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Abstract

We consider a class of BGK systems with a finite number of velocities, depending on a
positive relaxation parameter, that approximate strongly degenerate hyperbolic—parabolic
equations with initial boundary conditions. We prove a priori estimates for the solutions of the
systems, showing that these functions converge towards the entropy solutions of strongly
degenerate problems when the relaxation parameter goes to zero.
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1. Introduction

In this paper we are interested in the approximation of the following parabolic
equation:

O+ 0y A(u) = 0y [B(u)], (x,1)eR" x (0,T), (1.1)
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with initial data

u(x,0) = up(x), xeR* (1.2)
and boundary condition

u(0,1) = ap(r) te(0,7), (1.3)

here u = u(x, 1) eR with (x,1)eR* x (0, T).

We assume that 4, B are locally lipschitz functions, uy and ay are BV functions and
the function B(u) is not decreasing.

This assumption allows the diffusion function B to be constant for some intervals
of the state function u; for these values the problem is completely hyperbolic and it is
necessary to give an entropy formulation for it (see [20]). Obviously the situation is
different for the solutions that take values in the intervals in which B’ is strictly
separate from zero; in such case the problem is purely parabolic and the solution is
classic. In general the equation is of parabolic-hyperbolic type; such phenomena
appears in many application models, (see [5-7]).

One needs a formulation that considers both the features of the problem.
In our case there are also difficulties related to the boundary condition, in fact it is
well known that for first-order hyperbolic problems this condition is not achieved in
a classical sense and should be interpreted as a consistent condition (see [12,16]).

An entropy formulation for problem (1.1)+(1.3) was given in [13] in the multi-
dimensional case for homogeneous boundary data, proving that this is well-posed. More
recently, an entropy formulation for general boundary data (see Definition 1.1) was
given in (see [24,26]), as while existence and uniqueness results were proved.

In particular in [24] was proved that the entropy solution of (1.1)—(1.3) can be
obtained as limit of solutions of regularized equations of non-degenerate parabolic
type (the diffusion function B is approximated by functions B? strictly increasing).
Other results can be found in [7], for one-dimensional case with homogeneous
boundary data, while in [5,6] some application models with different boundary value
problems are examined.

In this paper we are interested in the approximation of the above problem by
means of a sequence of semilinear systems of conservation laws with source and
initial-boundary conditions.

We introduce the following system:

a1 . L
Ofi +10fi = (Ml 6) = f) in R* x (0,T), k=1..N (14)

with 7 = ik+%, £>0 and
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where the functions M; (called Maxwellian functions) satisfy the following properties:

(M1) oV, M;(w, &) = w for all £€]0, 1] and for all wel,
(M2) SN e M;(w,e) = A(w) for all £€]0,1] and for all wel,
(M3) =¥ 0> M;(w,0) = B(w) for all wel,

(My) (w s)—»M (w,0), when ¢—0, uniformly for w in I,
(Ms) M/(-,e)=0 in I for all ¢€]0, 1].

Here [ is an interval of R.

These properties assure that systems (1.4) approximate problem (1.1). In fact it is
easy to see, formally, that if the sequence {u’} converges to some limit function u
strongly in C([0, T]; L\,.(RT)), the function u is a weak solution of Eq. (1.1) [11].

In particular condition (M5) is a stability condition: it is crucial in proving comparison
results for the solutions of system (1.4) and compactness properties for the sequence
{f#}. In fact we will show that, under the stability condition (Ms), our approximation
(1.4)—«(1.7) keeps the monotonicity properties which are typical of Eq. (1.1).

We complement the system by the initial conditions

and the boundary conditions for the functions satisfying Eq. (1.4) as entering
characteristics,

fi00,1) = Mi(ap(1),0) for ie{l,...,N} such that y7>0. (1.7)

System (1.4), (1.6), (1.7) can be considered as a discrete BGK model [3]. These
kind of models were introduced in the kinetic theory of the gases in order to simplify
the Boltzmann equation [8,14,15]. In the BGK model the collision term is replaced
by the quantity Q(f) =1 (M(f) - ), where M is a Maxwellian distribution and ¢
is the mean free path of the molecules.

In particular Euler and incompressible Navier—Stokes equations can be obtained
by the BGK equation introducing suitable scaling for the x, ¢ variables and letting
the parameter ¢ go to zero [15,14,34].

This paper was inspired by the results in [11,31] and [18]. The first paper considers
the approximation of the Cauchy problem for Eq. (1.1) in the multidimensional case,
with a BGK model similar to that in (1.4); in the second one, the authors prove the
convergence of a similar relaxation system, with two transport coefficients
independent from ¢, towards an initial-boundary value problem for a conservation
law; in the last paper the authors consider a particular system (1.4) with three
velocities that converges to a weakly parabolic problem with initial and boundary
condition (diffusion B is not allowed to be constant in an interval).

BGK approximations to initial-boundary value problems for conservation laws
are also studied in [27]; here the author introduces a new technique to estimate the
boundary terms which allows to consider a general BGK model, without constraints
on the number of velocities. This technique will be crucial in the present paper to
treat strongly degenerate parabolic problems.
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We recall that this kind of discrete velocities approximations was introduced in
[30] for conservation laws in RY x [0, T]. The study of diffusive limit of Cauchy
problems for discrete velocity hyperbolic systems can be found in [21,25,23,22,34]
and in [19,29,17,4] for numerical results. Finally, relaxation approximations for
boundary value problems are studied in [1,2,33,32,36,35] (besides [31]) in the setting
of hyperbolic equations.

Let us state more precisely the convergence result proved in this paper.

