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TEAR-OFF VERSUS GLOBAL EXISTENCE FOR
A STRUCTURED MODEL OF ADHESION MEDIATED BY

TRANSIENT ELASTIC LINKAGES⇤

VUK MILIŠIĆ†
AND DIETMAR OELZ‡

Abstract. We consider a microscopic non-linear model for friction mediated by transient elastic
linkages introduced in our previous works. In the present study, we prove existence and uniqueness of a
solution to the coupled system under weaker hypotheses. The theory we present covers the case where
the o↵-rate of linkages is unbounded but increasing at most linearly with respect to the mechanical
load.

The time of existence is typically bounded, culminating in tear-o↵ where the moving binding site
does not have any bonds with the substrate. However, under additional assumptions on the external
force, we prove global in time existence of a solution that consequently stays attached to the substrate.

Key words. Friction coe�cient, protein linkages, cell adhesion, renewal equation, e↵ect of chemical
bonds, integral equation, Volterra kernel.
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1. Introduction
Adhesion forces at the cellular and intra-cellular scales play an important role in

several phenomenons such as cell motility (see [12] and the references therein) and cancer
growth [14]. In [12] the authors derive a complete model for a moving network of actin
filaments polymerizing near the boundary of the cell and depolymerizing close to the
nucleus, providing biologically plausible steady-state [11] and moving [8] configurations
of the cell shape. The main advantage of this method is that the parameters we use
are easy to obtain experimentally if not already available in the literature [3,4,6,7,13].
The adhesion and the stretching between filaments are written as friction terms obtained
through a formal limit of a delayed system of equations. Indeed, let " be a dimensionless
parameter denoting the ratio of the typical lifetime of bonds versus the overall timescale
of the model, the asymptotic limit is obtained assuming that both, the rate of linkage
turnover and the sti↵ness of the bonds, become large. The rigorous justification of the
limit as "!0 is the ultimate goal of our investigations [9, 10]. Nevertheless, the highly
non-linear nature of the delayed model leads to consider already the case of a fixed value
of ". In this article we show that the data of the problem determines the well-posedness
of the model: the balance between the on-rate of the linkages and the external force is
essential. Mathematically this is seen since, depending on this balance, either we can
show blow up in finite time or global existence. Physically this means that pulling the
binding site too strongly causes a tear-o↵, and that our model is able to reproduce this
feature. Experimentally this is observed and it is used in order to determine the load
dependence of detachment rates [1, 2, 5, 16].

More precisely, this study is concerned with a system of equations which describes
the evolution of the time-dependent position of a single binding site as it moves on a
1D-substrate. An external force f acts on a moving point-object positioned at z(t),
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2 tear-off versus global existence for an age-structured model of adhesion

which is attached to the substrate through continuously remodeling elastic linkages,
i.e. transiently attaching protein bonds. Their age distribution is denoted by ⇢=⇢(t,a)
where a�0 denotes the age of linkages and t�0 denotes time.

The position of the moving binding site, z(t), solves a Volterra equation of the first
kind [9] reading

8

<

:

1

"

Z 1

0

(z(t)�z(t�"a))⇢(t,a)da=f(t), t�0,

z(t)= zp(t), t<0,

(1.1)

where the known past positions are given by the Lipschitz function zp(t)2R for t<0.
The age distribution ⇢=⇢(t,a) is the solution of the age-structured model

8

>

<

>

:

"@t⇢+@a⇢+⇣ ⇢=0, t>0 , a>0,

⇢(t,a=0)=�(t)(1�µ
0

) , t>0,

⇢(t=0,a)=⇢I(a), a�0,

(1.2)

where µ
0

(t) :=
R1
0

⇢(t,ã)dã and the on-rate of bonds is a given coe�cient � times a
factor, that takes into account saturation of the moving binding site with linkages.
Here we treat " as a fixed constant, which we keep in our notations in order to maintain
consistency with previous studies [9, 10], and to keep track about whether the results
we obtain are uniform with respect to ", having future convergence results in mind.

When the o↵-rate ⇣ is a prescribed function, we say that the problem is weakly
coupled first one solves ⇢ and then ⇢ can be used as a given integration kernel in order
to obtain z as the solution of (1.1).

On the other hand, if ⇣ depends on z as for instance ⇣= ⇣((z(t)�z(t�"a))/")
(cf. [7, 15]) we speak about strong coupling. In [10] we gave a first result on global
existence of weak solutions in this case. These results relied on the change of unknowns

u(t,a)=

(

z(t)�z(t�"a)
" if t�"a,

z(t)�zp(t�"a)
" otherwise.

It was shown in [10] that one could transform the system (1.1)–(1.2) replacing (1.1) by
the equation satisfied by u, which is

8

>

>

>

<

>

>

>

:

"@tu+@au=
1

µ
0

✓

"@tf+

Z 1

0

(⇣(u)u⇢)(t,ã)dã

◆

, t>0, a>0,

u(t,a=0)=0, t>0,

u(t=0,a)=uI(a), a�0,

(1.3)

where the initial condition is related to the past data of (1.1) through uI(a) :=(z(0)�
zp(�"a))/". The structure of ⇣= ⇣(u(t,a)) is then consistent with the new variable and
the system (1.3)–(1.2) is closed. In [10] it has turned out to be beneficial to work on
the system (1.2)–(1.3), since it allowed to derive powerful a priori estimates on u.

The analysis in the older studies [9] and [10] relied on the existence of an upper
bound ⇣

max

of the function ⇣. It is the aim of the present study to relax the hypothesis
of boundedness of ⇣. This represents a major improvement, because the lower bound on
the total mass µ

0

(t) strongly depends on ⇣
max

and the analytical arguments in [10] do
rely heavily on this control. Furthermore, the upper bound ⇣

max

had major importance



V. MILISIC AND D. OELZ 3

in the fixed point argument used in [10] to prove the global existence result since we
used it to control the non-linear right-hand side in (1.3).

In addition to deepening the analysis, unboundedness of the o↵-rate is the natural
scenario from the application point of view. A typical situation is Bell’s law, i.e. an
exponential increase of the o↵-rate as the elastic linker is extended, ⇣= ⇣

0

exp(|u|) (cf.
[7, 15]). However, this strongly non-linear scenario is still out of reach of the rigorous
mathematical analysis that we present in this study which relies on ⇣ being a (globally)
Lipschitz continuous function.

