ANALYSIS OF A GEOMETRICAL MULTISCALE BLOOD FLOW
MODEL BASED ON THE COUPLING OF ODE’S AND
HYPERBOLIC PDE’S
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Abstract. For the numerical simulation of the circulatory system, geometrical multiscale models
based on the coupling of systems of differential equations with different spatial dimensions is becoming
common practice [7, 24, 3]. In this paper we address the mathematical analysis of a coupled multiscale
system involving a zero-dimensional model, describing the global characteristics of the circulatory
system, and a one-dimensional model giving the pressure propagation along a straight vessel. We
provide a local-in-time existence and uniqueness of classical solutions for this coupled problem. To
this purpose we reformulate the original problem in a general abstract framework by splitting it
into subproblems (the 0D system of ODE’s and the 1D hyperbolic system of PDE’s), then, we use
fixed-point techniques. The abstract result is then applied to the original blood flow case under
very realistic hypotheses on the data. This work represents the 1D-0D counterpart of the 3D-0D
mathematical analysis reported in [24].
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1. Introduction. Problems arising in the numerical modelling of the human
cardiovascular system often require an accurate description of the flow in a specific
sensible sub-region (carotid bifurcation, stented artery, etc.). The description of such
local phenomena is better addressed by means of three-dimensional (3D) simulations,
based on the numerical approximation of the incompressible Navier-Stokes equations,
possibly accounting for compliant (moving) boundaries. However, from the computa-
tional point of view, numerical simulations of the whole circulatory system completely
based on these equations are, at the moment, unaffordable.

To overcome this limitation, several (geometrical) multiscale approaches have re-
cently been proposed in the literature, see e.g. [22, 21, 6, 3, 29, 19, 11, 4]. The main
principle consists in coupling different models with a decreasing level of accuracy,
which is compensated by their decreasing computational complexity. Starting from
the 3D incompressible Navier-Stokes equations, under certain assumptions, one can
derive a one-dimensional (1D) model, stated in terms of hyperbolic equations along
the axial coordinate of the vessel. With further simplifications, we can obtain a zero-
dimensional (0D) model (or lumped parameters model), represented by a system of
ordinary differential equations. One-dimensional models have shown to provide useful
information at low computational cost [6], in particular, these models are very well
adapted for the simulation of wave propagations in the arterial tree [27, 28, 30, 4]. On
the other hand, the global characteristics of the system, including specific districts as
the heart or the venous bed, may be described by 0D models, which are essentially
based on the analogy between the arterial tree and an electric network [31, 4].

Within this multiscale framework, different kind of coupled models have been
proposed in the literature, in particular, the coupling between 3D and 1D models
reported in [3] and that of 3D and 0D analysed in [6, 11]. The mathematical theory
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for the coupling between 0D models and 3D models (without wall compliance) was
carried out in [24]. Yet, a heterogeneous coupling involving a 1D description of the
arterial tree and 0D description of the peripheral circulation and the heart has been
addressed in [7, 4, 29], in blood flow engineering.

The aim of the present paper is to provide a rigorous mathematical analysis of
the heterogeneous 1D-OD coupling, reported in [4], involving non-linear systems of
hyperbolic PDE’s and ODE’s. We provide a local-in-time existence and uniqueness
result of classical solutions. To this purpose we give our original problem a general and
abstract framework by splitting it into subproblems (the 0D system of ODE’s and the
1D hyperbolic system of PDE’s). Thus, using standard fixed-point techniques [32, 24],
we are able to prove our main theorem. Then, under very realistic hypotheses on the
data, we apply it to the original blood flow case. In this sense, our analysis requires a
partial extension of the work in [2] to the case of non-monotone boundary conditions
on the 1D model. On the other hand, this work represents the 1D-0D counterpart of
the 3D-0D mathematical analysis reported in [24].

The outline of this paper is as follows. In section 2 we introduce the 1D model,
some basic features of lumped parameter models leading to 0D systems of ODE’s, and
then we formulate the coupled 1D-0D problem. In section 3, we introduce the main
result of this paper, namely, the existence and uniqueness of solutions for an abstract
coupled problem involving a general system of ODE’s and a hyperbolic 2 x 2 system.
As the main motivation of this work is the blood flow, this result is then rigorously
applied to the specific case of the blood flow. Section 4 provides a detailed proof of our
main result. In order to illustrate the coupled problem, we show a numerical evidence
in section 5. Finally, In section 6 we present some conclusions and perspectives related
to this work.

2. Problem setting. In this section we recall briefly the basic 1D non-linear
hyperbolic model for the description of a single cylindrical straight arterial element,
and the general lumped parameter description of the cardiovascular system. Then,
we address the way to couple together the two systems. The mathematical analysis
of the resulting coupled model is the main purpose of this work.

2.1. The 1D-model. One-dimensional hyperbolic models have been used by
many authors to study various issues related to the vascular system, see for instance
[30, 19, 29, 5, 27, 28, 2]. They are derived from the assumption that single tracts of an
artery can be approximated by a straight compliant channel. Their simplicity yields
a clear advantage over more complex models especially for real-time computations
when quick answers are needed.

These models can be derived from the incompressible Navier-Stokes equations
assuming that the flow is axi-symmetric. Indeed, supposing that the ratio between
the radius and length of the vessel is small, one can average the equations over the
cross-section. Then, assuming a specific velocity profile given as a function of the
cross-sectional average velocity and the radius [29, 2], one obtains the following system
of two partial differential equations

94, 9@ _ o weo), t>0,

ot = Oz (2.1)
0Q 0 (aQ*\ Adp . Q |
8t+8m<A>+P8m_ Koy o€, >0

The unknowns are the cross-section area A, the flow rate @, the cross-section averaged
pressure p. Moreover, a stands for the kinetic energy coefficient, z denotes the axial
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direction, p the blood density and K, is related to the velocity profile assumed in
the vessel. If a Poiseuille profile is assumed (which is of course a simplification),
K, = 8mpr, where v is the kinematic blood viscosity (however, see [8] for other
possible values).