We consider the following definition for entropy solution of strongly degenerate
problem (1.1)—(1.3) (see [24,26])

Definition 1.1. Let 7>0, uyeBVio(R")NLY(R"), aye BV((0,T))nC((0,T)).
A function ueL*(Q x (0,7)) is said to be an entropy solution of problem
(1.1)~(1.3) if and only if

(1) (regularity):
O:B(u)e L*(R* x (0, 7)),

and B(u )l{O} on = B(ap);
(ii) (entropy condition): let KX (u,¢) = H* (u — ¢)(A(u) — A(c) — 0yB(u)) then

[ u—dig ki wasdxds [ w-d a0, (1)
R*x(0,T) - 0 -

for every ¢pe H'(R" x (0,T)), $=0, such that pH=* (ay — ¢) = 0. Here

o3 (0.1)

H=*(s) are the Heaviside functions, Sg““%

positive and negative part of s.

and [s], denote, respectively,

We have the following definition for the weak solution to the relaxation
system (1.4).

Definition 1.2. Let uge BV(RT)nL'(R"), aye BV((0,T))nC((0,T)). The N-ple

(fe, ... fe)e(BV(RT x (0,T))nL*(R* x (0,T)))" is a weak solution to problem
(1.4), (1.6), (1.7) if and only if

(i) for every ¢pe C}(RT x (0,T))
T
[ [ o)+ Lot s asar=0. i=1,.N,

(i) f#(x,0) = M;(ug(x),0) for almost every xeR",i=1,...,N,
(i) f7(0,1) = Mi(ao(),0) for almost every te (0, T) for ze{l ..,N} such that
5> 0.
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In this paper we prove comparison and stability results with respect to the
data for the weak solutions of problem (1.4)—-(1.7), moreover we prove a priori
estimates for it.

Then we prove the main result.

Theorem 1.1. Let upe BV (RT)n LY (R") and ape BV ((0,T))nC((0,T)), such that
uo(-)el and ayg(-)el. Let (ff,....[%) be the solution of problem (1.4), (1.6), (1.7) in

(R* x (0,T)), u* = ZlN:lff and let u be the solution of the problem (1.1)—(1.3) in
R x (0,T)). Then

lim = uin C([0, T); Ll (RT)).
&E—

We show in the last section that for every given interval / one can construct a set
of Maxwellian functions verifying conditions (M;)—(Ms).

The main difficulty is to treat the boundary terms that appear in this problem, in
particular we have to verify that the weak boundary condition proposed in
Definition (1.1) is achieved for the limit of solutions of the relaxation approximation
(1.4), (1.6), (1.7).

Theorem (1.1) gives the first result of convergence for BGK approximation
of problem (1.1)—~(1.3), also providing another proof of existence. The results
proved in this paper can be useful to implement numerical schemes for the
approximation of the solution of the strongly degenerate parabolic boundary value
problem [28].

The paper is organized in three further sections. In the next section we state
comparison results for problems (1.4),(1.6), (1.7), existence and uniqueness theorem.
Moreover, we prove a set of a priori estimates which ensure relatively compactness in
C([0, T); L}, .(R™)) for the sequences { '} and {u*}. Section 3 is devoted to prove
that the limit of the sequence {u*} is in fact the unique entropy solution of problem
(1.1)—(1.3). In the last section we consider some examples of BGK systems of the
form (1.4) that approximate (1.1)—(1.3).

2. A priori estimates

The goal of this section is to establish stability, comparison, existence and
uniqueness results and some a priori estimates for the solutions of the system (1.4).
Most of the proofs are the extension of those in [18] for a particular choice of the
Maxwellian functions, to a general BGK system of type (1.4). On the contrary, the
result in Proposition 2.4 is proved by means of a different technique which does not
involve BV estimates for the traces f7*(0, ¢) [18]; in [18] the proofs of such boundary
estimates for i such that 0; = 0 are based on the assumption of parabolicity for
Eq. (1.1).

We will make use of the following lemma [20].
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Lemma 2.1. Let u be a weak solution to the linear Cauchy problem
O+ 00u =g(x,1),
u(x,0) =up(x),

Jor xeR" and te (0, T) (T >0), and v the solution of the above problem with a function
h in place of g and the initial data vy in place of uy. Then for every dpe CH(RT x (0, T)),
with ¢ =0, there holds

T
/ / [u— ], 0, + Olu — v] Op dx dt
0 S
T
> —/ H(u—v)(g—h)pdxdt, (2.1)
0 R

where H is the Heaviside function.

In the following f7(0, ), u*(0, ) denote the traces of the functions f7(x, t), u*(x, t)
on the boundary x = 0.

We assume ¢ varying in a suitable small interval (0,) where the Maxwellian

functions are increasing in u and sgn y{ = sgn ¢; for all i such that 6, #0. Moreover
weset Zt ={i=1,...,.N:0;>0},Z  ={i=1,...,.N:0;<0}, Z ={i=1,...,N:
7620,0, =0}, Z; ={i=1,...,N :%:<0,0, = 0}.
Proposition 2.1. Assume that uy, o€ BV (R"), ao,age BV((0,T)). Let (ff),_.....
a solution of problem (1.4)~(1.7) and v €l for almost every (x,t)eR* x (0,T). Let
() i—1.... v be another solution corresponding to the initial-boundary conditions (uy, do)
and it = N | frel for almost every (x,t)e R x (0, T). Let 7 = max{|y?| : 9 <0,i =
1,...,N}. Then for every KeR" and for almost every te(0,T) the following
inequalities hold:

K N K+t
/0 > i) 0], des / uo(x) — T(x)], dx

+ vg:'max /0 [ao(s) — ag(s)]. ds,

S b /0 5(0,5) —JF(0, )], ds

Z-vZy

< /0 " o) — T, dx+ max /0 laols) @) ds. (2.3)

{yui=1,...,N}
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Proof. Setting w; = f; —E and using inequality (2.1) we obtain

T N
/0 /[R > wil (¢, +7ie,) dxdt

i=1

N
> L[]S B0 M) g

i=1

for every ¢ e C}(R™ x (0,T)), $=0.If H(w;) =1 fori=1,...,N or H(w;) =0 for
i=1,...,N then the right-hand side of the above inequality is zero. In order to
prove that it is always nonnegative set J, = {i: H(w;) = 1}; then, thanks to
(Ml) and (MS)