The right-hand side of (1.3) for a given function u,

gu(t) :=
1

µ
0,u

(

"@tf+

Z

R+

⇣(u(t,a))%u(t,a)u(t,a)da

)

,

where %u solves (1.2) with ⇣= ⇣(u) and µ
0,u :=

R

R+
%u(t,a)da, can become infinite if

either µ
0,u vanishes or

R

R+
⇣(u)u%uda blows up. We define the modified right-hand side

gu :=
1

max(µ
0,u,µ)

(

"@tf+max

 

�p,min

 

p,

Z

R+

⇣(u)%uuda

!!)

,

where µ and p are two strictly positive arbitrary constants. The strategy to prove
our existence result is first to establish existence and uniqueness of a solution of this
modified problem using a fixed point argument in the space

XT :=

(

u2L1
loc

((0,T )⇥R
+

) s.t. sup
t2(0,T )

ku(t,a)!(a)kL1
a
<1

)

(1.4)

defined for any specific time T >0, with the weight function being

!(a) :=
1

1+a
. (1.5)

To this end we introduce the map � :v2XT 7!u2XT where, given v, we solve (1.2)
with ⇣= ⇣(v) and obtain the age distribution ⇢v. Then we look for the solution of the
problem:

8

>

<

>

:

"@tu+@au=gv(t), t>0, a>0,

u(t,0)=0, t>0,

u(0,a)=uI(a), a�0,

(1.6)

to obtain u2XT . The right-hand side of (1.6) becomes a bounded function whose
bounds depend on the cut-o↵s µ and p. This allows to prove contraction of the map �
on a time interval that is su�ciently small. Due to the uniform bounds this process can
be iterated to obtain (%,w), a unique solution which is global in time. Then we establish
a uniform bound on p(t) :=

R

R+
⇣(w)w⇢wda, the second integral term in gw. This shows

that for p su�ciently large with respect to 1/µ, p(t) never reaches p so that the solution
(⇢w,w) satisfies also a simple-cut-of problem where gu can be replaced by gu defined as

gu :=
1

max(µ
0,u,µ)

(

"@tf+

Z

R+

⇣(u)%uuda

)

.



4 tear-off versus global existence for an age-structured model of adhesion

In a second step, we prove that if additional assumptions hold, this solution never
reaches the cut-o↵ value µ. Otherwise, we give a lower bound to the time span during
which the cut-o↵ is not reached. In both cases the solution of the modified problem is
also the unique solution to the original system (1.2)–(1.3) either globally in time or on
the finite interval of time.

More precisely, in Section 4, we analyze the dependence of the lower bound of µ
0,u

with respect to the L1(0,T ) norm of gu. This naturally leads to local existence results
for the original problem (1.2)–(1.3) in Section 5 by providing a minimal time for which
the solution (⇢w,w) does not reach the cut-o↵ value µ.

Even stronger results are rigorously obtained in sections 6 and 7 generalizing a
straightforward computation in the special case where ⇣(u)=1+ |u| and assuming that
u remains strictly positive. In this case, integrating (1.2) in age, and using the fact that
(1.1) transforms into

R

R+
⇢(t,a)u(t,a)da=f(t), we obtain that

"@tµ0

��(1�µ
0

)+µ
0

+f =0,

which can be solved directly. This provides immediately the bounds

min

✓

µ
0

(0),
�
min

�f
max

�
max

+1

◆

µ
0

(t)µ
0

(0)

✓

1� t

t
0

◆

,

where

t
0

:=
"

�
min

+1
ln

✓

1+
µ
0

(0)(�
min

+1)

f
min

��
max

◆

and leads to 3 possible scenarios:

i) a strictly positive lower bound of µ
0

when �
min

>f
max

, in which case one has global
existence,

ii) if f
min

>�
max

, the time t
0

is well defined and the binding site tears o↵, i.e. µ
0

(t)
becomes zero, at t= t

0

, this leads to a blow up,

iii) intermediate cases for which we do not know if µ
0

becomes zero in finite time, so
both previous possibilities could occur according to the balance between � and f .

These basic ideas provide global existence results (Section 6) versus tear-o↵ results
(Section 7) under more general assumptions on ⇣.

2. Technical assumptions, preliminary results and a priori estimates

2.1. Hypotheses.
Assumptions 2.1.

a) There exists a minimal value ⇣
min

such that ⇣(w)� ⇣
min

>0, 8w2R.
b) The derivative of ⇣ is bounded i.e. |⇣ 0(w)| ⇣

Lip

, 8w2R.
c) The function f is Lipschitz continuous on [0,T ] for any positive fixed T . If T =1

then f is supposed to be globally Lipschitz i.e. f 2W 1,1(R
+

) in this case.

Remark 2.1. Note that this definition does not allow more than a linear growth for
⇣. But in contrast to [9,10], one does not have a hypothesis concerning boundedness on
⇣ from above.

Remark 2.2. In the literature [7, 8, 12, 15], ⇣ is a smooth function of |u|, which
motivates choice of the Lipschitz property above.

As in [10] we assume also some hypotheses on the initial and boundary data of (1.2)

Assumptions 2.2. The initial condition ⇢I 2L1
a (R

+

) is
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(i) non-negative, i.e. ⇢I(a)�0, a.e. in R
+

,

(ii) moreover, the total initial population satisfies

0<

Z 1

0

⇢I(a)da<1,

(iii) and higher moments are bounded,

0<

Z 1

0

ap⇢I(a)da cp, for p=1,2.

Assumptions 2.3. For � we assume that

a) �=�(t) is a continuous function,

b) 0<�
min

�(t)�
max

for all positive times t.

We detail hereafter results from [9] still valid under the weaker set of assumptions
2.1, 2.2, and 2.3.

Theorem 2.1. We suppose that u is a given function in XT . Let assumptions 2.1, 2.2

and 2.3 hold, then for every fixed " there exists a unique solution %2C0(R
+

;L1(R
+

))\
L1(R2

+

) of the problem (1.2), with the o↵-rate ⇣ := ⇣(u(t,a)). It satisfies (1.2) in the

sense of characteristics, namely

%(t,a)=

8

>

>

<

>

>

:

�(t�"a)
�

1�R1
0

%(ã,t�"a)dã
�

⇥exp
��R a

0

⇣(ã,t�"(a� ã))dã
�

, when a<t/",

⇢I(a� t/")exp
⇣

� 1

"

R t
0

⇣((t̃� t)/"+a,t̃)dt̃
⌘

, if a� t/",

(2.1)

where, in an abuse of notation, we wrote ⇣= ⇣(u(t,a))= ⇣(t,a).