In spite of its simple form, this system is nonetheless capable of predicting very
accurately the wave propagation phenomena inside the arterial system. To close
system (2.1), we introduce the following constitutive law for the pressure:

B VThE
p= WA= V), 5= (22)
where A is the constant cross-section at rest, E, h and o the Young modulus, the
thickness and Poisson coefficients of the vessel wall respectively. Expression (2.2)
entails that the pressure is a linear function for the vessel radius [20, 22].

At this point, we make the following assumptions: the constant K, is set to zero,
the convective effects are dominant, and the source term is one order of magnitude
lower than the inertial term see [2], for instance. Finally, the kinetic energy coefficient
« is set equal to 1; this means assuming a flat profile inside the vessel, which is
a common hypothesis for straight vessels in blood flow [2, 8]. Thus, system (2.1)
reduces to the following quasi-linear hyperbolic system

04,99 _ z e (0,0), t>0,
ot Oz (2.3)
0Q 0 [(Q? Adp '
8t+(9x<A +p3m_0’ xz € (0,1), t>0.
In non-conservative form, system (2.3) reads
oUu oUu
5 FHO)Z =0, (2.4)

with the notations

N 0 1
U:H, HU)=| 8 A
Q mﬂ—u 2u

2]

Assuming that the cross-section area A remains positive, the matrix H can be diag-
onalised, namely, H = RAL, where

_[A0 _ |7 1 _ 71
P o

The eigenvalues A and p are given by [§]

[ B 1
= — = = A4 2
A=u—c¢, p=u-+tec c Ay (2.5)

where u is the axial velocity and ¢ the sound speed. The system can be rewritten in
diagonal form as

oz + )\(w,z)% =0,
ow ow '
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where we have denoted by z and w the following Riemann invariants (or characteristic
variables)

z=4c—u, w=4c+u. (2.7)
Owing to (2.5), we can express the eigenvalues in terms of Riemann invariants as
follows
5 3 3 5

p=Qw =gz, A= ¥~ g% (2.8)

The physical unknowns p and () can be expressed themselves as functions of the
characteristic variables:

2
p:2pc2_ w+z> — B

5, (
VA P\ VA
2 A2 2 4
Q= BOQp (w_z)[wgz} :

The diagonal formulation (2.6) suggests the correct boundary treatment.
If, for instance, one has at disposal the time history ¢(t) of a physical variable
o= ¢(A, Q), as for instance A or ) or even ()/A, the boundary condition

QS(A(t))Q(t)) = Q(t)a vt el, at z =0,

(2.9)

is admissible under certain restrictions [23, 26, 14], which in our case reduce to exclude
the case where ¢ may be expressed solely as function of z. In particular, the imposition
of either average pressure (cross-section area) or mass flux are both admissible. So
imposing a given pressure p; on the boundary, implies that the two characteristic
variables are related to each other. Indeed, from (2.9), at # = 0, we impose

If A remains strictly positive, w+ z keeps a constant sign. Thus, we can explicitly
obtain the incoming characteristic variable w as a function of p; and the outgoing
characteristic variable z, i.e.,

w(0,t) =8 {2—2 <pg+Aﬂo>F — 2(0,1) = 8¢ — 2(0, 1). (2.10)

Since z is constant along the outgoing characteristic curve, z(0, ) only depends on
the initial condition zg. Therefore, we only prescribe the value of w on the boundary.
The boundary condition at one end of the domain depends on the outgoing character-
istic variable. If the domain is bounded, say 0 < z <[, there exists a critical time, say
t., sufficiently large beyond which this variable depends on the values of the other end
point as well. ¢, is larger than the time at which the incoming characteristic curve at
x = 0 hits the boundary =1 (see figure 2.1). Using a symmetric argument, we can
deduce that t. is also greater than the time at which the characteristic curve starting
from (z,t) = (I,0) reaches (z,t) = (0,0). We confine our analysis to a time interval
[0, Tmax] small enough so that the above mentioned characteristic curves do not cross
(see figure 2.1 and refer to [13] for a similiar approach). In this case it is obvious that
Tmax <t
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Fic. 2.1. Subdomains where the Riemann invariants depend only on the initial data and a
single boundary condition

2.2. Lumped parameters model. The most important vessels and branches of
the cardiovascular system can be described by patching together several components
based on the one-dimensional model introduced in the previous paragraph, [27, 28,
30, 19]. In particular, in [27] several numerical simulations of a network composed by
55 arteries are reported. This approach has, however, two main drawbacks:

1. it cannot reflect a salient feature of the cardiovascular system, i.e. its inter-
dependency nature which derives from being a “closed system”. Indeed, deal-
ing with one-dimensional (or even three-dimensional) models requires the
prescription of specific (and accurate) data on the artificial boundaries de-
limitating the computational domain [30, 27, 19].

2. a realistic description of complex terminal districts of the circulatory sys-
tem (heart, capillary bed, venous circulation,...) can not be achieved by
hyperbolic one-dimensional models [8, Chapter 2]).