Z(Mi(usjg) — Mi(uf, &) — w;) < (Z M (n,e > Z w; <0,
Jo

T

where 7 is a suitable intermediate value.
Hence

T N o
/0 /W S =S (b + i, dx di=0.

i=1

Now, choosing a sequence of test functions approximating the characteristic
function of the set {(x,s)eR" x (0,7) : 0<x<K + (¢t — 5)} we obtain

K N
/0 S0 1) — T, 1), d
i=1

K+jt N t N o
<[ 2 e st o) e [0, <09 ds

/Z SEK 45— 5),8) = JE(K +(t = 5),5)], ds

and (2.2) follows since —7 —yi<O0fori=1,...,N

In order to prove inequality (2.3) we introduce a sequence of test functions
approximating the characteristic function of the set {(x,s)eR* x (0,7):0<
x<7j(t—s)} and, with the same technique used in the first part of the proof, we
obtain the claim. [

As a consequence of the previous proposition we have the following two results.

Corollary 2.1. Assume that uy, i€ BV(R"), ao,age BV((0,T)). Let (ff)._, . ybea
solution of problem (1.4)~(1.7) and u*el for almost every (x,t)eR* x (0,T). Let
f) i—1.... y be another solution corresponding to the initial-boundary conditions (i, ao)
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and w* = Zfilﬁe]for almost every (x,1)eR" x (0, T). Assume that
uy< ity almost everywhere in RT;
ap< ap  almost everywhere in (0,T).

Then

JE <ff almost everywhere in R* x (0,T) for i=1,...,N.

Corollary 2.2. Assume that upe BV(R"), ape BV((0,T)) and up,apel. Let
(/ff)i=1.... n be a solution of problem (1.4)~(1.7) and u* € I for almost every (x, 1) € R x

(0, T). Then for almost every (x,1)eR" x (0,T)
M;(min{essinf (uo), essinf (ap) }, &) <fi < M;(max{esssup(uy), esssup(ap)}, €)
fori=1,...,N.

Proof. Observe that for every peR the vector (M (p,e), ..., My(p,¢)) is a weak
solution to the system (1.4)—(1.7) with initial and boundary data identically equal
to p. Then the claim follows by Corollary 2.1. O

In the following we set
I = {ueR; min{essinf(up), essinf (ag) } <u<max{esssup(up), esssup(aop)} }.

By using standard regularity properties, Corollary 2.2 and proceeding as
in [30] we obtain the following result for the solutions of the problem (1.4)—(1.7)
(see [27]).

Theorem 2.1. Let uge BV(RY),ape BV((0,T)). Then there exists a unique global
data uy,ay are in the class C* (k=1) with uy(0) = ap(0), uy'(0) =ay’(0) =0
then ffeC'(R* x[0,T))nC*(R* x (0,T\Uzi z:T)), i=1,....,N, where I;:=
{(x, 1) eRT x [0,T) : x = yit}.

Now we prove some estimates for the solutions of problem (1.4)—(1.7) in
the case of smooth data, which can be extended to the general BV case thanks to
Proposition 2.1.

Proposition 2.2. Let uye C2(RT)nBV(R"Y) and aye C2([0,T))nBV((0,T)) with
up(0) = ao(0), u'(0) =ao’(0) =0. Let (ff)_y .n be the solution of
problem (1.4)-(1.7). Then for every te[0,T) the following estimate holds
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fori=1,...,N

/ 07 (x, ) decmax{[ye] : i = 1, ..., NYTV (u)
R+
+ max{yf:i=1,...,N}TV(ao). (2.4)

Proof. We fix L,reR" and we set p; =9/f. Now we first differentiate the
equations with respect to ¢ and multiply each equation by the corresponding
sgn(p;), then taking the sum for i=1,....N and integrating on the
domain D = {(x,s)eR" x (0,7) : 0<Sx<L+7(r—s)}, where 7 is defined as in
Proposition 2.1, we have

//& im(x n]+2o iﬂp-(x 1)] dxdt:l//F(x 1) dx dt
D i:ll, xi:lll7 e Jop ’

where

N [ N
F(x,0) =3 (Z M (x, 1))sgn( pj) — Sgn(pi)>pi(x, f).
— \'=

i=1

Since F(x,t) <0 (thanks to condition (M) and (Ms)), using the divergence theorem
on the domain D we obtain

L N L+jt N t N
/0 S pite, o)) dx < / S piCx, 0) dx + / S 510, )] d;
i=1 i=1 i=1

then, using the initial and the boundary conditions, we have the claim. [

The estimate proved in the above proposition is not uniform in ¢, due to the
expressions of 7%, however it allows to obtain the following uniform estimate
for the BV norm of the traces of f? on the boundary, for each index i such
that 9,<0

Proposition 2.3. Let upe C2(RT)nBV(RT) and ayeC*([0,T))nBV((0,T))
with  ug(0) = ao(0), ug'(0) =ay’(0) =0. Let (ff)_,  n be the solution of
problem (1.4)—(1.7). Then there exists a constant Ky = K,(4;,0;, TV (ay), TV (1)),
not depending on ¢, such that for every h>0 small enough

—h
/OT D 0,14 ) = f7(0,0)| di < Kih, (2.5)
-
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Proof. Fori=1,...,N we set w;(x,t) = f#(x,t+ h) — ff(x, ) and

M;(uf(x,t + h)) — M;(ué(x, 1))

Ci(x, 1) = ui(x, 0+ h) — ui(x, 1)

We consider now the equations verified by the functions w; fori=1,..., N
1
Owi(x, 1) + yiowwi(x, t) = 8<(Cl»(x, 1) — Dwi(x, 1) + Ci(x, 1) Z w;(x, t))
J#i
and we multiply each of them by the corresponding sgn(w;); summing up the

equations and integrating on the domain D= {(x,7/)eR" x (0,7):0<
x<y(T — 1)} we obtain the equality