Lemma 2.2. Under the same assumptions as in Theorem 2.1, let % be the unique

solution of problem (1.2), then it satisfies a weak formulation of this problem, namely

Z 1

0

Z T

0

%(t,a)("@t'+@a'�⇣') dtda�"

Z 1

0

%(t,a)'(t=T,a)da

+

Z T

0

%(t,a=0)'(t,0)dt+"

Z 1

0

⇢I(a)'(t=0,a)da=0, (2.2)

for every T >0 and every test function '2D([0,T ]⇥R
+

).

Following the same argumentation as Lemma 2.2 in [9], one has

Lemma 2.3. Under the same assumptions as in Theorem 2.1, it holds that µ
0

(t)<1
for any time. This in turn implies that %(t,a)�0 for almost every (t,a) in R2

+

.

For p2N we define the pth moment of the solution ⇢ of (1.2)

µp(t) :=

Z 1

0

ap%(t,a)da.

Then, following the same argumentation as Lemma 2.2 in [9], one has

Lemma 2.4. Under the same assumptions as in Theorem 2.1,

µp(t)µp,max

for p=1,2,
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where the generic constants µp,max

read:

µp,max

:=
p
X

`=0

p!

`!⇣p�`
min

µ`(0)+
p!

⇣p
min

�
max

�
min

+⇣
min

.

Proof. When p=0 we simply integrate (1.2) with respect to age

"@tµ0

+�µ
0

+

Z

R+

⇣⇢da=�,

as ⇣ is bounded from below and using Gronwall’s Lemma one has

µ
0

(t)µ
0

(0)+
�
max

�
min

+⇣
min

.

For any integer p we then write

"@tµp+⇣
min

µp�pµp�1

0,

which, using Gronwall’s Lemma again, gives

kµpkL1
(0,T )

µp(0)+
p

⇣
min

kµp�1

kL1
(0,T )

.

By induction, one proves the claim.

We define the entropy introduced in [9] that compares solutions of (1.2)

H
0

[⇢](t) :=

Z

R+

|⇢(t,a)|da+
�

�

�

�

�

Z

R+

⇢(t,a)da

�

�

�

�

�

.

Proposition 2.5. Under assumptions 2.1, 2.2, and 2.3, setting ⇢̂ :=%
2

�%
1

where %
2

and %
1

solve (1.2) with o↵-rates ⇣(w
2

) (resp. ⇣(w
1

)) where w
2

(resp. w
1

) is a function

in XT , we find that

H
0

[⇢̂](t) c
0

(1�exp(⇣
min

t/"))kŵkXt
, 8t2 (0,T ),

where ŵ :=w
2

�w
1

, c
0

:= 2

⇣min
⇣
Lip

µ
1,max

, µ
1,max

being the bound on the first moment of

%
1

.

Proof. The proof follows the same lines as for Lemma 3.2 and Lemma 3.3 in [9]
based on the system satisfied by ⇢̂,

8

>

>

>

<

>

>

>

:

"@t⇢̂+@a⇢̂+⇣
2

⇢̂=�⇣̂%
1

t>0,a>0,

⇢̂(t,0)=��(t)

Z

R+

⇢̂(t,ã)dã, t>0,

⇢̂(0,a)=0, a>0,

where ⇣̂ := ⇣(w
2

)�⇣(w
1

).

For k�1 we define

Hk[⇢] :=

Z

R+

(1+a)k⇢(t,a)da.
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For these functionals one has

Proposition 2.6. Under the same hypotheses as in the previous proposition, and if

moreover

Z

R+

(1+a)`⇢I(a)da<1, 8`2{0,k+1},

then

Hk[⇢̂](t)hk(1�exp(�⇣
min

t/"))kŵkXt
, 8t2 (0,T ),

where the constants hk depend only on ⇣
min

, ⇣
Lip

, and on the constants (µ`,max

)`2{0,k+1}
related to the bound on the `th moment of %

2

.

Proof. We apply a recursion argument. The case k=0 is proved by Proposition
2.5. We suppose that the claim is true for `k�1. We have formally that

"@t(1+a)k|⇢̂|+@a(1+a)k|⇢̂|�k(1+a)k�1|⇢̂|+⇣
min

(1+a)k|⇢̂| |⇣̂|(1+a)k%
2

.

Integrating in age, one gets that

"@tHk[⇢̂]��|µ̂|+⇣
min

Hk[⇢̂]kHk�1

[⇢̂]+⇣
Lip

kŵkXt

Z

R+

(1+a)k+1%
2

(t,a)da,

which is then estimated giving

"@tHk[⇢̂]+⇣
min

Hk[⇢̂]kHk�1

[⇢̂]+⇣
Lip

Ck+1

kŵkXt
+�

max

H
0

[⇢̂].

Using Gronwall’s Lemma gives

Hk[⇢̂](t) 1�exp(�⇣
min

t/")

⇣
min

sup
s2(0,t)

�

kHk�1

[⇢̂](s)+�
max

H
0

[⇢̂](s)+⇣
Lip

Ck+1

kŵkXs

�

,

where we used, in the last estimates, the recursion hypothesis and Proposition 2.5.

We give ourselves T >0 and a function g2L1(0,T ) and we compute w as the
solution in the sense of characteristics of

8

>

<

>

:

"@tw+@aw=g(t), t>0, a>0,

w(t,0)=0, t>0,

w(0,a)=uI(a), a�0.

(2.3)

And all along the paper we will assume that the initial condition uI belongs to
L1(R

+

,!). For this simple transport problem it holds that

Theorem 2.7. For any fixed T >0, any g2L1(0,T ), and for any fixed ", there exists

a unique w2XT solving problem (2.3). Moreover one has the a priori estimates

kwkXT

✓

T

T +"

◆

kgkL1
(0,T )

+kuIkL1
a (R+,!)

Moreover the maximal time of existence is infinite if g2L1(R
+

).