These difficulties can be overcome, through the introduction of lumped parameters
models. The latter are expressed in terms of systems of ordinary differential equa-
tions, describing the averaged (in time) mass and flow rate in a specific terminal
compartment of the circulatory system, see for instance [8, 31, 10, 17]. Since they
do not account for variations in space, they are often called zero-dimensional models.
They can be derived starting from the one-dimensional system (2.1) by integrating
the equations in space. Indeed, after linearization, we obtain [8, 31]):

a5
Cd_IZ+Q2_Q1:0’ t>0,

d0 .
Ld—?+RQ+P2—P1:O, t>0.

(2.11)

Here, p and Q stand for the mean pressure and flow-rate over the whole compartment,
respectively, with

Ql(t) = Q(Ovt)a Pl(t) = P(Oat)v QQ(t) = Q(lat)a PQ(t) = P(lat)'

The parameters R, L and C denote resistance, inductance and capacitance, and they
depend on the physical and geometrical properties of the pipe [8, 31]. Precisely, for a
Poiseuille flow one can set

8pvi pl _ 3mrgl

R = ] = 5 - )
g mrd 2Eh
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where rg stands for the vessel’s radius. In order to close mathematically (2.11) we
need some further assumptions. Let us suppose that some upstream and downstream
data are available, for instance (); and P». It is also reasonable to approximate the
unknowns on the upstream and downstream sections with the state variables, i.e.
p~ P, and Q & Q2. If the length of the vessel is small enough this assumption makes
sense and acts like a discretization error. Moreover in blood flow the wave speed is
about (1 to 10 m - s~1), so that the information propagates almost instantaneously
from two neighbor points in a single vessel (whose length might be of few centimeters).
Under these additional assumptions, (2.11) can be written as

Y aytb, t>0, (2.12)
dt
where
0 _1 @
Py C C
=la) LR P
L L L

System (2.12) can be equivalently regarded as the mathematical description of an
electric circuit which is known as L-network. In fact, in this hydraulic/electric analogy,
pressure and flow rate correspond to the electric voltage and current, the resistance
R is related to the blood viscosity, the inductance L to the blood inertia and the
capacitance C' to the wall compliance. More details can be found in [8].

Equation (2.12) represents, in abstract form, a lumped parameters description of
the blood flow in a compliant cylindrical vessel, involving the mean values of the flow
rate and the pressure in this domain, as well as the upstream and downstream flow
rate and pressure. However, as mentioned above, a specific description is required for
more complex systems such as the heart, which provides the energy necessary to blood
circulation in the whole system. Heart can be considered as a couple of pumps. In
particular, in [8], each ventricle is represented as a compliant vessel whose compliance
C'(t) changes in time. On the other hand, in order to describe the heart functionality,
in the electric/hydraulic analogy every valve is modelled by a diode for the current
according to the value of the applied voltage drop [8, 4].

From these considerations, the whole circulation can be therefore described by
means of a system of differential equations whose abstract form reads

dy

Tl Ay +ru(y,t) +b(y,t), t>0. (2.13)
Here, y € R™ stands for the vector of state variables, A € R™*™ is a matrix,
ru(y,t) € R™ is a vector whose dependence on y and ¢ should be ascribed to the
presence of valves and heart’s ventricles compliances [25, 8, 21]. The vector b(y,t) €
R™ represents a generalized source term which provides external data to the system.
Specific instances of (2.13) can be found, for example, in [24, 6, 4].

2.3. Coupling 1D and lumped parameters model. The simulation of blood
flow in the circulatory system can be made by resorting to multiscale models which
couple three-dimensional, one-dimensional and zero-dimensional systems. These three
paradigms feature a (decreasing) level of accuracy, which is however compensated by
a decreasing level of computational complexity. In previous papers different kind of
coupled models have been considered. We recall the coupling between 3D and 1D
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models in [6], that of 1D and 0D models in [7, 4]. The mathematical theory for the
coupling between 0D models and 3D models (without wall compliance) is carried out
in [24]. In this paper we investigate existence and uniqueness of the solution of the
problem that arises from coupling of 1D and 0D models.

Indeed, we couple a system of ordinary differential equations presented in detail
in the previous section with a 2 x 2 system of conservation laws describing section-
averaged flow rate and pressure presented in section 2.1.

As already mentioned in section 2.1 we look for the solution of the 1D model for a
time small enough so that the characteristic curves coming from both boundaries do
not intersect. This means that the closed loop coupling can be functionally replaced
by the connection of two infinite 1D domains interacting through a 0D model.From the
mathematical point of view, the analysis of this 1D-0D-1D coupling can be reduced to
a simple 0D-1D coupling.More precisely, once provided the time T of existence of the
solution of the 0D-1D coupling, the time of existence for the corresponding 1D-0D-1D
coupling is given by min(T yax, T)

The coupling between the 0D and 1D models is achieved by imposing the con-
tinuity of pressure and flow-rate at the interface(refer to [6, 4], for instance). More
precisely, the given pressure p, in paragraph 2.1 for the 1D model is provided by
the 0D part, i.e., p; represents here a specific entry of the state vector y in (2.13).
Consequently, using (2.10), we impose

1
1 FINE
w00 =8 |0+ D] - 200 =020 210
4 Ao
On the other hand, the 1D model supplies the flow-rate to the 0D model. Using (2.14)
in (2.9), the flow-rate on the boundary can also be expressed, as a function of y(t)

and z(0,t)., i.e.,

mwmmm=%(ﬁ$%m+%$—ww>@m+%].(ma

We point out that this value appears in (2.13) as part of the source term b.
REMARK 2.1. The choice of imposing the pressure as a boundary condition for
the 1D model and the flow-rate as a source term for the 0D part is an arbitrary choice.
Indeed, changing the structure of the 0D network connected to the 1D wvessel, one could
obtain the symmetric exchange of data.
In summary, the coupled 1D-OD problem can be set in the following abstract
framework: find y : [0,7] = R™ and z,w : R" x [0,7] — R such that

ow ow . +

E-{—u(w,z)% =0, in R" x[0,T],

0z 0z . +

a + )\(’U},Z)% = 0, in RT x [O,T],

Z(.’I},O)—Zo(ﬁf), CUER+,

w(x,0) = wo(z), =€R", (2.16)
U)(O,t) = Q(Y(t), Z(Ovt)); teRY
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Here, g is given by (2.14) and G by

G(y,z,t) = Ay +ru(y,t) + b(Q(y(t), 2)),

with @ defined by (2.15).
In the following sections we provide a rigorous mathematical analysis for problem
(2.16).

