fee,nn &) < <\/E + KF) di(z. n, (ba, O)| — €+ Zen,, (02, ()], Ve>0.  (3.20)

Using the fact that the distance to a nonempty, closed and convex set is 1-Lipschitz and setting
Lea, () = |drz. A, wa, &) (— €+ Ze,0,,(0a,, (1) = dr(z. ) (— €+ ()],

we have that

Lo, <Ak (z. a, (o, o) (= €+ Za,,(0a,, (1) = di(z. ,, (va, 1) (= €+ 2:(1))]
Ak (s a, (wa,, ) (€ +2e(1) = di(z ) (— €+ 2:(1))]

< |Zen, (0a(1) — 2e(0)| + |dic(z. 4, (wa,, @) ((—€ + 2e(1)) — dr(zo0)) (— €+ 2 (1)) ]

JEvAm, (t)
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Moreover by Proposition there exists v > 0 such that for all & € R?>» satisfying |¢] < v,
Jen,, (t) — 0.
m—0o0

Thus for any &€ € R?"N», there exists v > 0 satisfying |£| < v and
0< La,, < 20,04, () — 2:(1)| — 0,
ie.
K (20 5 W () ( — €+ 2.0, (00, (1)) — dKc(zo (= €+ 2(0)).

Since ¢ > 0 is fixed, equation (3.20)) finally gives

VEER?MN €| <v, |(m(t),€)] < <\[/(§ +KF) drc(z.(ty)| — €+ 2z(1))],

which using back Lemma [A][f] is equivalent to
. (t) € =N(K(2:(t)), ze(t)), Ve >0,

ending the proof once we prove that jE,Am; but this is a consequence of Proposition a

3.4.3. Uniqueness of solutions of the continuous problem

Theorem 4. Let ¢ > 0 and T > 0 be fized. Under assumptions (i)- (i), the variational
inclusion (3.17) has a unique solution z. in C.

Proof. The existence of the limit z. is due to compactness. Indeed z.(t) = lim Z. A, (¢) in C.
m— o0

For the uniqueness, we use the fact that z. € Q. Indeed since z. € @, and solves (3.17)), the same
arguments as above give

(Bf) (2:) € =N (K(z2),2), >0 Z(t) = argmin Ei(q), V¢ >0
— q€ K(z:)
z:(t) = zp(t), t<0, ze(t) = zp(t), t<0.

For same seasons as in ([3.7]), the latter equation in turn is equivalent to the existence of saddle point
(Ae, z¢) such that

Lelze) + F (2) + ) Xj(e5) (2) = 0, (3:21)
i<j
where the functions ¢;; define the interior convex approximation set K (zc).

Consider two solutions z!,22 of (3.21) sharing the same positions for negative times z, and the
same linkages density p. We have

(Lei2e) + (F (22) — F (21), 22) + <Z X705 (28 = 25 w5 (D) > =0,

where 2. := 22 — 2z and £. := L£.[22] — L.[z]]. Notice once again that since F' is convex, we have
that
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So that
(L, 20) + <Z i) (2D =255 (D) > <o. (3.22)
i<j

Let’s consider the second term on the right hand side. Since gofj’»l and gofj’? are convex, by the same
arguments as in the proof of Theorem [2] we have that

(5" (=), 22) < 05 (22) — 5" (21) < ((95") (21),22), k€ (1,2} and i < j,

so that, since the Lagrange multipliers )\f]ik(t) > 0 for all ¢ < j and ¢t € [0,7]) and
Z)‘Zkﬁzk( 5) =0, k € {1,2} we have that

i<j

0= 3 [0 (05) (2) = a5 (05 (20, 22)]

i<j

By (3.22), this means that
(L., 2.) <0. (3.23)

Then using ] we have that

N, N,
1 P o 5 1 P t/e X L
22 [ ol On@da= 33 [ = caPpilapda < (£ 2)
=1 i=1

so that by definition of p,

Np t/e
Ho,m | o 9 1 A 9 5 4
9e ERGIE % ;:1 /0 |Zc,i(t — ea)|“pi(a)da < (Le, 2e), Ve >0 fixed. (3.24)

Combining (3.23)) and -7 we have

— t
2.0 < Mop / 15.(s)2ds, Vit € [0,T],
m JO

which thanks to the Gronwall’s lemma gives |2.| = 0, i.e. 21(t) = 22(¢), a.e. t € [0, 7). a

3.4.4. Convergence when € is small enough

In this section we are interested in the asymptotic when the linkages remodelling rate becomes large
enough. We prove the convergence of z. in C. Nevertheless we are not in conditions of using the
same arguments of “€208  hecause the delay operator is not uniformly bounded with respect to &
(see (3.18)).