For sake of clarity we repeat and detail here the proof given in [10, Theorem 6.1, p.
2116].
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Proof. Since g2L1(0,T ), w is a mild solution (in the sense of characteristics).
We use the Duhamel’s principle: w can be computed explicitly and reads

w(t,a)=

(

R

0

�ag
�

t+ s
"

�

ds if t�"a,

uI(a� t/")+
R

0

�tg
�

t+ s
"

�

ds otherwise,

and then, using Hölder’s inequality, we write for all (t,a) such that "a tT ,

�

�

�

�

w(t,a)

1+a

�

�

�

�

 a

1+a
kgkL1

(0,T )

 T

T +"
kgkL1

(0,T )

,

the latter inequality being true since a/(1+a) is an increasing function on R
+

. On the
contrary, if t"a then

�

�

�

�

w(t,a)

1+a

�

�

�

�

 |uI(a� t/")|
1+a

+

R

0

�t

�

�g
�

t+ s
"

�

�

�ds

1+a
 |uI(a� t/")|

1+a� t/"
+

t

1+a
kgkL1

(0,T )

,

thus one concludes that if t"a
�

�

�

�

w(t,a)

1+a

�

�

�

�

kuIkL1
(R+,!)

+
T

T +"
kgkL1

(0,T )

.

Gathering both cases, one recovers

kw(t, ·)kL1
(R+,!)

kuIkL1
(R+,!)

+
T

T +"
kgkL1

(0,T )

.

Taking then the supremum over all t2 (0,T ) gives the bound in XT as claimed. We
underline that this estimate is uniform with respect to T and ", in particular if the
maximal time of definition of g is infinite then w is in L1(R

+

;L1(R
+

,!)).

3. Global existence results for cut-o↵ problems
We solve the coupled problem: find (%,w) satisfying

8

>

>

>

>

<

>

>

>

>

:

"@t%+@a%+⇣(w)%=0, t>0, a>0,

%(t,0)=�(t)

 

1�
Z

R+

%(t,a)da

!

, t>0,

%(0,a)=⇢I(a), a�0,

(3.1)

and
8

>

<

>

:

"@tw+@aw=gw(t), t>0, a>0,

w(t,0)=0, t>0,

w(0,a)=uI(a) a�0,

(3.2)

where we set

gw(t) :=
1

max(µ
0

(t),µ)

 

"@tf+max

 

�p,min

 

Z

R+

(⇣(w)%w)(t,a)da, p

!!!

, (3.3)

where µ
0

(t)=
R

R+
%(t,a)da. The two constants µ and p are positive.
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Theorem 3.1. We suppose that assumptions 2.1, 2.2, and 2.3 hold. Moreover we

assume that uI 2L1(R
+

,!) and k@tfkL1
(R+)

is finite and that the constants µ and p
are fixed. For any fixed time T possibly infinite, there exists a unique pair of solutions

(%,w)2C([0,T ];L1(R
+

))⇥XT solving the coupled problems (3.1), (3.2), and (3.3).

Proof. We apply the Banach fixed point Theorem to � mapping w2XT 7!u2XT

such that
8

>

<

>

:

"@tu+@au=gw(t), t>0,a>0,

w(t,0)=0, t>0,

w(0,a)=uI(a), a>0.

We prove that � is actually contractive in XT for a time T small enough.

a) The map � is endomorphic. For any given w2XT one has invariably

|gw|
1

µ

⇣

"k@tfkL1
(0,T )

+p
⌘

, (3.4)

which by the same method as in Theorem 2.7 provides a bound independent on T
in XT on u

kukXT
�

�gw
�

�

L1
(0,T )

+kuIkL1
! (R+)

.

b) The map � is a contraction. We set ĝw :=gw2
�gw1

and ⇢̂ :=%w2 �%w1 and so on.
As gw is Lipschitz with respect to µ

0

(t) and
R

R+
⇣%wda

|ĝw(t)| |µ̂|
µ2

n

"k@tfkL1
(0,T )

+p
o

+
1

µ

�

�

�

�

�

�

\ 

Z

R+

⇣%wda

!

�

�

�

�

�

�

=: I
1

+I
2

.

I
1

is immediately estimated thanks to Proposition 2.5, and one has

I
1

 1

µ2

n

"k@tfkL1
(0,T )

+p
o

H
0

[⇢̂](t) 1

µ2

n

"k@tfkL1
(0,T )

+p
o

c
0

kŵkXt
,

while we decompose the di↵erence of triple products in I
2

as

I
2

 1

µ

�

�

�

�

�

Z

R+

⇣̂%w2w2

+⇣
1

⇢̂w
2

+⇣
1

%w1ŵda

�

�

�

�

�

 1

µ

 

Z

R+

⇣
Lip

|ŵ|%w2 |w2

|da

+
�

⇣
Lip

kw
1

kXt
+⇣

0

�

(

Z

R+

(1+a)2|⇢̂|dakw
2

kXt
+

Z

R+

(1+a)2%w1dakŵkXt

)!

c
�kŵkXt

+H
2

[⇢̂](t)
  ckŵkXt

,

where the constant c depends on ⇣
Lip

, ⇣
0

, (kwikXt
)i2{1,2}, µ, and

R

R+
ak⇢I(a)da for

k2{0,1,2}. Using again Theorem 2.7, one has

kûkXt
 t

t+"
kĝwkL1

(0,t)
t

"
kĝwkL1

(0,t)
tc

"
kŵkXt

.

If T
0

<"/c then there exists a unique fixed point w2XT0 of the mapping �.
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c) Global existence for any time. We suppose that existence and uniqueness are estab-
lished for the tuple (%,w) solving (3.1)–(3.2), on the time interval [0,Tn�1

] for n�1.
We construct a fixed point for the next interval [Tn�1

,Tn :=Tn�1

+�Tn] on the map
u=�(v)

8

>

<

>

:

"@tu+@au=gv(t), t2 (Tn�1

,Tn),a>0,

u(t,0)=0, t2 (Tn�1

,Tn),

u(Tn�1

,a)=w(Tn�1

,a) a>0,

and

8

>

>

>

>

<

>

>

>

>

:

"@t⇢+@a⇢+⇣(v)⇢=0, t2 (Tn�1

,Tn),a>0,

⇢(t,0)=�(t)

 

1�
Z

R+

⇢(t,a)da

!

, t2 (Tn�1

,Tn),

⇢(Tn�1

,a)=%(Tn�1

,a), a>0.