N N
// 3,(2 |wi|> +Bx<z yf|w,-|> dxdt:%// F dx dt,
D i=1 i=1 ’ D

where
N
F(x,t) = Z (Z Ci(x, t)sgn(w;) — sgn(w,-)) wi(x, 1).
=1 \j=1

We observe that the conditions (M;) and (Ms) imply that 0<Ci(x,7)<1 for
i=1,...,N and ¥ Ci(x,£) =1 and then that F(x,7)<0; therefore, using the
divergence theorem on the domain D we obtain

|y|/ 20,0+ h) — £2(0. 1) de

Z-vZ;

/ Z[fsxh — [0 dx+ Y y/ | Mi(ao(t + h)) — Mi(ao(t))| dt

ZJruZJr

and then

Z /0 (0, ¢ + h) — ££(0,1)| dt

\/5 5t N . )
<min{\/5/1i+9i:ieZ}/0 ; Iff (e, h) — f7(x,0)| dx

max{\/ed; + 0; : ie Z" VZ;}
min{\/e; + 0; : ie Z~}

TV(ao)h.

The claim follows using (2.4). O
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Next lemma gives an estimate for the spatial derivatives of the functions f; on the
boundary, in terms of the BV-norm of a(#). The result is crucial to prove a further
uniform estimate holding for sequence {f}, which will be useful to derive

compactness properties .

Lemma 2.2 (Vuk Milisi¢ [27]). Let uge C*(R™)ABV (R™) and age C*([0,T)) BV ((0, T))
with uy(0) = ap(0), ug'(0) = ao’(0) = 0. Let (fF),—;.... y be the solution of problem (1.4)-

(1.7). Then
N T T
Z/ y§|8¢‘5(t,0)|dt</ |ao' (1)| dt.
i=1 /0 0

Proof. Using the equations for f° we obtain the following inequality:

N {1/ _ .
I CIEEDS wmm”)“Ww+wwmm)

- &
i=1 ieZvuz;

. Z ‘Mi(us(o’ t)) _fie(o’ t) _ azfis(o’t)

ieZ-vZ; &

which can be rewritten as

S s 0, 01 OO0y
<|M,-(u5(0, t) — Mi(ao (1))

8).

+ [Mi (a0 (1))
ieZ-vZ;

N ‘Mi(u"'(o, ti —f7(0,1)

= 97(0,1)

Now, it is readily seen that

|4(0, 1) — ao (1))

!/
t
— 4 o' (1)

N
> Houf (0, 0] <
i=1

&

(2.6)

5 <Mi(ao(t)) — /0.0 8 (Mi(ao (1)) — £(0, l))) ‘
ieZ-vZ;

and using that 4°(0,7) = szzg Mi(ao(t)) + ZZ’UZo’ J£(0,¢) we derive the follow-

ing inequality:

N
£l £t |u? (0, 1) — ao(1)]
> o0, 1)) <

i=1

+ao’ (1)] —

%M1f@”+m%m—f&0ﬂ
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Thanks to convexity property of the absolute value function we obtain

N

> slogi0.01< = sen( =)o 000 600, + a0

i1
= — 9i(Jao(2) = u (0,1)]) + lao' (2)].
Integrating on (0, 7") the above estimate we obtain
N T T
S [ ase.ldes [ ~@dal) - 0.0) + a0 dr
i=1 /0 0

and the claim follows.
Now we use the previous lemma to estimate the spatial derivatives of f in the
interior domain.

Proposition 2.4. Let ugpe C>(RT)nBV(R") and age C*([0,T))nBV((0,T)) with
up(0) = ao(0), up’(0) = a’(0) = 0. Let (ff),_,  be the solution of problem (1.4)-
(1.7). Then there exists a constant K, = K,(TV (ap), TV (up)), not depending on ¢, such
that for every L>0 and for every h>0 small enough

L
/ [Of (x,8)| dx< K>, fori=1,...,N. (2.7)
0

Proof. We fix L,1>0 and we set m; = 0,f/’; applying the technique of the previous
proofs we establish that

L N L+yt N t N
/ 3 |m,~(x,t)|dx</ 3 |m,~(x,0)|dx—|—/ S 3tm(0,5)] ds.
0 =1 0 i—1 0 0

The last integral can be estimate using Lemma 2.2 and the proof is complete. [

Now we state a proposition which gives an estimate of the deviation from the
equilibrium in the L' norm (see [11] for the proof). The result will be crucial in the
proof of the last uniform estimate in this section and in the proof of consistency of
our relaxation approximation in the next section.

Proposition 2.5. Let uye C>*(RY)nBV(R"Y) and aye C*([0,T))nBV((0,T)) with
up(0) = ap(0), uy’(0) =a¢’(0) =0. Let (ff),_, n be the solution of problem
(1.4)—~(1.7). Then there exists a constant Kz = K3(A;,0;, TV (ay), TV (uy)), not
depending on ¢, such that for every L>0

N L
> [ Ve - Mt ) dv< Vi
i=1 70
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The following proposition completes the set of estimates necessary to prove the
convergence result in the next section.

Proposition 2.6. Let uge C2(RT)nBV(RY) and aye CX([0,T))nBV((0,T)) with
up(0) = ao(0), uo'(0) = ag'(0) = 0. Let (ff),_ ..y be the solution of problem (1.4)-
(1.7). Then for every L>0 there exist a posztwe constant hy and a continuous

nondecreasing function w : [0, hy] = R, not depending on &, with w(0) = 0, such that, for
te(0,T —h) and he (0, hy)

L
/ (e, 1+ ) — o (x, 1) de <),
0

Proof. We use Lemma 5 in [20]; in view of Proposition 2.4 we must only prove that
there exists a constant C;, such that

/ O’ (x, 1) p(x) dx

Using the equations (1.4) for f and condition (M,) we establish that

/ O’ (x, 1) p(x) dx

<Cy||@l| for every function e CL((0,L)).