Theorem 5. Let T > 0 be fized. Under assumptwnsm (i)-(iii), when e tends to 0 we have that

T T
/0 (Lelze) (B dt — (2(T), (T)) — (2:(0), 1(0)) — / (20, Op(t)dt, Wip € H'. (3.25)

a(a —b,a) > =(|a|? — [b]?) for any a,b € R2N»

1
2
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Proof. Let z. be the unique solution of (3.17). By the energy estimates there exists a constant C'
independent of € such that

Np T froo
Z/ / pilue i)?¢i(a)dadt < C < oo.
i=17/0 70

On the other, since the death rate ¢ has a lower bound, we have that

/|£|dt Z/ / ”1““()<()da dt<2z/

)
so that by the Jensen inequality

QZ/ dt<—u0MZ/ / pilue il *Ci(a)dadt.

This shows that the delay operator belongs to L? uniformly with respect in . There there exists
Lo € L? such that £, weakly converges to £y in L? when ¢ tends to 0, implying that

2

/ pite,i(a,t)(i(a)da| dt,

/ pittei(a,8)G:()da

T T
[ ecvoie — [ icovopan wwer
0 e—0 0
As it stands, we have

i) 0i2.a € L?,
ii) Zca € C and
iii) ||25,A — z5||c — 0.
A—0

Setting I[p, z., ] : )dt, we split the integral as follows
o 0

P» zsad’ Z/ / Zgz ’(ﬁz wi(t—ksa))pi(a)dadt

+ - Z/ / {(2e,4(t), ¥i (t +€a)) — (2i(t — €a),¥i(t))} pi(a)dadt =: IT + I5. (3.26)
By the dominated Lebesgue’s theorem, we have that
T
ﬁ'w—ﬁﬁf/mWﬁm@Wﬁ7V¢€Hy
e—0 0

M3120

Splitting I5 into I5 ; and 5, and using the same arguments as in we have that

1 Np T e
- ;/O /0 (ze.i(t), vi(t + ca))pi(a)dadt ——— (pyz0(T), (D)),

and

o= Z [ st imoadt — (220,000
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We gather the above convergences to obtain

T
Ilp, ze, ] ——— (1120(T), (1)) — (11120(0), %(0)) —/0 (120, Oip)dt, Vi € H'.

On the other hand since 8,29 € L? and zo € L we have that zo € C, so that the integration by
parts is well-defined in H' and we have

(1120(7). $(7)) — (1 20(0).(0)) — [ (20, D)t = / itz ), vip e HY
This gives that
/OT<L0 — 020, )dt =0, Vip € H' <= Lo = p,0:z0 ae. t €0,7T],
ending by the same way the proof. O

Theorem 6. Let z. be the unique solution of (3.21)). Under hypotheses (i)—(iii) there exists
Ao = ()\?j)i<j € L2 ([0, T); (R )N<) depending only on time such that

> [ Gz wwni — 3 [ A0y (o) b e I

1<J 1<J
Proof. Let U := L. — F (z¢) and

AL y= QA €RY DN Gij(20) = U, A > 0 and A5y =0 if Djj(z2) >0
i<j

Ven08

If A, # 0, the same arguments as in guarantee that

2y/ny
VA. € AS_ g and Vi < j, we've A5, < [U]bNr, where b= 1 . (3.27)

min (sin (nvi 1) _sin (;))

and n, is the maximal number of neighbours that a particle may have.
It follows that

T T C
/ A5 [2dt < 22N / (1€ + |F (z)]) at 5 262 (C”‘EM + KQT) . Vi<,
0 0 >

where we’ve used the fact that £. € L? on one hand and |F/(z5)| < oo (since F’ is continuous and

z. is bounded) on the other.