If we denote the extensions to [0,Tn] of (⇢,u) as

⇢e(t,a) :=

(

⇢(t,a) if t2 [Tn�1

,Tn)

%(t,a) t2 (0,Tn�1

]
, we :=

(

u(t,a) if t2 [Tn�1

,Tn)

w(t,a) t2 (0,Tn�1

].
,

The continuity of ⇢e allows to apply Lemma 2.4. Similarly for we one has

kwekXTn
�

�gv(t)�[Tn�1,Tn)
+gw�[0,Tn�1]

�

�

XTn
+kuIkL1

! (R)

 ("k@tfkL1
(0,Tn)

+p)

µ
+kuIkL1

! (R),

where �A is the characteristic function of the set A, and we used the uniform estimate
on gw provided by (3.4). These estimates prove that the constant c in the contraction
in b) is not changing as time evolves. Thus we can fix-point again choosing �Tn

as in the previous paragraph and prove contraction in [Tn�1

,Tn]. At this step the
recursion is complete. The theorem is proven for any positive time.

Corollary 3.2. Under the same hypotheses as above, for any pair of positive definite

reals (µ,p), the solution-pair (%,w) solving (3.1)–(3.3) satisfies the a priori estimates

Z

R+

%(t,a)|w(t,a)|da
Z

R+

⇢I(a)|uI(a)|da+
Z t

0

|@tf(t̃)|dt̃=:1/�
0

. (3.5)

Proof. We use that

|gw(t)|
1

µ
0

(t)

(

"|@tf |+min

 

p,

�

�

�

�

�

min

 

Z

R+

⇣(w)w%da,p

!

�

�

�

�

�

!)

 1

µ
0

(t)

(

"|@tf |+min

 

p,

Z

R+

⇣(w)%|w|da
!)

 1

µ
0

(t)

(

"|@tf |+
Z

R+

⇣(w)%|w|da
)

.
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Then same arguments as in the proof of Lemma 5.1 in [10] provide a priori estimates.
Indeed, in the sense of characteristics |w| satisfies

"@t|w|+@a|w| |gw|
1

µ
0

(t)

(

"|@tf |+
Z

R+

⇣(w)%|w|da
)

.

Then multiplying the later inequality by % and integrating with respect to age, one gets

"@t

Z

R+

%|w|da+
Z

R+

⇣(w)|w|%da"|@tf |+
Z

R+

⇣(w)|w|%da.

Because on the right- and on the left-hand sides the same integral terms cancel, the
claim follows.

Proposition 3.3. Under assumptions 2.1, 2.2, and 2.3, let (%,w) be the solution of

the fully coupled and stabilized problem (3.1)–(3.3), there exists a positive finite constant

�
1

such that

Z

R+

⇣(w(t,a))|w(t,a)|%(t,a)da �
1

µ
, 8t�0,

where the constant �
1

depends on

• the a priori bound only on

R

R+
%|w|da (obtained in Corollary 3.2) ,

• k@tfkL1
(0,T )

,

• ⇣
Lip

, and ⇣(0).

Proof. Using equations (3.1), (3.2), and hypotheses 2.1, one has

"@t(%|w|⇣)+@a(%|w|⇣)+⇣2|w|%%|w|("@t⇣+@a⇣)+⇣%|gw|.
Integrating in age and setting p(t) :=

R

R+
%(t,a)|w(t,a)|⇣(w(t,a))da gives

"@tp+

Z

R+

⇣2|w(t,a)|%(t,a)da |gw|
 

⇣
Lip

Z

R+

%|w|da+
Z

R+

⇣(w)%(t,a)da

!

 |gw|
 

2⇣
Lip

Z

R+

%|w|da+⇣(0)

!

 1

µ
("|@tf |+p)(2⇣

Lip

/�
0

+⇣(0)) ,

where
R

R+
%|w|da1/�

0

. Now, we consider the second term in the left-hand side above:

using Jensen’s inequality one writes

 

R

R+
⇣(w)|w(t,a)|%(t,a)da

R

R+
|w|%da

!

2


R

R+
(⇣(w))2|w(t,a)|%(t,a)da

R

R+
|w|%da ,

since |w|%/RR+
|w|%da is a unit measure. This implies that

Z

R+

(⇣(w))2|w(t,a)|%(t,a)da�
⇣

R

R+
⇣(w)|w(t,a)|%(t,a)da

⌘

2

R

R+
|w|%da ��

0

p2.
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We obtain a Riccati inequality

"@tp+�
0

p2h/µ+p/µ, p(0)=

Z

R+

⇣(uI(a))|uI(a)|⇢I(a)da,

where h :="k@tfk1 (2⇣
Lip

/�
0

+⇣(0)) is a constant. We denote by P± the solutions of the
steady state equation associated to the last inequality, i.e. P solves �

0

P 2�P/µ�h/µ=
0. The solutions are given by

P±=
1

µ

⇣

1±
q

1+4hµ�
0

⌘

/(2�
0

) 1

µ
max

⇣

p(0),
⇣

1±
p

1+4h�
0

⌘

/(2�
0

)
⌘

=:
�
1

µ
.

Applying Lemma A.1, we conclude that p(t)max{p(0),P
+

}�
1

/µ, which ends the
proof.

Theorem 3.4. Suppose that assumptions 2.1, 2.2, and 2.3 hold, moreover, suppose

that uI 2L1(R
+

,!) and that k@tfkL1
(0,T )

is finite, if (%,w) is the unique solution of

the stabilized problem (3.1)–(3.3), it is also the unique solution of (3.1)–(3.2) together

with the modified right-hand side

gw=
1

max(µ
0,w,µ)

 

"@tf+

Z

R+

⇣(w)w%da

!

. (3.6)

Proof. The proof is a simple application of Proposition 3.3 above and taking
p>�

1

/µ when solving (3.1)–(3.3). Indeed, in this case, the truncated right-hand side
from (3.3) becomes (3.6), since p(t) :=

R

R+
⇣(w)w%da never reaches ±p.

4. Impact of the cut-o↵ value on the mean bonds’ population
In the previous section, (3.2) was solved with a bounded source term (either gw or

gw) that we denote in this section as a generic bounded function g2L1(0,T ), so that
hereafter w solves (3.2) with g as a source term. In what follows we are interested in
computing a sharp lower bound on the total population µ

0,w(t) :=
R

R+
%(t,ã)dã where %

solves (3.1) with ⇣(w).

Lemma 4.1. Let assumptions 2.1 and 2.3 hold. Let w2XT be given arbitrarily. Let

% be the solution of (3.1) with ⇣(w). We suppose that µ
0,w(0)<1. Let us fix a positive

constant �
2

such that

�
2

<min

✓

1�µ
0,w(0),

⇣
min

⇣
min

+�
max

◆

.