3. An abstract existence and uniqueness result. In this section we state
our main result that is an existence and uniqueness theorem for the coupled problem
(2.16). To analyse the strong solutions of this system, we introduce the following
hypotheses on the data:

(H1) (i) There exists an open subset & C R? such that A, p and their derivatives
are Lipschitz continuous functions in & and

Mw, z) < p(w, z), Y(w,z)€CE.

i.e., the system is strictly hyperbolic.
(ii) The eigenvalues A and p satisfy

oA on
9z < 0 Ow
(H2) The initial data zg and wq belongs to C*(RT)N L (R™) and (wo(z), z0(z)) €
& for all z € RT, moreover z{, < 0 and wj, > 0 in RT.
(H3) There exists v > 0 such that g € C'(Bgm(0,7) x RT), Bgm=(0,7) being a ball
of radius v in R™.
(H4) The boundary is non-characteristic; this is guaranteed, for instance, if the
following sufficient condition is fulfilled

sup {)\(g(y(t),zo(a:)),zo(m))} < 0>
(z,t)ER*+x%[0,T]

o cBE o g {196 B 20@), 20(@) } > 0.

>0, in £.

(H5) The following compatibility conditions between initial and boundary data at
time ¢t = 0 hold:

wo (0) = g(yo,20(0)),

#MMW%@W%@:Qam%@»NW)

+ 52 (70 20(0)A(wn(0), 20(0))20).

0
These identities ensure the continuity of w(x,t) and a—: at (z,t) = (0,0).
(H6) G € C°(R™ x R x R) is continuous and locally Lipschitz continuous with

respect to its two first arguments. In addition, we assume that |y,| < .
The following theorem represents the main result of this paper; its proof is given
in section 4.
THEOREM 3.1. Suppose that hypotheses (H1) — (HB) hold. Then there exists a
positive time 0 < T < T such that the coupled problem (2.16) admits a strong solution
(y,w,z) € CL0,T] x C1(R* x [0,T])2.
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3.1. Analysis of the coupled 1D-OD problem (2.16). In this paragraph we
aim at applying the main theorem 3.1 to the specific case of the coupling described
in section 2.3 and summarized by the system (2.16). For that we need to verify the
hypotheses (H1)—(H6).

The local Lipschitz property of the right hand side of (2.13) is satisfied because the
elements used to construct the electric network (as explained in section 2.3) provide
locally Lipschitz terms with respect to the unknowns. The interface condition, being
essentially a polynomial relating the pressure p to the outgoing characteristic z(0, t)
(see formula (2.15)) is also locally Lipschitz.

PROPOSITION 3.2. Suppose that zg is a bounded function of x such that

20,min S ZO(:U) S 20,max> Vo € RJr)

Moreover, we make the following assumptions on the boundary data p(t),

2 . 2
2p I:ZO,r5nax:| _ \/LA_O < p(t) < 2p [20’%} — \/LA_O, \V/t € [O,T] 3 1
; (3.1)

then A(w(0,t),2(0,t)) < 0 < pu((0,%),2(0,t)) and A(0,t) > 0 and assumption (H{)
holds.

Proof. To show that (3.1) implies A < 0 < p we use the expressions (2.7) and
(2.8) to set:

3 5
)\—gw—gz—i’)c—gz—gz.

Z0,max 2 Bo

Here we use the boundary condition (2.10), since p < 2p [T] - i we obtain
A < 0. Similarly,

—§w—§z—50—§z—§z
PR 8772787 8%
which is positive due to the first inequality of (3.1).
To see that the second expression of (3.1) implies A(0,¢) > 0 it suffices to write

B B
e VA p+ N >0,
that directly gives the condition that p has to satisfy. O
In order to satisfy (H1);) we apply the following result already established in [2],
THEOREM 3.3. Suppose that the left boundary © = 0 is non-characteristic (i.e.
A0,2) < 0 < u(0,t)). If A(z,0) > 0 for all x , and if A(0,t) > 0 on the left boundary,
then A(z,t) > 0,V (z,t) € RT x [0,T], and so the system is strictly hyperbolic in
R x [0,T].
This theorem proves the strict hyperbolicity of the system under our hypothe-
ses on the boundary data and initial data (hypothesis (H2) and (H3)) . Indeed, in
hypothesis (H1);), we can take

E={(w,2) eR*/ w+2z>0}.



10 M.A. FERNANDEZ AND V. MILISIC AND A. QUARTERONI

This provides bounds on imposed data p; (a single entry of the state vector y in
(2.16)) with respect to the initial condition zq.
To fulfill the hypothesis (H2) on the initial conditions (zp,wp) we require that

Z(I)(x) < 0> w(l)(m) > 07 ZO(m) > Zo, Wo (1‘) < Wo,mazx, U)o(l') + Zo(l') > 07

for all z € RT. The first two conditions provide global existence of solutions (z,w)
in regions that are not influenced by the boundary condition. The remaining three
inequalities guarantee the boundedness of the data, so that (H2) is verified.