<||<o|\c1/ max{m}z 2 (6, 1) — MiGed 6)| dx

L
T ||<o||c1/0 A dx

and using Proposition 2.5 we conclude the proof. [J

Now the above propositions in combination with the comparison results (2.2)—
(2.3) imply the following theorem.

Theorem 2.2. Let L>0, upe BV(R") and age BV((0,T)). Let (ff)., .y be the

solution of problem (1.4)~(1.7) in (R* x (0, T)). Then for every L,h>0 there exist two
positive constants hy, Cy = Cy (4, 0;, TV (ay), TV (uy), L) and a continuous nondecreas-
ing function w : [0, hy] = R, not depending on ¢, with w(0) = 0, such that

TV(fi(-1),(0,L))<Cy  for te(0,T),i=1,...,N,

L
/ | fE(x, 1) — Mi(uf(x, 1), 6)| dx< Civ/e  for te(0,T],i=1,...,N,
0

T—h
> /0 | £E(0, 1+ h) — f£(0,1)| dt < Cih,

7+

L
/ W, £+ h) — 1 (x, ) dx<w(h) for £€(0, T — ), he (0, hy).
0
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Using the above results we can extract a subsequence from {u‘} converging to some
limit function u. In the next section we will show that such a limit is the solution of
problem (1.4)<(1.7), concluding the proof of Theorem 1.1 stated in the Introduction.

3. Proof of Theorem 1.1

The last step in the proof of Theorem 1.1 is to prove that the function u obtained
as limit of a subsequence of {u‘} verifies conditions (i) and (ii) of Definition 1.1.
As in [11] we are going to use the convex kinetic entropies Hy associated to each

macroscopic convex entropy # of (1.1). According to [9], they can be obtained as

Hi, (f§) =/ (If& = Mi(c)] — [ My(c)[)n" () de
+ 3/ (= o0) +1'(0))
which are convex in f and have a Lipschitz constant independent of e.
As in [11] we make first a simplifying assumption: we assume that

M (-) is strictly increasing in I = {ueR: |u|<p,}, (3.1)

where p., = max(|[uol[» g+): |[a0]| = g+)) and let us consider only entropies e 2.
Now for such C* entropies, (3.1) ensures that Hj , € C'([M}(—po, ), Mi (=g )]). As
in [11], using (M;)—(My), we have the following relationships:

(Hp, (M (w)) =n'(w), Ywel, (3:2)
Z L (M) = n(w) = n(0),
Z VeH}, (M (w)) = Gy(w) for G,/ =n'A’, G,(0) =0,
Z 0 Hy (M (w)) = By(w) + o(1) for B) =n'B’, B,(0)=0. (3.3)

In the following we set @ = R* x (0, T).

The first result we need is an L*(Q)-estimate of the quantities (M;(u?) — f7). In
order to do this we will prove some preliminary results.

Let us multiply (1.4) by H;'(f#), which is possible since we suppose Hye C'. We
get

atHk(flf) + 8xV£ka(flf) = Hk,(flf)

&

If we choose 1 such that (0) =0, '(0) = 0, then H;(M}(0)) =0, H,'(M;(0)) =0,
and thus Hj; >0. Integrating over a semi cone and letting it tend to infinity after
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summing up with respect to k we have

S [t nas Y [ s - moprt =L
) ,

T
SO R CTCOTEED S AV COL
T
_ / r,(uo)dx+z/ Ve HU(f2(0,10)) db (3.5)
k 0

In the following lemma we find an upper bound for the last boundary term.

Lemma 3.1. Assume hypothesis (3.1). For any C* convex entropy y(-), on the boundary
we have the following estimate:

T
/0 > viHyi (f0)(0,0) di1<C
k

where C is independent of e.

Proof. Observe that it is not restrictive to assume that the data and the solution of
(1.4) are regular since using the stability results of Proposition 2.1 we can treat
general data. Imposing boundary condition on the entering characteristics we have
for any entropy functions

Zkaﬂkﬁ( Z })k ﬂkMk aO +Z /k n.k fk)

ke 7%>0 %<0

—G17 aO + Z yk V]k(fk) ﬂk(Mk(aO)))

7. <0

(a0) + Z Ve H, (M (a0)) (ff — M (ao))

= Gy(ao) + ﬂl(ao) Z (8 — Mi(ao))

75 <0

= Gy(ao) +1'(ao) [Z ek — Alao) |-
3

The boundary term that we want to control can then be written

T
/0 i (ao(1))(1,0) dt, (3.7)
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where
‘= Z Vi

and v° satisfies in the interior of the domain
o’ + 0,1° = 0. (3.8)
Let us introduce a function p such that

peC*(RY), p(x) =0,vx>1,

p(0)=1 and |p'(-)|<c
We aim to control
T
/ 1 (ag)v® dt = / / (' (ap)v*)p dx dt — / / (ap)v®p’ dt
0
=5 +D.

Let us examine the first term /;. Using (3.8) we have

Tl
L = / / 1 (ag) O’ p dx dt
o Jo

T 1
:/0 /o (0,01 (a0)ut) — (D () ) )p dix di

1 T 1
:/ (ﬂ/(ao(T))uS(x,T)—n’(ag(O))us(x,O))pdx—/O /0 (Om' (ao))up dx dt.

0

So that we can bound I; by
1< Clllaol| = 0.7 14 L= 0.7y <) + [[6]| e BV (a0))

independently of &
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For the last term it is enough to write

|L|< "(ao)A(u)p' dx dt| + "ap)(v* — A(u®))p' dx dt

max;{|0;|}
< Cllao|[ = 0,7 I1A@) L1 0, 7% 0,1)) ‘*‘Tl

//ZU (1,%) — My, )| )

So that again this is independent of ¢, and C only depends of the data (u,ao) and
Lipshitz constant of #'(-). O

Now we can derive the desired L? estimate.