Under assumptions 2.1, 2.2, and 2.3, µ
0,w(t)<1��

2

holds for every positive time t.

Proof. We proceed similarly as in Lemma 2.2 in [9]. The computations are thus
only formal although they can be made rigorous exactly as therein. By hypothesis,
the data satisfies 1��

2

�µ
0,w(0)>0. By continuity this also holds on a time interval

[0,t
0

) small enough. We proceed by contradiction and suppose that at time t
0

the mass
µ
0,w(t0) reaches 1��

2

. The equation on µ
0,w reads

"@tµ0,w��(1�µ
0,w)+

Z

R+

%(t,a)⇣(w(t,a))da=0.
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Multiplying by �1 and using the upper bound of �, one deduces that

"@t(1��
2

�µ
0,w)+�

max

(1��
2

�µ
0,w)+�

2

�
max

�
Z

R+

%(t,a)⇣(w(t,a))da�0,

then the lower bound on ⇣ implies

"@t(1��
2

�µ
0,w)+�

max

(1��
2

�µ
0,w)+�

2

�
max

� ⇣
min

µ
0,w.

We transform the latter right-hand side writing

⇣
min

µ
0,w=�⇣

min

(1��
2

�µ
0,w)+⇣

min

(1��
2

).

Setting q(t) :=(1��
2

�µ
0,w(t)), one then has

"@tq+(⇣
min

+�
max

)q� ⇣
min

�(⇣
min

+�
max

)�
2

>0,

the latter estimate being true under the hypothesis that �
2

< ⇣
min

/(⇣
min

+�
max

). The
conclusion then follows integrating the latter inequality in time

q(t
0

)> exp

✓

� (�
max

+⇣
min

)t
0

"

◆

q(0)>0,

under the hypothesis that �
2

< (1�µ
0,w(0)). But this contradicts the assumption that

q(t
0

)=0, which ends the proof.

Proposition 4.2. Let g2L1(0,T ) be given, and let (%,w) be the solutions of (3.1)–
(3.2) with g as a source term. Under assumptions 2.1, 2.2, and 2.3 and if µ

0,w(0)
1��

2

, there exists a constant ⇣̄ independent of " such that it holds that for any �>0,
Z

R+

⇣(w(t,a))
%(t,a)

µ
0,w+�

da ⇣̄+⇣
Lip

kgkL1
(0,T )

min

✓

2

�
2

�
min

,
T

"

◆

, 8t�0,

where ⇣̄ := ⇣(0)+
R

R+
⇣(uI(a))⇢̃",I(a)da.

Proof. We do not have a positive definite lower bound on µ
0,w yet: at this stage we

only know that µ
0,w(t)�0. For this reason we define %̃�(t,a) :=%(t,a)/(µ

0,w(t)+�) and
we observe that this new function is in L1

loc

((0,T )⇥R
+

)\C([0,T ];L1(R
+

)). It solves,
in the sense of characteristics, the equation

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

"@t%̃
�+@a%̃

�+

 

⇣�
Z

R+

⇣%̃�
!

%̃�

+�

✓

1

µ
0,w+�

� µ
0,w

µ
0,w+�

◆

%̃� =0, t>0, a>0,

%̃�(t,a=0)=�(t)

✓

1

µ
0,w+�

� µ
0,w

µ
0,w+�

◆

, t>0,

%̃�(t=0,a)=⇢I(a)/(µ0,w+�), a�0.

(4.1)

The product ⇡(t,a) := ⇣(w(t,a))%̃�(t,a) satisfies

"@t⇡+@a⇡+

 

⇣2�⇣

Z

R+

⇣%̃�
!

%̃�+ %̃�(t,0)⇡= ⇣ 0(w)g(t)%̃�.
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Indeed, using arguments as in Lemma 2.1 (p. 489) and Lemma 3.1 (p. 493) [9], one
proves that if w solves (2.3) and ⇣ is uniformly Lipschitz on R, then ⇣(w) solves
("@t+@a)⇣(w)= ⇣ 0(w)g in the sense of characteristics (as in Theorem 2.1) with the
corresponding boundary conditions. Then the latter equation on ⇡ is understood in the
same manner.

Integrating in age and setting q(t) :=
R

R+
⇡(t,a)da, we conclude that

"@tq�⇣(t,0)%̃�(t,0)+

Z

R+

⇣2%̃�da�
 

Z

R+

⇣%̃�
!

2

+q%̃�(t,0) ⇣
Lip

kgk1. (4.2)

To find a lower bound for %̃�(0,t) we choose �<�
2

/2 and use the upper bound on µ
0,w(t)

established in Lemma 4.1 in order to obtain

%̃�(t,0)��
min

✓

1

1��
2

+�
�1

◆

��
min

�
2

2
. (4.3)

Assuming µ
0,w(t)>0 we also find, using Jensen’s inequality, that

 

Z

R+

⇣(w(t,a))%̃�(t,a)da

!

2


Z

R+

(⇣(w(t,a)))2%̃�da
µ
0,w

(µ
0,w+�)


Z

R+

(⇣(w(t,a)))2%̃�da.

If µ
0,w(t)=0 the same inequality holds true since then %(t,a)=0 for almost every a.

These considerations allow then to rewrite (4.2) as

"@tq+ %̃�(t,0)(q�⇣(0)) ⇣
Lip

kgk1.

Setting q̃ := q�⇣(0) and using Gronwall’s Lemma gives

q̃(t) exp

✓

�1

"

Z t

0

%̃�(s,0)ds

◆

q̃(0)+
⇣
Lip

kgk1
"

Z t

0

exp

✓

�1

"

Z t

⌧
%̃�(s,0)ds

◆

d⌧.

Thanks to the uniform lower bound (4.3), we conclude

q̃(t) exp

✓

��
min

�
2

t

2"

◆

q̃(0)+
2⇣

Lip

kgk1
�
2

�
min

✓

1�exp

✓

��
min

�
2

t

2"

◆◆

,

which then gives, turning to the variable q, that

q(t) ⇣(0)+

Z

R+

⇣(uI(a))⇢̃",I(a)da+
2⇣

Lip

kgk1
�
2

�
min

✓

1�exp

✓

��
min

�
2

t

2"

◆◆

. (4.4)

This bound is uniform in �.