Thanks to the bounds established on the boundary data p, we can easily verify
that the derivatives of g are bounded (p, is far enough from the point —%) so that
(H3) holds.

REMARK 3.1. In terms of the conserved quantities A and Q, assuming, for
simplicity, constant initial data, A(0,z) = Ao and Q(0,z) = 0, where Ay is the
cross-sectional area of the unstressed artery, condition (3.1) requires that the pressure
prescribed on the left boundary is such that

Considering that the expected variation of pressure around a reference state p, = 0 is

an order of magnitude smaller than %, this looks quite reasonable.

4. Proof of Theorem 3.1. In this section we reformulate (2.16) as a fixed
point problem (as done in [24], for the coupling of 3D and 0D models for blood flow
circulation). We show that the corresponding iteration operator 7 has a unique fixed
point (see Theorem 4.7 below) using the classical Banach fixed point theorem [32,
Page 17], that we quote here for reader’s convenience:
THEOREM 4.1. Suppose that
(i) A given operator satisfies T : M C X — M, i.e., M is mapped into itself
by T;

(1) M is a closed nonempty set in complete metric space (X,d) (d being the
distance function);

(iii) T is contractive, i.e.,

d(Tz,Ty) < kd(z,y),

for all x,y € M and for a fized k such that 0 < k < 1. Then T has a unique fized
point in M, that is a point x € M such that T (z) = x.

4.1. The iteration operator 7. For o > ||zo||com+), ¥ > 0 (given by hypoth-
esis (H3)) and £ > 0 (to be fixed later, see Lemma 4.2) we introduce the following
subsets

Beop,ry(0) = {u € C°[0,T]/ ullcopo,ry < o},

Beop,r(7) = {y € C°[0,T]/ llyllcoo,r) <7},
Beujo,r(§) = {y € C'10,T]/ llyllcrjo,r < &}

On the one hand, we introduce the operator

Lop : Beop,ry(0) —  CH0,T]
u +— y = Lop(u),
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where y is the solution of the 0D subproblem

d
d_i =G (y,u(t),t), in [0,T], (4.1)
y(0) = yo-

On the other hand, we introduce the operator

Lip @ Beop,71(7) N Beip,1(€) € C'0,T] —  C°[0,T]
y — v= ‘ClD(Y)a

), and (w, z) is the solution of the following 1D subproblem (ex-

where v(t) = 2(0,¢
16)):

tracted from (2

ow ow .
N + p(w, )3 =0, in R" x[0,7],
(;z + \w, z)g =0, in R* x[0,7], )
2(x,0) = zo(x), =z €RH,
w(z,0) = wo(x), =€RT,
( w(0,1) = g(y(£),2(0,¢)), te€[0,T].

In other words, v is the restriction at the interface {0} x [0,T7] of the characteristic
variable z in (4.2).
At this stage, and assuming that

Lop (Bcopo, (o)) € Beopo,71(7) N Bepo, 1 (6),

we can introduce the composite operator 7 = Lip o Lgp, i.e.,

T : Beop.zy(0) € CO0,T] —  CO[0,T]
u — v="T(u)=Lip(Lop(u)).

Each fixed point of 7 defines a solution of the coupled problem (2.16). Indeed, if
T (u) = u, then y = Lop(u) satisfies subproblem (4.1). Moreover, since u = Lip(y),
it follows that u(t) = 2z(0,t) with (w, z) satisfying (4.2). Hence, y solves

dy _g(Y7 ( )t)v in [O,T],

Y(O) =Yo

so that (y,w, z) is a solution of (2.16). In order to apply Theorem 4.1 to the operator
T, we need some preliminary abstract results.

4.2. Preliminary abstract results. In this part we analyse the operators £1p
and Lop, formally defined in the previous paragraphs.

4.2.1. The 0D operator: Lop . The following classical result guarantees that
the 0D operator Lop is well defined.
LEMMA 4.2. Suppose that hypothesis (H6) holds and that we are given

u € BCO[O,T] (U)
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Then there exists a positive time Top = Ton(o,v) < T such that problem (4.1) admits
a unique solution 'y € C[0, Top] and

||Y||C[O,T0D] < 7>

(4.3)
||y||Cl[O,TOD] < 6)

where £ is a positive constant independent of u.

Proof. Since G is Lipschitz continuous, there exists a positive time 0 < Ty(o) < T'
such that problem (4.1) admits a unique solution y € C[0, Tp] (see, for instance, [1].
Integrating (4.1) over [0,¢] with ¢ < Ty and denoting by L the Lipschitz constant of
g, we get

¥ ()] < Iyol + / 1G(y(s), u(s), )|
< |y0|+/0 |g(0,u<s),s)|+L/0 ¥ (s)],

Thus, applying Gronwall’s Lemma, we obtain

v < (ol + [ t 9(0,u(s)9)]) ™. (4.4

Now, since |y,| < 7 (due to hypothesis (H6)), it is possible to verify that there exists
a positive time Top = Ton(0,v) < Tp such that the following inequality,

t
(ol + [ 1600,u6s).5)1) < e 2,
0
holds for any 0 < ¢t < Typ. Thus, using (4.4), we get
|Y(t)| S Y Vt € [OaTOD]a

which gives (4.3);. On the other hand, (4.3)2, can be easily derived from (4.1);, (4.3);
and the continuity of G. O
The following comparison result ensures the continuity of the operator Lop.
LeEMMA 4.3. Assume that hypothesis (H6) holds, and let y, and y, be the so-
lutions of (4.1) with respective data uy and uz in Beopo 1,p](0), respectively, keeping
the same initial condition y,. Then the following estimate holds