Furthermore, since @, is closed and z. € Q,, we have that z( := lirr%) zZ: € Q. On the other hand,
E—r

since by definition G; is defined and continuous in @, we have that
Gij(zs) ﬁ Gij(ZO) inC, Vi< 7.
For any i < j, we have that
Ao = X% in L2 ([0, T); (Ry)Ne)
Gij(z:) — Gij(z9) in C,
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so that

)f-Gij(zg) — )\OG”(Z()) in L2,

) )

implying that

3 / Gy (z) (D), (1) dt ——— 3 / N (0)(Gay (z0(0) (D) dt,  Vap € L2,

1<J 1<j

This is the end of the proof. O

Theorem 7. Under hypotheses[2.4.9 (i)-(iii), the unique solution of (3.17) converges toward zo € C
which in turn solves

w0 zo + F (z0) € =N (K (z0), z0) a.e. t € (0,T],

where
oo
0tz0 = (11,:0:20,4)i=1,..- N, and i1 ; := / api(a)da € R, Vi.
0

Moreover the limit function zq is unique.

Proof. The primal-dual problem: as in the proof of Theorem [d] it suffices to prove that there exists
Xo € L? ([0, T7; (R4)™e) depending only on time such that

py0izo + F (20) Z /\”G” (z0) =0. (3.28)
1<J
The existence of zg is due to compactness, since zg := lir% z. where z. is the unique solution of
—

€
(3.17). Furthermore, from Theorems [5| and |§| on one hand and the fact that F is continuously
differentiable on the other, we have that z solves

¢
/<u18tz0—|—F (2z0) Z)\” ii(20),% >ds =0, Vap€ H' and V¢t € [0,T).
0 1<j

Uniqueness: Let 2z and 22 be two solutions of (3.28)) sharing the same initial positions i.e. z§(0) =
22(0). We have

t
/ < w0+ F (z0) ) =D NGi(28) + D N Gij(=8), ¢ > ds =0, Vp € CN H,
0 1<J 1<j
where 2 1= 22 — z} and F'(zo) := F (23) — F (23)- Let us choose ¥ = 24 in the latter equation.
Since the source term and the constraints functions are convex, by the same arguments as in proof
of Theorem [ we have that

t
m,m/ (D20, 20)dt <0 — |2(D <0, Ve [0,T),
0

which proves that |2¢(¢)| = 0, meaning that z} = 23 for almost every ¢ € [0, 7. a
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3.5. The periodic contact model

3.5.1. Definition of the periodic signed distance

Proposition 5. For any x = (x1,x2) € R2 set T = x1 — {%J L and Ty := x5 — {%J H. We have
the following statements:

b (fth) € [OvL] X [OvH]’

® moreover

min |z —hLe; — kHes| = min |T — hLe; — kHes|,
h,keZ h,ke{0,1}

where e and ey respectively denotes the first and second vector of the canonical basis of R2.

Proof. For sake of simplicity, we first perform the proof in one dimension i.e. D = [0, L]. The 2D-
case being obtained by extension.

x
Let z € R, since R is Archimedean there exists n := {ZJ such that

n < <n+1,

I8

which implies that
nL<z<nL+L — 0<7T <L, (3.29)

which proves the first claim.
For the second claim, we notice that

min |z — kL| = min|T + nL — kL| = min |Z — kL|.
kez kezZ kezZ

On the other hand, since there exists k € Z such that [T — kL| < L (take k = 0 for instance), the
map A : k — |T — kL| realizes its minimum for indices ko satisfying A(ko) < L. But thanks to the
first claim,

Z—kL|<L = (k—1)L<z<(k+1)L
then by (3.29) we conclude that —1 < k < 2. Or equivalently

min [T — kL| = min [T —kL|.
kez ke{0,1}

We conclude that

ifz <L/2

T
L-zifz>L/2.

min|z — kL] = min |T—kL|=:min(z,L —7) = {
kez ke{0,1}

This ends the proof. O
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3.5.2. The framework for the continuous periodic model

Consider the following minimization process
1 NP (e o]
- . - 2 -
z.(t) = argmin & (q) == % Z/ @i — Ze.i(t — ea)|"pi(a)da + F(Z.), (3.30)
qeld €izi/o
where the set of constraints I/ reads
U:={qeR?™ st. ¢5;(q) == —dij(2:) — Vdij(2:) - (g — 2.) <0, Vi< j},

and the periodic distance

dij(q) == (h%igp\qj — qi — hLey — kHea| — (r; +15). (3.31)
We denote q := (q1,- -+ ,qn,) the projection of particles’ position in the 2D-torus. For any particle

we denote G := (¢7,¢”) where ¥ (resp. ¢7) is the projection in [0, L] (vesp. in [0, H]) of ¢¥ (reps.
q?) as in Proposition [5} When accounting for adhesions, the corresponding energy represents past
positions in the 2D plane, whereas contact forces occur on the torus. This is because we take into
account the length of adhesions greater than the periodicity dimensions L and H; see Figure b} By

z(t —eaz) U z(t —ear) z(t) L

Fig. 5. Linkages associated to some past positions in the domain [0, L] where 2} := z.(t — €a1).