Proposition 4.3. Let g2L1(0,T ) be given, and let (%,w) be the solutions of (3.1)–
(3.2) with g as a source term. Under assumptions 2.1, 2.2, and 2.3 and if µ

0,w(0)
1��

2

, and choosing µ
0,min

such that

µ
0,min

<min

0

@µ
0,w(0),

�
min

�
min

+ ⇣̄+⇣
Lip

kgkL1
(0,T )

min
⇣

2

�2�min
, T"

⌘

1

A ,



V. MILISIC AND D. OELZ 15

one has a lower bound on µ
0,w

µ
0,w(t)�µ

0,min

, 8t�0.

Proof. We integrate (1.2) with respect to age
8

>

>

>

<

>

>

>

:

"@tµ0,w��(1�µ
0,w)+

Z

R+

%(t,a)⇣(w(t,a))da=0, t>0,

µ
0,w(0)=

Z

R+

⇢I(a)da, t=0.

In a weak form this means for any '2W 1,1(0,T ) and any t
0

T ,

�
Z t0

0

µ
0,w

d'

dt
d⌧+[µ

0,w']
⌧=t0
⌧=0

+

Z t0

0

�µ
0,w'd⌧

+

Z t0

0

R

R+
⇣(w(⌧,a))%(⌧,a)da

µ
0,w(⌧)+�

(µ
0,w(⌧)+�)'d⌧ =

Z t0

0

�'d⌧.

Now if we denote L�(t) :=
R

R+
⇣(w(⌧,a))%(⌧,a)da/(µ

0,w(⌧)+�). By Proposition 4.2, L� 2
L1(0,t

0

) uniformly with respect to �: there exists a weak-* limit L2L1(0,t
0

) when
� goes to zero, satisfying the same bound. On the other hand µ

0,w(⌧)+� converges
strongly in L1(0,t

0

) to µ
0,w(⌧) which means, passing to the limit when �!0 in the

weak formulation above, that

�
Z t0

0

µ
0,w

d'

dt
d⌧+[µ

0,w']
⌧=t0
⌧=0

+

Z t0

0

(�+L)µ
0,w'd⌧ =

Z t0

0

�'d⌧.

Inserting a constant µ
0,min

in the previous expression and rearranging the di↵erent
terms, one has

�
Z t0

0

(µ
0,w�µ

0,min

)

✓

d'

dt
�(�+L)'

◆

d⌧+[(µ
0,w�µ

0,min

)']⌧=t0
⌧=0

=

Z t0

0

(�(1�µ
0,min

)�Lµ
0,min

)'d⌧.

We choose '(t) :=exp
⇣

�R t0
t0�t(�+L)d⌧

⌘

as a test function. This gives

[(µ
0,w�µ

0,min

)']⌧=t0
⌧=0

=

Z t0

0

(�(1�µ
0,min

)�Lµ
0,min

)'d⌧.

Setting L := ⇣̄+⇣
Lip

kgkL1
(0,t0)

min
⇣

2

�2�min
, t0"

⌘

and using the definition of µ
0,min

one

has that

(µ
0,w(t0)�µ

0,min

)� (µ
0,w(0)�µ

0,min

)exp

✓

�
Z t0

0

(�+L)d⌧

◆

>0.

Now suppose that there exists a time small enough such that µ
0,w(t)>µ

0,min

for all
t2 [0,t

0

) and that µ
0,w(t0)=µ

0,min

. Then the previous estimate contradicts the fact
that µ

0,w(t0)=µ
0,min

. This ends the proof.
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5. Local existence of the fully coupled problem
Theorem 5.1. Let f be a Lipschitz function on (0,T ) and uI 2L1(R

+

,!). We

suppose that assumptions 2.1, 2.2, and 2.3 hold. Let (%,w) be the solution of (3.1)–(3.2)
together with gw, the simple cut-o↵ defined by (3.6). Then for any fixed µ<µ

0,w(0) there
exists a time

T =
"

�
3

�

�
min

µ�(�
min

+ ⇣̄)µ2

�

for which µ
0,w(t)>µ for any t2 (0,T ). So the solution (%,w) of (3.1)–(3.6) is also the

unique local solution of the fully coupled system (1.2)–(1.3).

Proof. Gathering results above, one has

kgwkL1
(0,T )

 1

µ
("|@tf |+p(t)) 1

µ

✓

"k@tfkL1
(0,T )

+
�
1

µ

◆

 �
3

µ2

,

since we suppose that µ<1 and we set �
3

:="k@tfkL1
(0,T )

+�
1

. Thanks to Proposition
4.3, the lower bound on µ

0,w then becomes

µ
0,w(t)>min

 

µ
0,w(0),

�
min

µ2

(�
min

+ ⇣̄)µ2+ �3T
"

!

.

Choosing µ<µ
0,w(0) we define T such that

�
min

µ2

(�
min

+ ⇣̄)µ2+ �3T
"

>µ,

so that max(µ
0,w(t),µ)=µ

0,w(t) on [0,T ] and thus gw(t)=gw(t) on that same time
interval.

6. Global existence for specific data
Under hypotheses of Theorem 3.1, whatever be the time of existence T for (%,w),

the solutions of the stabilized model, then thanks to Corollary 3.2 one has that

Z

R+

⇣(w(t,a))%(t,a)da
Z

R+

(⇣(0)+⇣
Lip

|w|)%da

 ⇣(0)+⇣
Lip

 

Z

R+

|uI |⇢Ida+
Z T

0

|@tf |ds
!

=: ⇣̆, 8t2 (0,T ).

Proposition 6.1. Under assumptions 2.1, 2.2, and 2.3, if �
min

> ⇣̆ and if we set

0<µ
0,min

<min

 

1� ⇣̆

�
min

,µ
0,w(0)

!

,

one has that µ
0,w(t)�µ

0,min

, 8t2 (0,T ).

Proof. We set µ̂ :=µ
0,w(t)�µ

0,min

and write the equation that it satisfies

"@tµ̂+�µ̂=�
Z

R+

⇣%da+�(1�µ
0,min

)��⇣̆+�
min

(1�µ
0,min

).
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The lower bound is positive definite provided that �
min

> ⇣̆ and that µ
0,min

<1� ⇣̆/�
min

.
Using Gronwall’s Lemma, one has

µ̂(t)� exp(��
max

t/")µ̂(0)>0

if µ
0,min

<µ
0,w(0), which ends the proof.