Lemma 3.2. There exists a positive constant C such that, for all ¢>0 and for all

k=1,...,N
T - |
/0 /R [M(f) = /i) dx<eC

Proof. Using the previous lemma, one has for any C? convex entropy that

de dt<C.
3

[ e - o)

Now we choose n(u) = “2—2 Again using the method of [11], one has that

L = M) < [HY (ff) = Hi (MO (fE = ME(F)) (3.9)
which ends the proof. [

Remark 1. In [11] the authors show that assumption (3.1) can be removed, so that
Hj, is not C'. The main point is to replace Hi (M} (w)) with 5'(w), since, in this
case, equality (3.2) does not make sense for some values of w. Then, inequality (3.5)
and Lemmas 3.1-3.2 are still true.

The previous lemma is crucial for establishing convergence when ¢ goes to zero,
for interior regions as for boundary terms.

An immediate consequence is that the first part of condition (i) in Definition (1.1)
is verified by the limit function u, as the following lemma shows.
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Lemma 3.3. Let u be the limit of a subsequence of {u‘}. Then
0.B(w)e X(R* x (0,T)).

Proof. Using the equations for /7 we have, for all ¢ Cy° (R" x (0, 7))
| i = mienpao = [ o, e [ oifiocdo ket vy
and then

/ D ff — M) dQ
iy /Q Dfib + e / RfE - ME())p, dO + ¢ / VM (i) b, dO.

Summing over k and letting ¢—0 we have

giggz/yk - Mg do = [ B, do

where we used Proposition 2.5, condition (M4) and the immediate estimate

. yszas,dQ\<C||fk||m@||¢>,|U(Q)\/zz.

On the other hand we know that Zk V(= ME(u®)) is bounded in L?(Q); hence

Z e (ff — Mi(u))—0,B(u) in L*(Q) — weak

and

OBu)el*(Q). O

In the following lemma, using again the L? estimate of Lemma 3.2, we obtain the
important information that when the velocity 0x #0, the trace of the solution f;/(0, ?)
tends to the equilibrium state My (ag(z)) when ¢ goes to zero. This is not the case for
the hyperbolic equations (see [27]).

We recall that, thanks to Theorem 2.2, for ke Z* U Z~ there exists a subsequence
of {££(0,7)} converging to some function wy(z) in L'((0, T)).
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Lemma 3.4. For all keZTuZ"
wie(t) = My(u(0,1)) 1€(0,T).
Proof. For all $eCs°([0,+o0) x (0,7T)) we have
| i = Mo do
T
= [ asioido [ afnio a0+ [ aln0.060.0 4.
Y 0 0
(3.10)

The first and the second term on the right-hand side can be treated as in the previous
lemma, for ¢ going to zero.

For the last term, which gives information on the boundary, it can be easily
proved that

T T
o[ Rhe0) di [ Gi0e0.0d

For the source term part, one has again that 7% (/£ — M} (u°)) € L*(Q), then, up to
extracting a subsequence, it converges in the weak topology. It follows that, letting ¢
go to zero in (3.10) we obtain

T
[ nsao= [ Gwrpo.nd+ [ emcis,do. (3.11)
0 0 (¢

where / is a suitable function in L*(Q). Choosing as text function ¢ = t5(x)y(1),
where 75(x) = max(0,1 —3) and e C* ((0, T)), since

(lsiil}) ||¢5||L2(Q) =0,

the left-hand side of (3.11) vanishes when d goes to zero. So the claim follows letting
0 go to zero in (3.11). O

The result stated in the previous lemma allows to prove that u satisfies the
boundary condition in Definition 1.1.

Lemma 3.5. For te(0,7)

B(u(0,1)) = Blao(1)).
Proof. From condition (M) we know that B(u) = SN | 02 My (u,0), so the result is
proved if we show that

My (ag) = My(u) VkeZ"uZ . (3.12)
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Condition (M3) implies that, for ¢ = 0 the Maxwellian functions must satisfy the
following property:

> 0cMi(u) =0 Vuel. (3.13)
k

But, due to the convergence results obtained previously and the boundary condition
imposed on entering characteristics (0; >0), one has that on the boundary

Mk(a()) = Mk(u) VkEZJr
so that, in fact, we have the following constraint:

Z HkMk(u) + Z HkMk(ao) =0.

keZ- keZ?

Using again the same property (3.13) on ag, one has

> 0(M(u) — Mi(ag)) = 0.

0k<0

The monotonicity property of all the Maxwellian functions implies that all the terms
in the above sum have to be equal to zero. Therefore (3.12) holds and the claim
follows. [

If the Maxwellian functions are strictly increasing the previous lemma tells us that
u(t,0) = ap(¢), which corresponds to the expected regularity for non-degenerate
parabolic case.

Moreover, if 0, #0 for every k = 1, ..., N, Lemma 3.4 implies that u(z,0) = a(7).
This shows that in the strongly degenerate case, when the boundary condition is not
achieved in the classical sense, one of the 6, must vanish.

Equality (3.12) obtained in the proof of the above lemma shows that for all
keZtuZ~ the functions wy(7) are in fact the limits of the whole sequences
{00},

In the remaining of this section we prove that the function u verifies the entropy
condition (ii) of Definition 1.1. After this proof, thanks to uniqueness result for
entropy solutions of Eq. (1.1), we will be able to state that the whole sequence {u‘}
converges in C([0, T]; L}, .(R")) to u, solution of problem (1.1)-(1.3). In order to
establish this result we have to work with entropies that are only lipschitz
continuous, more precisely we are interested in the entropies n*(s) = [s — ¢|, and

the associated kinetic entropies H ]:—f(;”(s) = [s — Mj(c)] ;- Itis a simple check to prove

that the equalities (3.3) are verified for these entropies (see [11]). In such a case, we
set A,:(s) = H* (s — ¢)(A(s) — A(c)) and B, (s) = H* (s — ¢)(B(s) — B(c)).

Proposition 3.1. The function ueC([0,T); L. .(RY))nL*((0,T) x RY) verifies
condition (ii) of Definition 1.1.
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Proof. Let us consider the entropy n/(s). In order to simplify the notation in this
proof we put H(s) = H; *(s).