Proposition [5] we have that

dijlg) = min |GG — @ — hLey — kHes| — (r; +1;).

Since this distance is well-defined i.e there exist are h, k € {0,1} such that
dij(q) = [T — @ — hLei — kHes| — (r; + 1),

we define the gradient vector of d;; in Q, as

Gij = Viij(a) = (0,+-0,~F11(a), 0+ 0,711(a),0,+ ,0), i<,
7

J

where €;;(q) is the action of the copy of particle ¢ on particle j and is oriented towards j. It is unitary
and reads

495 — ¢ — (nj —nj +h)Ley — (n
4j — @ — (nj —nj +h)Le1 = (n

—n! +k)Hey
_nzy+E)H62|’

1< 7,

Slelee

éij (q) = |

where nf := |¢f /L] and nj := |q}/H] for any particle k.
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3.5.3. The discrete periodic problem

The same arguments as earlier in this paper lead to the discrete minimization problem,

Aa gh &
Z! = argmin Enelq) = 2;

) qu(z” 1) i=1 1=1

~ ! 2
n—
- Ze,i

it Fa) (3.32)

where the discrete constraints set reads
K (Z:‘l) - {q € RVr st ¢ (q) i= —dyy(ZL ) = Vdy(Z0 ) <q _ Z:”) <0, i< j} ,
and

Vol (q) = —Vdy(ZL '), VqeRM.

The same arguments as in Theorem [I] still hold and guarantee the existence and uniqueness of the
solution Z_ to (3:32). We define in the same way the sets of feasible configurations and of active
constraints by QO and fq as in and Definition [3| respectively. We only mention that, in the
present case the periodic distance d;; is considered instead of D;;. The Lagrangian L is defined from
R2Ne x (R4 )Ne into R as well

P

N, oo
: _%ZZ ql'_ngl QT F (@) + Y el (a). (3.33)

=1 [=1 1<j

All hypotheses of Theorem@hold and guarantee that (3.32)) is equivalent to existence of saddle-point
(Z by ) satisfying

A >0, ¢™(20) <0, AL @™ (Z2) = 0and (E,.) (Z2) + D A Z)=0, (3.34)

1<J

where
o™ (q) = (677 (@), : R — R

Note that the periodic distance locally coincides with the one defined in in the sense that
d;; = D;; in D. So that these two distances have the same properties. This yields the same results as
those obtained above with the usual distance (energy estimates, compactness criterion, variational
inclusion, etc) in the present case.

3.6. Numerical approrimation and simulations
3.6.1. Uzawa’s algorithm

Note that, due to the assumptions on F' (see, the last equation in is nonlinear with respect
to Z7 at each time step n. This induces the need of a nonlinear solver; such as the Newton solver in
order to obtain the position from at time t" = nAt. In order to overcome the numerical cost of
such an implementation, we transform the external load to a source term depending on the solution
at the previous time step. So that we have a linear problem with respect to the unknown position
at each time step. More precisely consider the following problem

Z! = argmin o= ZZ\% ZUT PR+ F(ZE )+ F(Z07Y) (- 227§ (3.35)
qeK(Zr™Y) Rt
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We are attempted to use the projected-gradient descent algorithm to numerically approximate the
solution of (3:35). But the closed form of projection onto K (Z" ') is not at hand here. To tackle
this we pass through the dual problem and project the Lagrange multiplier onto (R )"e by simple
truncation and then iterate the process in the spirit of Uzawa’s algorithm. Precisely we build a
sequence of primal variables (Z7'"), € ([RQNP)[[\I and dual variables (A2"),, € (([R+)NC)N as follows:

A0 e (RN

L(Z™" AM) = inf L(qA)

q€R2Vp
ADTH = max (A?” +ne™(Z77), 0),

which ensures that solution Z7 of (3.35) is well defined. We note that L in the above algorithm is
the Lagrangian associated to the (3.35).