Iy1 = Yallerpo, o) < LTonllua = uzllcogo 1) (4.5)
[0.Ton)] [0.Ton)]

with L the Lipschitz constant of G.
Proof. For any t € [0,Top] we set

Then, from (4.1); we obtain

dY

T Gy, ui(t),t) — G(ya, ua(t),t), Vte 0, Top)- (4.6)
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Integrating this expression over (0, t), using the Lipschitz property of G, and the fact
that Y (0) =0, we get

Y (1) < L/O U (s) +L/0 Y (s)],

where L > 0 stands for the Lipschitz constant of G. Thus, applying Gronwall’s
Lemma, for ¢ € [0, Typ] we obtain

t
YOI < (L [ 06)1) e < LT lUleoni (47
0

Moreover, from (4.6) using again the Lipschitz property of G, it follows that

dY (¢
‘—df : ‘ <L(Y®)|+ U@ | < LA+ LTop) |Ulcop,mn), Vi € [0, Ton).

This inequality combined with (4.7) gives (4.5), which completes the proof. O

4.2.2. The 1D operator: L£1p. In the sequel we will use the following classical
result whose proof can be found in [13].

LEMMA 4.4. Let T > 0 and f be a positive continuous function in [0,T]. Let
Yo € R and M > 0 be such that |yo| < M. Then the Cauchy problem

%(t) =[P, teo,T), (4.8)

1

M lloopa)

The following result ensures that operator £1p is well defined.

LEMMA 4.5. Suppose that hypotheses (H1) — (H5) hold and that we are given
a vector function y € Beojo,r(7) N Beipo,r)(§). Then there exists a positive time
Tin(v,&) such that problem (4.2) admits a unique strong solution

(’LU, Z) € Cl (QT1D)2)

has a bounded solution at at least for t < T =

with Qr,, = Rt x [0,Typ]. Moreover, we have the following estimates

||Z||CO(QT1D) < ||ZO||CO(R+)> (4.9)
||Z||Cl(QT1D) <y,

where Cy is a positive constant independent of y € Beojo,1,5](7) N Betjo,1,0](£)-

Proof. Thanks to the assumptions (H1) and (H2) we can invoke the theorem on
global existence and uniqueness of strong solution, (see, e.g., [13, Page 35, Chapter
2]), to infer the existence of C'* solution in the region

D ={(z,t) e R xRY /| z>uzy(t), t>0}.

where z» indicates the forward characteristic issuing from the origin, see figure 4.1.
Furthermore, according to the theorem on local existence and uniqueness of strong
solution, ( [14, Page 94, Chapter 3]), by (H3), (H5) and the inequalities

Awo(0),20(0)) <0 < p(wo(0),20(0)),



14 M.A. FERNANDEZ AND V. MILISIC AND A. QUARTERONI

(which directly follow from (H4), by setting ¢ = 0 and = 0), there exists a positive
time 0 < Tp < T such that problem (4.2) has a unique solution (w,z) € C'(Dr,)?,
where Dy, = {(z,t) € R" x[0,Ty]/ 0 < < 25(t)}. Finally, using the hypotheses
(H1) and (H2) we are able to explicitly provide a time Tip(y,&) > Tp for the local
existence that depends only on the bounds on the data of problem (4.2). Indeed, to
this purpose, we just have to prove that, assuming that there exists a C'' solution on
the angular domain Dy (see figure 4.1), then its C'' norm has an upper bound.

t

(070) T

Fic. 4.1. The domains D and Dp
Using standard techniques [13, 2], we can derive the following estimates

I2llco(pyy < lzollco®+),
(4.10)
leollconry < e (7 lzollooges lolleoges ) -

Now we focus on the behavior of the derivatives of (w,z). Using, again, standard

techniques [13, 2] involving the Riccati’s equation on the backward characteristic, we
can prove the following estimate

. . ow )
Now we derive an estimate for ErS For any (z,t) € Dy, we can track the history of
x

%
ox

< oo(T, ||Z(I)||00(R+))-
(D)

0
e along the forward characteristic passing through this point. Indeed, due to the
z
hypotheses (H1) and (H4) any forward characteristic =, passing through (z,¢) must
intersect the boundary (z = 0) at a unique point (0, a(z,t)), see figure 4.2.
On the other hand, on this boundary we have

0r ~w,2) ot
1 dg ]
= @, 2, 4 Y02
B _i (g_;q, y(0),2)y' () + %(y(t)@%)
=2 (g ! dg Oz
= —; (5()’(75)72’) (t) — Aa()’(t),z)%> -
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a(z,t)

x

Fic. 4.2. Tracking back the forward characteristic

The dependence of w, z and their derivatives on [0, ¢] is understood. Thanks to the
regularity of g, the bound (4.10) and hypotheses (H1); and (H4), we obtain

Z—Z(O,t)‘ <es, Vte[0,T], (4.11)

where c3 > 0 is positive constant depending on the boundary and initial data. We
define

U:eh(z’“’)a—w, in Dy,
ox

with h satisfying

oh 1 ou  Oh

% = ns ow " (4.12)

Along the forward characteristic x,, v satisfies the following Cauchy problem for
t€0,T]

o)) == (022 @, (0)0), s € oo ]

d
’ . v (4.13)
— h(z,w)Z™
0.a(,0) = (= Z2) 0.0(0,0)
By setting,

16 = (92 (@99 s € (alant)0,

w

problem (4.13) can be written as a Riccati problem,

d

av(a:u(s),s) = —f(s)v2(a:u(s),s), s € [a(z,t),t],

o0.ae,0) = (= Z2) 0.a(0.0)
From hypothesis (H1)),
A—p|>cs >0 V(z,w) €€,
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so that h is well defined and Lipschitz continuous. Moreover, since u is Lipschitz

continuous, % is bounded. From (4.11), the initial condition is also bounded,
[v(0, a(z,t))| < cs.