In [11] the authors observe that the multiplication of Eq.(1.4) with the
multivalued function H;'(s) = H(s — Mj(c)) is well defined, and gives again
(3.4), (see [10, Theorem 3.1]). Let us sum these equalities, multiply with a test
function pe CLH(RT x [0,T)), ¢ >0 and integrate in Q.

Let us note that

> HY(fi = M) (fi — Mi(i))
k
= > (H (i = M{(c)) = H* (" — &) (i — M{(u))>0.

k
(3.14)

In fact the equality in (3.13) is obvious and the inequality can be proved cheking as in
[11] that every term of the sum is positive.
We obtain

S D SLCATRRY S SETAVE IRy RO
<[ D H 1600

Proceeding as in the proof of Lemma 3.1 (see (3.6)) it can be observed that

S H () <H (a0 — )(A(ao) — A(6))
k

+ H a0 = ¢) Y % (fi — Mi(a)). (3.15)
k

Let us consider a test function ¢ such that H* (ap — ¢)¢(¢,0) = 0, then for such test
function we obtain, using inequality (3.15)

[ S mipsiaes [ 3 e, o
2 % 0
+/ g — ], p(x,0) dx>0. (3.16)
R+

The idea is to pass to the limit when ¢ goes to zero in the inequality (3.16). It is easy
to verify that the first and the last term in inequality (3.16) converge to the
corresponding term of (1.8). We want to investigate the second term. To this aim we
prove that for every k =1,...,N

Hi(f¢) = Hl(M; () — (H) (O (M () = f§) + o(ve) - in Lige(Q).
(3.17)
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As in [11] we have that
0< Hi(Mj () — Hi(f) — Hi' () (M5 () = f)
< (') = He (f)) (M () = )

< D ) = HI D) (M) = £7). (3.18)

i

Proceeding as (3.16) and Lemma 3.1 we have

/Q Z (7]6’+(u8) - Hi/(f;:))(Ml{;(u“) _fl'fi> do
= </R+ nE dxt /o H" (ay — ¢)(A(ao) — A(c))

T+ H a0 — ) Y %5 — Mi(ao) dr). (3.19)

1

Using Lemma 3.4 and inequalities (3.18)-(3.19) we obtain (3.17). From (3.17) we
deduce

D VHK(fE) = HY (= e)(A(u) = A(e) = Y 9H () (M) = f) + o(1)
k in L{,.(0). ' (3.20)
To complete the proof, using Eq. (1.4), we prove as in Lemma 3.3 that
lim Zk: Ve () (M) = f0) = (Bys ) = H (u — ¢)(B(u)),,
in L (Q) — weak. (3.21)

Letting ¢ goes to zero in the inequality (3.16) and using (3.20)—(3.21) we obtain the
result in the case of the entropy 7. The proof for the entropy #, follows exactly the
same lines. [

4. Examples

In [10], the authors present several examples of BGK systems of type (1.4),
showing that one can always define Maxwellian functions and fix parameters 6; and
/; in such a way conditions (M;)—(Ms) are satisfied.

We already remarked that, in cases of strongly degeneracy involving boundary
data, we are forced to set 0; = 0 for some i (at least one). Here we reconsider some
examples in order to show that in fact it is possible to introduce BGK systems
satisfying (M;)—(Ms) with some 0; equal to zero.
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Models with three equations can be obtained only by considering Maxwellian
functions depending on &. In such a situation one can achieve compatibility
conditions without using parameters 4;. As an example we can consider a model
presented in [18]: the parameters 4;, 0, are imposed to be zero, 0; <0, 03 >0 and the
Maxwellian functions are defined as follows

N R R

1 —03)0,
Malae) = [1 = VEOs — 0+ 50 (4.1)
A(u) B(u)
M;(u,¢) \/E(Hlu 5 — 03) 0= 030

The conditions (M;)—(M,) can be easily verified. If we choose 6; and 65 in such a

way that
{max{B’(u) cuel}< — 0,05 (4.2)

01(05 —0)) <A (u)<0:(05 — 0,) uel
the stability condition (M5) holds for <&, & sufficiently small.
To construct systems with N >4 we can use the general procedure proposed in [10]

for d-dimensional cases, with Maxwellian functions not depending on e.
In this case the compatibility condition (M;) can be written

(Ma) 2N 2iMi(w,e) = A(w) for all £€]0, 1] and for all wel;
(M) 2N 0;Mi(w,e) = 0 for all £€]0, 1] and for all wel.

We fix N such that |<N<N — 1. Then we consider parameters A; satisfying
conditions

4i#0 for some i, Zﬂ = Z A =0.

i=N+1
While for parameters 0; we set
i N N
0;=0fori=1,.,N, > 6;=0, > 6 =4, p#0.
i=N+1 i=N+1

In this case, the Maxwellian function are defined as follows

A(u) i B
M;(u) = (%—&- Z%?)ﬁ) v + [gg) Hi

A~

where v; = 1 fori=1,...,N,v;=0fori=N+1,...,N, ui:%\}fori: 1,...,N,
and y; = 1 for i = N+ 1, ..., N. These functions satisfy the compatibility conditions
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(M)~(M3). The monotonicity condition requires that

1 A'(u)l N—NB(u) , .
L =0 i=1,...N;

M:(u) = ﬁ N 2 =
>oim1h N B

the above inequalities hold if § and |/;| are sufficiently large for any ie{l, ..., N}.

References

[1] D. Aregba-Driollet, V. Milisic, Kinetic approximation of a boundary value problem for conservation
laws, accepted for publishing in Numerische Matematik.

[2] D. Aregba-Driollet, R. Natalini, Convergence of relaxation schemes for conservation laws, Appl.
Anal. 61 (1996) 163-193.

[3] D. Aregba-Driollet, R. Natalini, Discrete kinetic schemes for multidimensional conservation laws,
SIAM J. Numer. Anal. 37 (2000) 1973-2004.