Proposition 6. If 0 < 1 < 2a/eC? with o := pa and C = /2N,, Uzawa’s algorithm converges.
More precisely, for any initial Lagrange multiplier )\2’0, the sequence (Z7°"), converges to the solution

of (3.35)) when r tends to infinity.

Proof. Let us check the hypotheses of ‘4405 To do so

o [, . is twice-differentiable as sum of a quadratic function and an affine function and we have

that
E;;)E(q) = diag (al,al, e ,aNp) . Vg e R*Ne,
where «a; = MA’i,Vi, so that E, . is uniformly convex with the constant o, := min; «;.
€
e ™ is convex, Lipschitz from R2V» into (R )™e. Indeed the convexity is obvious.

To prove the Lipschitz behavior, consider g, § € R*N». We have
|057(@) — i (@] = |Gi;(Z227Y) (@ -227) - Giy(Z227Y) - (@ — 22 7Y)|
=1Gi;(2:7) - (@ -9
<V2|g-q|. vi<j.
We've used the fact ‘Gij(Zg_lﬂ = /2 for all i < j in the third row. Thus
n,e (5 N,E (= (5 & (= |2 ~ =
e (@) - @ = [ D |eit@ - @)] < V2N|g—1|.

1<i<j<N,

Hence ¢™¢ is C-Lipschitz with C' = /2N, which ends the proof. a

3.6.2. Numerical simulations

We consider here the quadratic case, namely, the external load reads F(q) = %qg. We expect the cells
to follow the gradient of descent and finally to cluster at the origin. Uzawa’s algorithm is performed
to get the position at each time step. We start with a given initial deterministic configuration z,. We
estimate the MSD E (Mean Squared Displacement) which is a measure of the deviation of particles’

1 Np

b MSD(t) = <Z(t) - zref> = Fp Zi:1 |Zi(t) - Zref,il2
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positions with respect to a reference position z,.; = 0. We compare MSDs performed with and
without contact forces and compute the theoretical MSD in the same figure. To do so we consider
first the deterministic case without contact forces whose explicit solution is at hand. Then we perturb
it randomly by adding a Gaussian white noise in the system.

e Consider the following non contact model whose dynamic is described as

2 =—vz, t>0
{z vz (3.36)

Z(O) = zl)(o)a
where v > 0 can be seen as the inverse of the viscosity coefficient in our friction model. In figure
[6] are represented the curves of the global deviation with respect to the origin with and without
contacts (top) and the curve of the average activation of the Lagrange multipliers (bottom) see
(3.37) below. In the top figure, the global deviation starts from 16m? at ¢t = 0 and decreases to

Analytical and estimated MSDs

T T T T T T
151 With contacts (simulation)
= No contacts (simulation)
. Y t— |zp|2ef2t
§/ 10 [ 1
o
|92}
g 5 i
0 B
| | | | | |
0 1 2 3 4 5
Average activation
T T T T T T
{LL_‘_. .................. .
0.2} "g |
e ennaes
< 0.1} : |
0+ -
| | | | | |
0 1 2 3 4 5
Time (s)

Fig. 6. Deterministic MSDs with respect to 0 (top) and the average activation of multipliers (bottom).

end up by following horizontal lines (H = 0 for the red and blue curves and H ~ 3 for the orange
one). This is what we expected in the absence of contact forces. Indeed in the absence of contacts
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(blue curve), each particle may be represented only by its center as a simple dot without any
radius; allowing by the same way the overlapping between particles. Due to the source term, the
particles are like attracted by the origin. The orange curve in Figure [f] represents the estimated
MSD in the case of contacts between spheres. We remark that from ¢ = 0s to t ~ 0.35s the
curve is the same as the one without contact forces. Indeed as long as the particles are not in
contact the Lagrange multipliers are not activate so that particles’ trajectories are driven only
by external loads. Once the signed distance vanishes (from ¢ ~ 0.35s to t = 5s), the contact
forces are active (see (3.21))). The trajectories are no longer governed only by external load. The
contacts induce a diminution of the velocity and the decay of the mean square displacement is
no longer the same. This is illustrated by the change in the shape of the orange curve around
t = 0.35s. The particles rearrange and move toward the origin increasing the contacts’ number.
As high congestion occurs, the particles move very slightly and end up by being motionless
around the origin. This jamming leads to a complete steady state.