Thus, it follows that f is uniformly bounded in time,

7(5) < 6 (|2l gy W llcoory ) > Vs € la(a, ), ).

Then, from Lemma 4.4, there exists a time

TID > )
20566

ow
such that v remains bounded in Dr,,. Consequently, B is also bounded, so that

(4.9)2 holds. Estimate (4.9) follows directly from (4.10);.
a

LEMMA 4.6. Assume that hypotheses (H1) — (H5) hold, and let (z1,w1) and
(z2,ws) be the solutions of (4.2) corresponding, respectively, to the boundary data y,
and y, in Beijo,p)(7), while keeping the same initial conditions. Then

wy =ws, 21 =2, in D, (4.14)
and
21 = 2allco oy, ) F llwr —wallpoga,, ) < Collyr = Yalloop, 1ip» (4.15)

where C is a positive constant independent of y, and y,.

Proof. The uniqueness of solution for the Cauchy problem [13, Remark 2.4,
Chapter 2] guarantees that there exists a unique forward characteristic issuing from
x = 0,t =0 and, in particular, that (4.14) holds.

Weset Y =y, —y, and

W:wl—wg,

Z:2’1—2’2,

in Dr,,. Since (wy, z1) and (wq, z2) satisfy (4.2); 2, it follows that

ow ow 19} .
-t = (V’Q_,ul)ﬂa in Dr,

92 N2~ -2 w D .
8t 18.’17 — 2 1 ama T,

where
AL = Az, wr), Ao = Az, wa), pr = p(z,wr),  pe = p(z2, ws).

Multiplying (4.16); by W and (4.16)s by Z and using the Lipschitz property of the
eigenvalues A and p (hypothesis (H1))), one obtains

ow? ow? .

W + 1 o <c (Z2 + Wz), in D,
972 572 (4.17)
E—i_)\l% SCQ(Z2+W2), in Drp.
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Let (x,t) € Dp. By hypothesis (H1) and (H4) the forward characteristic z,,
(with slope u1) passing through (z,t) must intersect the boundary x = 0 at a unique
point (0, a(z,t)). Similarly, the backward characteristic z, (with slope A1) passing
through (z,¢) must intersect the characteristic curve z, at only and only on point
(x2(B(z,1)), B(z,t)). See figure 4.3. Evaluating (4.17); along z,, and (4.17), along

t

Tip

T
Fia. 4.3. Tracking back the forward and backward characteristics

xy, we get that for 0 <t < T,

%Wz(xm (8)73) S CI(Z2 + W2)(5”u1 (3)78)5 s € (a(m,t),t),
S 2o (5),5) S @7+ W) an, (), 9), 5 € (B(,),0).

Integrating in time the first inequality of (4.18) over [a(z,t), ],

W2 (@,t) <W?(0,0a(z,t) + 1 /( ) (2% (s (5),5) + W (24, (5), 5))

= |g(YI (a(xvt))azl (Ov Oé(CU,t))) - g(yQ(a(m,t)), 22(05 Oé(CU,t))) |2

+quJZmM$$+WuM@@)

< e (|Y(a(z, 1)) + Z2%(0,a(z,1)))
c1 Z* Ty, (8),8 w? Ty, (8),8)),
vo [ (20,0 £ W 2),9)
and (4.18), over [3(z,1),t], we get

t

Zz(m,t) <6 /B( t) (Z2(1‘)\1 (S),S) + W2(1‘)‘1 (S))S)) .

Using this last inequality we obtain
a(z,t)

22(0,a(z,1) < &1 /B(O » (222, (), 8) + W2(@n, (5), 8)) ds,

(4.18)

(4.19)

(4.20)

(4.21)
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where ), stands for the backward characteristic (with slope A1) reaching the curve
T2 (t) at (.’,172 (5(07 Oé)), Oé).
Here, using (4.20) and (4.21) to estimate terms depending on Z in (4.19), we get

W2(@,t) + Z*(2,t) < es|Y (a2, 1)

a(z,t)

+es / (222, (), 8) + W2(@, (5), 9))
5(0,0(2,8))
t

4.22
te / (Z2(2p (5),8) + W2(@ps (), 5)) 12
a(z,t)

+ 02/ (Z%(za,(5),8) + W2 (zr,(5),5)) -
B(=,t)

At this stage we define

§) = max Z%(z,s) + W2(z,s)}.
als) = max {Z%(w.8) + W)}

Thus, from (4.22) we obtain that

W (z,t) + Z%(x,1) < es|Y (a(z, 1))+

a(z,t) t
+ey / q(s) + 1 / q(s)
B(0,a(z,t)) a(z,t)

t
+ Cz/ q(s)
b(z,t)
t
< esl|Y B + €5 / a(s).

Since this estimate holds for every x € [0, z2(t)] we get

t
0) < all Yoo+ s [ as)
0
Hence, by using Gronwall’s Lemma we have
q(t) < esl| Y[ Eopo e

Consequently,

21 = 22llcopg, ) + 1wt = wolloo(p,, ) < csllys = ¥alleop,rip1e ™™,

which with (4.14) provides (4.15) and completes the proof. O

4.3. Properties of the operator 7. We are therefore left to prove that the
operator 7 has an unique fixed point. Indeed, the following result guarantees that
the operator 7 satisfies the hypotheses of Theorem 4.1.