[4] D. Aregba-Driollet, R. Natalini, S.Q. Tang, Diffusive kinetic explicit schemes for nonlinear
degenerate parabolic systems, Hyperbolic problems: theory, numerics, applications, Vol. I, II
(Magdeburg, 2000), Internat. Ser. Numer. Math., 140, 141, Birkhduser, Basel, (2001), 49-58.

[5] R. Biirger, K.H. Karlsen, A strongly degenerate convection—diffusion problem modeling centrifuga-
tion of flocculated suspensions, Hyperbolic problems: theory, numerics, applications, Vol. 1, 11
(Magdeburg, 2000), Internat. Ser. Numer. Math., 140, 141, Birkhduser, Basel, (2001), 207-216.

[6] R. Biirger, S. Evje, K.H. Karlsen, On strongly degenerate convection—diffusion problems modeling
sedimentation—consolidation processes, J. Math. Anal. Appl. (2000) 517-556.

[7] P. Benilan, H. Touré, Sur I’ équation génerale u, = ¢(u) ., —(u), + v, C.R. Acad. Sci. Paris Sér.
I Math. 299 (1984) 919-922.

[8] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases, Phys. Rev. 94 (1954).

[9] F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of
conservation laws, J. Statist. Phys. 95 (1999) 113-170.

[10] F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation,
Arch. Rational Mech. Anal. 157 (2001) 75-90.

[11] F. Bouchut, F.R. Guarguaglini, R. Natalini, Diffusive BGK approximations for nonlinear
multidimensional parabolic equations, Indiana Univ. Math. J. 49 (2) (2000) 723-749.

[12] C. Bardos, A.Y. le Roux, J.-C. Nédélec, First order quasilinear equations with boundary conditions,
Comm. Partial Differential Equations 4 (9) (1979) 1017-1034.

[13] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational. Mech. Anal. 147 (4)
(1999) 269-361.

[14] C. Cercignani, The Boltzmann Equation and Its Applications, Springer, New York, 1988.

[15] C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Diluite Gases, Springer, New
York, 1994.

[16] F. Dubois, P. Le Floch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,
J. Differential Equations 71 (1988) 93-122.

[17] E. Gabetta, L. Pareschi, M. Ronconi, Central schemes for hydrodynamical limits of discrete-velocity
kinetic equations, Proceedings of the fifth international workshop on mathematical aspects of fluid
and plasma dynamics, transport theory statis, Phys 29 (2000) 465-477.

[18] F. Guarguaglini, A. Terracina, A BGK Approximation to nonlinear parabolic initial-boundary value
problems, Asymptot. Anal. 28 (1) (2001) 75-89.

[19] S. Jin, L. Pareschi, G. Toscani, Diffusive relaxation schemes for multiscale discrete-velocity kinetic
equations, SIAM J. Numer. Anal. 35 (1998) 2405-2439.

[20] S.N. Kruzkov, First order quasilinear equations in several independent variables, Math. USSR Sb. 10
(1970) 217-243.



F.R. Guarguaglini et al. | J. Differential Equations 202 (2004) 183-207 207

[21] T.G. Kurtz, Convergence of sequences of semigroups of nonlinear operators with an application to
gas kinetic, Trans. Amer. Math. Soc. 186 (1973) 259-272.

[22] C. Lattanzio, R. Natalini, Convergence of diffusive BGK approximations for nonlinear strongly
parabolic systems, Proc. Roy. Soc. Edinburg Sect. A 132 (2002) 341-358.

[23] P.L. Lions, G. Toscani, Diffusive limit for finite velocity Boltzmann kinetic models, Rev. Mater.
Iberoamericana 13 (1997) 473-513.

[24] C. Mascia, A. Porretta, A. Terracina, Nonhomogeneous Dirichlet Problems for Degenerate
Parabolic-Hyperbolic Equations, Arch. Rational Mech. Anal. 163 (2002) 87-124.

[25] H.P. McKean, The central limit theorem for Carleman’s equation, Israel J. Math. 21 (1975) 54-92.

[26] A. Michel, J. Vovelle, A finite volume method for parabolic degenerate problems with general
Dirichlet boundary conditions, accepted for publication in SIAM, Journal of Num. Anal.

[27] Vuk Milisi¢, Stability and convergence of discrete kinetic approximations to an initial-boundary value
problem for conservation laws, Proceedings of the AMS 2001 131 (6) (2003) 1727-1737.

[28] Vuk Milisi¢, Kinetic schemes for strongly degenerate parabolic initial-boundary value problems,
work in preparation.

[29] G. Naldi, L. Pareschi, Numerical schemes for kinetic equations in diffusive regimes, Appl. Math.
Lett. 11 (1998) 29-35.

[30] R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar
conservation laws, J. Differential Equations 148 (1998) 292-317.

[31] R. Natalini, A. Terracina, Convergence of a relaxation approximation to a boundary value problem
for conservation laws, Commun. Partial Differential Equations 26 (2001) 1235-1252.

[32] S. Nishibata, The initial-boundary value problems for hyperbolic conservation laws with relaxation,
J. Differential Equations 130 (1) (1996) 100-126.

[33] A. Nouri, A. Omrane, J.P. Vila, Boundary conditions for scalar conservation laws from a kinetic
point of view, J. Statist. Phys. 94 (5-6) (1999) 779-804.

[34] T. Platkowski, R. Illner, Discrete velocity models of the Boltzmann equation: a survey on the
mathematical aspects of the theory, SIAM Rev. 30 (1988) 213-255.

[35] W.C. Wang, Z. Xin, Asymptotic limit of initial-boundary value problems for conservation laws with
relaxational extensions, Commun. Pure Appl. Math. 51 (5) (1998) 505-535.

[36] W.A. Yong, Boundary conditions for hyperbolic systems with stiff source terms, Indiana Univ. Math.
J. 48 (1) (1999) 115-137.



	A discrete BGK approximation for strongly degenerate parabolic problems with boundary conditions
	Introduction
	A priori estimates
	Proof of Theorem 1.1
	Examples
	References