The bottom pink curve in Figure [f] represents the average activation of the Lagrange multipliers
over time defined as follows

Activ(t) := ﬁ Z ]l{Afj(t);éo}. (3.37)
p\=tp 1<i<j<N,
We may mention that the activation in is by definition the cardinal of the set of active
constraints Ind(z.) defined above (see Definition |3)) over the maximal number of constraints.
Precisely the average activation represents the ratio of the number of active constraints by the
maximal number of constraints. Moreover, by definition of the Lagrange multipliers we have
that

supp(Aj;) C{t > 0s.t. Djj(z(t)) =0}, Vi<j,

so that the multipliers are activated once the signed distance vanishes. Here (the bottom curve
of Figure @, the Lagrange multipliers are inactive for small times; in fact there is no contacts
at the debut. The jump at ¢ ~ 0.35s is due to the fact that some particles ¢ and j are in
contact; the Lagrange multipliers are positive . After that first jump, the average activation of
the multipliers is constant equal to 0.15 for less than one second, because the particles in contact
try to rearrange until they reach a steady state.

Consider now the stochastic model where a random perturbation is added in the the previous
model. We obtain the Ornstein-Uhlenbeck process

{2 =-—vz+on, t>0 (3.38)

20 = ZP(O)v

where (1,):>0 denotes the R?Nr-Gaussian white noise. The explicit solution as well as its
second order moment are given in Appendix [B] We compare the approximated MSD computed
using the solutions of our algorithm and the theoretical value at each time step in Figure [7] We
observe similar trends as in the deterministic case : the deviation exponentially decreases from
16m? to end up by following horizontal lines (H = 1/2 for the red and blue curves and H ~ 4
for the orange curve) for large times. Indeed by Appendix [B] we have that

1
: 2 _ 2 : 2 _ 1
%1_13(1) Elz:|* = |2p(0)]* and t% Elz | = 5
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Analytical and estimated MSDs
T

T T T T T
151 == With contacts (simulation)
= No contacts (simulation)
R et |zp2e 2+ 21— e )
NE 10 |- =
.=l
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Fig. 7. Stochastic MSDs with respect to 0 (top), the average activation of the multipliers (bottom).

so that the particle never cluster at the origin as in the deterministic case, even without contacts.
The red curve represents the second order moment of the trajectory (B.1)) when particles do not
interact.

4. Conclusions

In this paper we dealt with non-penetration models with adhesion forces. The position of cells at each
time minimizes a convex energy functional with non-penetration constraints. The energy contains
two terms : a delay part and the external load. By penalizing the constraints and letting the penalty
parameter to go to zero, we prove that the solution of the constrained problem exists and is unique.
We obtain energy estimates and we use convexity of the constraints and of the external load to obtain
compactness. We then apply Arzela-Ascoli in order to obtain existence the continuous problem for
a fixed € > 0. Finally, we prove that, if the characteristic of lifetime of the bonds tends to zero, our
model converges to the model investigates in with a weighted by friction coefficients related
to the microscopic adhesions. The same results are obtained on the torus ; the periodic distance is
considered instead of the signed one defined by the Euclidian norm. Numerical simulations are made
to validate the mathematical analysis.
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A. Theoretical background of contact modelling

Definition 5. Let n € N* and J : R® — R be a real valued function. J is called coercive if
J(v) — o0 as |v| = 0.

Theorem 8. “1989 Lot J : R® — R be a continuous, coercive and strictly convex function, U a
nonempty, convex and closed subset of R™ and ¢ : R™ — R a continuous, convex function satisfying

P(v) >0 for every v in R™ and ¢(v) =0 <= v e U, (A1)
Then for every 6 > 0, there exists a unique element us satisfying
us € R™ and Js(us) = vien[an Js(v), Js(v) = J(v)+ %1/1(1}).

Moreover, us — u when § goes to 0, where u is the unique solution of

find u such that

wvel, Ju)= Jrellf][](v)
Theorem 9. A405 et V' be a Hilbert space and M € N* and K defined as follows

K={veV:F(v)<0,V1<i< M}

Assume that J and Fy,--- Fyp are convex continuous in V' and differentiable in K and define the
associated Lagrangian

L(v,q)=Jw)+q-F), Y(v,q) €V x (R )M.

Let u be a point at which the constraints are qualified. Then u us a global minimum of J if and only
if there exists p € (Ry)M such that (u,p) is a saddle-point of L on' V x (Ry)M or equivalently, such
that

M
Fu)<0,p>0, p-u=0, J/(u)—&-Z)\Z-F/(ui) =0,
i—1

where F = (Fy,-+- , Fap).