THEOREM 4.7. Assume that hypothesis (H1) — (H6) hold. Then there exists a
positive time 0 < T < T such that the operator T is contractive and maps BCO[O,T] (o)
into itself.
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variables
compartments | subindex R L C
arterial tree sl 3.751-1073 - 0.6
s21 5.47-10* | 3.057-107% | 0.2454
s22 0.059453 1.943-3 0.3546
s3 0.05 0.6 0.1.1072
capillaries cap 0.83 - -
veins Vs 0.11 - 82.5
3 3.751.1073 - 20
lungs ) 3.751-10 3 - 9-10 2
6 3.376-102 7.5-1074 2.67
7 0.1013 3.08-1073 2.67
8 3.751.10~3 - -
TABLE 5.1

Table of coefficients used for the electric (0D) network, resistances are given in mmHg-s-ml~1,
inductances in mmHg - s - ml~1, capacitances in ml - mmHg~!

Proof. By setting T = min{7Top(0,7), Tip(7,&)}, Lemmas 4.2 and 4.5 guarantee
that operator 7 is well defined. On the other hand, by combining estimate (4.15) of
lemma 4.6 with inequality (4.7) from lemma 4.3, we get

1T (1) = T (u2)llcogo. 7y = €10 (Lon (1)) = L10(Lop (w2))ll cogo. 71
< Chl|Lop(ur) — ﬁOD(UQ)”CU[OyT]
< Oy LT |juy — uz|| oo, 77

Thus, for a sufficiently small time 0 < T < T such that CoLT < 1, the operator T
is contractive. Finally, from (4.9); and since o > ||2o/|cor+) We obtain that 7 maps
BCO[O,T] (o) into itself, which completes the proof. O

Setting X = CO[O,T], M = BCO[O,T] (o) and applying Theorem 4.1 we obtain
that 7 admits a unique fixed point in BCO[O,T] (). This claim completes the proof of
Theorem 3.1.

REMARK 4.1. Although the 1D operator Lip by itself is not contractive, (see
lemma 4.6), thanks to the contractive property of the 0D operator Lop, the operator T
is contractive. A similar situation occurs for the case of the 3D-0D coupling analysed

in [24].

5. A numerical test. Here we present the numerical solution of a 0D-1D cou-
pling to which our existence and uniqueness results apply. We consider a lumped
network describing the whole cardiovascular system including the two ventricles, the
systemic tree and the lungs [15, 7]. The complete network is represented (in com-
partmental form) in figure 5.1. In table 5.1, we give the values of the coefficients
R, L and C used to set up the OD model. These parameters have been obtained in
[16] from experiments using a mock circulatory system. In order to account for wave
propagation,we have split the descending aorta in two compartments; the first one
(defined by Rgo1, Leo1 and Csop) if regarded as a tube modelled by the 1D equations
(2.1) (setting 8 = 13.3-10° dynes - em ™! and Ag = 4.91em? in (2.2)).

By construction, the 0D model provides the pressure Pyp(t) at the inlet and the
flux Qop at the outlet of the 1D vessel. In order to completely define our coupling,
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Ry Lq
Qop
Rg 51 Ry, S1 Ra - RenlLenn Reg Leg Recap Ry,s R3 S2 RrS3 Rs Rgs Lg

Q1D P1p

Fic. 5.1. An ezample of 0D-1D coupling

we recover as source term for the 0D model the flow-rate Q1p at the left side of the
vessel and the pressure Pip at the right one. In figure 5.2, we show the numerical
results (obtained using a standard finite element Lax-Wendroff scheme, see [7, 9]), for
the area and flow-rate along the 1D tube at different instants of a heart beat. Figure

1=0.1 sec

1=0.125 sec

Area A cm?
L
2
Area A cm’

flow rate Q ml/s
flow rate Q mi/s

2 4 6 8 10 12 14 16 18 20 [ 2 4 6 8 10 12 14 16 18 20
cm cm

1=0.15 sec
5.25 T T

1=0.175 sec

Area A cm?

N
S

flow rate Q ml/s
@

°

80 L L L L L L L L L 105 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

cm

Fic. 5.2. Snapshots of the solution of the 1D model at four time levels

5.3 illustrates the wave forms of the left inlet pressure Qop, the right inlet flux Qop,
and the pulmonary pressure P;;. The continuous line represents the coupled system
while the dotted-line represents the pure 0D model with the equivalent Rg21 Lg21 Cs21
(Resistance Inductance Compliance) network replacing the 1D part.
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Aottic pressure P Aortic flow rate Q, )

— 0D-1D coupling — 0D-1D coupling
—— equivalent 0D —— equivalent 0D

ml/s

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

tima
— 0D-1D coupling
—— equivalent 0D |

tima <
Femoral flow rate Q) Pulmonary artery pressure P,

— 0D-1D coupling
—— equivalent 0D |§

mmHg
2 oo o~

o - N

tima tima &

F1a. 5.3. Pressure Pop, flow rate Qop, pulmonary pressure P11, and pulmonary flow rate Q12

6. Conclusion. In this work, we have proved the existence and uniqueness of
solutions of the coupled system (2.16). This is a general result whose interest goes
beyond the specific case here described in which the coupled system represents a
hybrid model of blood flow in a tract of the arterial tree. Indeed, it can be applied
to every coupled problem involving a hyperbolic 2 x 2 system that can be written
in diagonal form like (2.6) and a system of ODE’s with locally Lipschitz right hand
side. We point out that the hypotheses insuring the existence and uniqueness of our
coupled problem are not restrictive for realistic applications to blood flow analysis.

Further investigations related to our results will concern: stability and conver-
gence analysis of the discrete coupled problem, the extension of the present results
to the case of weak solutions (mandatory when introducing vascular prosthesis like a
stent in a cardiovascular tree) [18, 12].
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