Theorem 6.2. If we fix a finite time T >0, under assumptions 2.1 and 2.2, and

assuming that

i) f is Lipschitz on (0,T ),

ii) � satisfies Assumptions 2.3 together with �
min

> ⇣̆
there exists a unique solution (⇢,u)2C(0,T ;L1(R

+

))⇥XT solving system (1.2)–(1.3).

Proof. By Theorem 3.4, there exists a unique couple (%,w)2C(0,1;L1(R
+

))⇥
X1 solving (3.1)–(3.6) for any given constant µ. We choose T >0 and provided that
� satisfies hypothesis required by Proposition 6.1, we set the constants 0<µ<µ

0,min

according to Proposition 6.1. Then µ
0,w does not reach the threshold value µ so that

gw(t)=
1

max(µ
0,w(t),µ)

 

"@tf+

Z

R+

(⇣(w)%w)(t,a)da

!

=
1

µ
0,w(t)

 

"@tf+

Z

R+

(⇣(w)%w)(t,a)da

!

=gw(t), a.e. t2 (0,T ).

The pair (%,w) is in fact also solving (1.2)–(1.3) on this time interval. This provides
existence of a solution (⇢,u)=(%,w) on [0,T ]. Since by Theorem 3.4 (%,w) is unique, so
is (⇢,u) in this time period.

7. Blow up for positive solutions
Theorem 7.1. Under Assumption 2.2 and if T

0

is the time of existence of (⇢,u)
solving (1.2)–(1.3), and if

i) uI(a)�0 for a.e. a2R
+

,

ii) @tf(t)>0 for a.e. t2 (0,T
0

),
then the product ⇢(t,a)u(t,a) is non-negative for a.e. (t,a)2 (0,T

0

)⇥R
+

.

Proof. Since f(0)=
R

R+
⇢I(a)uI(a)da and f(t)=

R

R+
⇢(t,a)u(t,a)da, by Corollary

3.2, it holds that

Z

R+

⇢(t,a)|u(t,a)|da
Z

R+

⇢I(a)|uI(a)|da+
Z t

0

|@tf(t̃)|dt̃

=

Z

R+

⇢I(a)uI(a)da+

Z t

0

@tf(t̃)dt̃=f(t)=

Z

R+

⇢(t,a)u(t,a)da,

which implies the result.

Proposition 7.2. Under assumptions 2.2 and 2.3 and if

i) ⇣ satisfies Assumption 2.1 and admits a locally di↵erentiable lower convex envelop

⇣c such that ⇣c(u) ⇣(u) for all u2R
+

with ⇣ 0c(0)>0,

ii) let f be a Lipschitz function such that @tf(t)>0 for a.e. t2 (0,T ),
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iii) f and � are such that �
max

< ⇣ 0c(0)fmin

,

iv) uI(a)�0 for a.e. a2R
+

,

then if the solution (⇢,u) solving (1.2)–(1.3) exists until a finite time T
0

, this time cannot

be greater than

t
0

:=
"

�
min

+⇣c(0)
ln

✓

1+
µ
0

(0)(�
min

+⇣c(0))

⇣ 0c(0)fmin

��
max

◆

,

for which

µ
0

(T
0

)0.

Moreover, on (0,t
0

)⇥R
+

, one has a lower bound on the profile of u namely

u(t,a)�"�
5

ln

✓

1+
min(t,"a)

(t
0

� t)

◆

,

where �
5

:= t
0

inft2(0,t0)@tf/µ0

(0).

Proof. By Theorem 7.1, u(t,a)�0 a.e. (t,a)2 (0,T
0

)⇥R
+

. The equation for µ
0

reads

"@tµ0

��(1�µ
0

)+

Z

R+

⇣(u(t,a))⇢(t,a)da=0.

Since ⇣ admits ⇣c, a lower convex envelope, it follows that

"@tµ0

��(1�µ
0

)+⇣ 0c(0)

Z

R+

u(t,a)⇢(t,a)da+⇣c(0)µ0

0

which becomes simply

"@tµ0

��(1�µ
0

)+⇣ 0c(0)f+⇣c(0)µ0

0. (7.1)

We can deduce from this inequality that

"@tµ0

+(�
min

+⇣c(0))µ0

�
max

�⇣ 0c(0)fmin

,

which gives using Gronwall’s Lemma that µ
0

(t)µ(t), where

µ(t) :=µ
0

(0)exp

✓

� (�
min

+⇣c(0))

"
t

◆

� ⇣ 0c(0)fmin

��
max

(�
min

+⇣c(0))

✓

1�exp

✓

� (�
min

+⇣c(0))

"
t

◆◆

.

Looking for the time t
0

such that µ(t
0

)=0 provides the explicit form of t
0

in the claim.
Thus T

0

<t
0

. Moreover, as µ(t) is a convex function in time, one has that

µ
0

(t)
✓

1� t

t
0

◆

µ(0)+
t

t
0

µ(t
0

)⌘
✓

1� t

t
0

◆

µ(0),

and because, by Theorem 7.1, ⇣(u)u⇢ is positive almost everywhere on (0,t
0

)⇥R
+

,

"@tu+@au� "@tf

µ
0

(t)
� "�

5

t
0

� t
, a.e. in (0,t

0

)⇥R
+

.
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Using Duhamel’s formula provides

u(t,a)�
(

"�
5

R

0

�a
ds

t0�(t+"s)ds, if t�"a,

uI(a� t/")+"�
5

R

0

�t/"
ds

t0�(t+"s)ds otherwise,

which then gives the lower estimate on u.

Appendix A. Riccati inequalities.
Lemma A.1. Let ">0 and real, let y be a positive di↵erentiable function of t2R

+

,

satisfying

(

"@ty+Ay2By+C, t>0,

y(0)=y
0

, t=0,

where y
0

>0 and (A,B,C)2 (R
+

)3. Setting y
+

:= (B+
p
B2+4AC)/(2A), one has that

y(t)max(y
0

,y
+

), 8t2R
+

.

Proof. We set m :=max(y
0

,y
+

), it satisfies �Am2+Bm+C0. Then we define
ỹ :=y�m which then solves the di↵erential inequality

"@tỹ+Aỹ2+(2mA�B)ỹ0. (A.1)

Since the quadratic term is positive we neglect it and apply Gronwall’s Lemma

ỹ(t) exp

✓

� (2Am�B)t

"

◆

ỹ(0)=exp

✓

� (2Am�B)t

"

◆

(y
0

�m)0,

which ends the proof.
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