Definition 6. V€298 Let H be a Hilbert space and S C H be a closed and nonempty subset and
x € H we define:

e the set of nearest points of x € S
Ps(z) ={veS:ds(z)=|r—v|}, ds(z):= 11L161£'|9L‘ —ul,
e the proximal normal cone to S at z
NP(S,z):={ve H:3a >0,z € Ps(x+av)},
e the limiting normal cone to S at x by
NE(S,z) :={v e H:3(zx,) C (S)V,3(vn) C (N(S,2,))N 8.t 2, = 2,05, = 0},

Note that if S is convex, the proximal normal cone coincides with the outward normal cone
N(S,z) to S at x into which we have z = Ps(x + av) in the definition of N7 (S, x).
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Definition 7. Z10 [et S ¢ H be a non empty closed subset of a Hilbert space H. For any fixed
n > 0, we say that S is n-prox-regular (or uniformly prox-regular) if for any v € NX(S, x) such that
[v] < 1, xz € Ps(x + nv).

Proposition 7. 51 Let S be closed nonempty set of a Hilbert space H. S is n-proz-reqular if and

only if a nonzero provimal normal v € N*(S,x) can be realized by an n-ball, that is for all x € S
and v € N(S,z)\ {0},

SﬂB<x+|Z|v,n> = (.

In other words for any x € S and v € N(S,z)

|v] 2
<’U,yfl’>§%‘yfl’| ’ VyGS
Furthermore S is convex if and only if it is co-prox-reqular.

Theorem 10. V28 The set of admissible constraints Q, is n-proz-reqular where

NP
min (sin <7r) sin <27T)>
. met 1) AN, (A.2)

- N N qu]n(rz +75),

where n, is the number of maximal neighbors that a particle can have.

Lemma 6. (page 90 inVm8) Let S be a convex and closed subset of a Hilbert space H. Let x € S
and w € H we have the following equivalences

w e N(S, z) by x = Pg(x +w)

(
Vyes, (wy—z) <0 (
Vye H, (wy—1)<|wlds(y) (
VEeH, (w¢§)<|wlds(§+ ) (
In>0,Yve H,|v<n (wo) <|wlds(v+x) (
3k >0,In>0,YVv e H,|v| <n (w,v) <kds(v+x) (A.8)
Proposition 8 (page 76 in"<""%), Let g € Q, and (qa,,) be a sequence in Qq satisfying qa, — q.

For any z € R*N» we denote by p = P (q)(2) and pa,, = Pk(q, )(2) there exists v such that for
any z € B(q,v) we have pn, — p. Particularly di(q, y(2) — dx(q)(2) as m goes to infinity.

-
SR = TS, B X

)
)
)
)
)

t o0

Definition 8. Brell Let (B, ||-||£) be a norm vector space and A C E be a subset of E. The convex
hull of A, we denote here by conv(A) is the intersection of all convex sets of E containing A.

Theorem 11. Brelll Let (E|||-||g) be a vector space and (x,), a sequence that weakly converges
to x in E. There exists a sequence of real numbers (Yx)g=n... N(n) (where N : N — N) taking values
in the convex hull of the set of values of the sequence (xy,),,, satisfying
N(n) N(n)
Un =Y Ankp with Mrx=1 Vke{n, - ,Nn)}, AuicBRy
k=n k=n

and converges to x i.e.

lyn = z[|& = 0.
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B. Mean Squared Displacement and Orsntein-Uhlenbeck process

Here we remind some properties of the Ornstein-Uhlenbeck (in the absence of contact forces), for
which we compute the explicit formula of its MSD. To this end consider the following equation (3.38))
(with ¥ = 0 = 1). By the variation of constants method we have

t
2z, = z,(0)e" +/ e~y dr.
0
Due to the null expectation of the white noise, we have that
E(z¢) = z,(0)e "

On the other hand for any ¢, s > 0, setting t A s := min(¢, s) we have

t s
E[zt-zs]=|zp(o)|26—<t+s>+[5{( /0 e~ ) - ( /O =T dry)

— |zp(0)|2€—(t+s) + /t/\s e—(t+s—2r)dr7
0
where we’ve used the Ito’s isometry at the second equality. Thus if s =t we have
Elz:? = |2,(0)]%e % + e /t e*d,,
0
which gives the explicit form

(1—e?). (B.1)

[N

Elz|* = |2,(0)]%e™* +
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