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Abstract

We consider a class of BGK systems with a finite number of velocities, depending on a

positive relaxation parameter, that approximate strongly degenerate hyperbolic–parabolic

equations with initial boundary conditions. We prove a priori estimates for the solutions of the

systems, showing that these functions converge towards the entropy solutions of strongly

degenerate problems when the relaxation parameter goes to zero.
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1. Introduction

In this paper we are interested in the approximation of the following parabolic
equation:

@tu þ @xAðuÞ ¼ @xx½BðuÞ�; ðx; tÞARþ � ð0;TÞ; ð1:1Þ
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with initial data

uðx; 0Þ ¼ u0ðxÞ; xARþ ð1:2Þ

and boundary condition

uð0; tÞ ¼ a0ðtÞ tAð0;TÞ; ð1:3Þ

here u ¼ uðx; tÞAR with ðx; tÞARþ � ð0;TÞ:
We assume that A;B are locally lipschitz functions, u0 and a0 are BV functions and

the function BðuÞ is not decreasing.
This assumption allows the diffusion function B to be constant for some intervals

of the state function u; for these values the problem is completely hyperbolic and it is
necessary to give an entropy formulation for it (see [20]). Obviously the situation is
different for the solutions that take values in the intervals in which B0 is strictly
separate from zero; in such case the problem is purely parabolic and the solution is
classic. In general the equation is of parabolic–hyperbolic type; such phenomena
appears in many application models, (see [5–7]).
One needs a formulation that considers both the features of the problem.

In our case there are also difficulties related to the boundary condition, in fact it is
well known that for first-order hyperbolic problems this condition is not achieved in
a classical sense and should be interpreted as a consistent condition (see [12,16]).
An entropy formulation for problem (1.1)–(1.3) was given in [13] in the multi-

dimensional case for homogeneous boundary data, proving that this is well-posed. More
recently, an entropy formulation for general boundary data (see Definition 1.1) was
given in (see [24,26]), as while existence and uniqueness results were proved.
In particular in [24] was proved that the entropy solution of (1.1)–(1.3) can be

obtained as limit of solutions of regularized equations of non-degenerate parabolic
type (the diffusion function B is approximated by functions Be strictly increasing).
Other results can be found in [7], for one-dimensional case with homogeneous
boundary data, while in [5,6] some application models with different boundary value
problems are examined.
In this paper we are interested in the approximation of the above problem by

means of a sequence of semilinear systems of conservation laws with source and
initial-boundary conditions.
We introduce the following system:

@tf
e

k þ gek@xf e
k ¼ 1

e
ðMkðue; eÞ 
 f e

k Þ in Rþ � ð0;TÞ; k ¼ 1;y;N ð1:4Þ

with gek ¼ lk þ ykffiffi
e

p ; e40 and

ueðx; tÞ ¼
XN

i¼1
f e
i ðx; tÞ; ð1:5Þ
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where the functions Mi (called Maxwellian functions) satisfy the following properties:

ðM1Þ PN
i¼1 Miðw; eÞ ¼ w for all eA�0; 1� and for all wAI ;

ðM2Þ PN
i¼1 g

e
i Miðw; eÞ ¼ AðwÞ for all eA�0; 1� and for all wAI ;

ðM3Þ PN
i¼1 y

2
i Miðw; 0Þ ¼ BðwÞ for all wAI ;

ðM4Þ Miðw; eÞ-Miðw; 0Þ; when e-0; uniformly for w in I ;
ðM5Þ Mi

0ð�; eÞX0 in I for all eA�0; 1�:

Here I is an interval of R:
These properties assure that systems (1.4) approximate problem (1.1). In fact it is

easy to see, formally, that if the sequence fueg converges to some limit function u

strongly in Cð½0;T �;L1locðRþÞÞ; the function u is a weak solution of Eq. (1.1) [11].

In particular condition ðM5Þ is a stability condition: it is crucial in proving comparison
results for the solutions of system (1.4) and compactness properties for the sequence
f f e

i g: In fact we will show that, under the stability condition (M5), our approximation

(1.4)–(1.7) keeps the monotonicity properties which are typical of Eq. (1.1).
We complement the system by the initial conditions

f e
i ðx; 0Þ ¼ Miðu0ðxÞ; 0Þ; i ¼ 1;y;N ð1:6Þ

and the boundary conditions for the functions satisfying Eq. (1.4) as entering
characteristics,

f e
i ð0; tÞ ¼ Miða0ðtÞ; 0Þ for iAf1;y;Ng such that gei40: ð1:7Þ

System (1.4), (1.6), (1.7) can be considered as a discrete BGK model [3]. These
kind of models were introduced in the kinetic theory of the gases in order to simplify
the Boltzmann equation [8,14,15]. In the BGK model the collision term is replaced

by the quantity Qð f Þ ¼ 1
e ðMð f Þ 
 f Þ; where M is a Maxwellian distribution and e

is the mean free path of the molecules.
In particular Euler and incompressible Navier–Stokes equations can be obtained

by the BGK equation introducing suitable scaling for the x; t variables and letting
the parameter e go to zero [15,14,34].
This paper was inspired by the results in [11,31] and [18]. The first paper considers

the approximation of the Cauchy problem for Eq. (1.1) in the multidimensional case,
with a BGK model similar to that in (1.4); in the second one, the authors prove the
convergence of a similar relaxation system, with two transport coefficients
independent from e; towards an initial-boundary value problem for a conservation
law; in the last paper the authors consider a particular system (1.4) with three
velocities that converges to a weakly parabolic problem with initial and boundary
condition (diffusion B is not allowed to be constant in an interval).
BGK approximations to initial-boundary value problems for conservation laws

are also studied in [27]; here the author introduces a new technique to estimate the
boundary terms which allows to consider a general BGK model, without constraints
on the number of velocities. This technique will be crucial in the present paper to
treat strongly degenerate parabolic problems.

ARTICLE IN PRESS
F.R. Guarguaglini et al. / J. Differential Equations 202 (2004) 183–207 185



We recall that this kind of discrete velocities approximations was introduced in

[30] for conservation laws in Rd � ½0;T �: The study of diffusive limit of Cauchy
problems for discrete velocity hyperbolic systems can be found in [21,25,23,22,34]
and in [19,29,17,4] for numerical results. Finally, relaxation approximations for
boundary value problems are studied in [1,2,33,32,36,35] (besides [31]) in the setting
of hyperbolic equations.
Let us state more precisely the convergence result proved in this paper.
We consider the following definition for entropy solution of strongly degenerate

problem (1.1)–(1.3) (see [24,26])

Definition 1.1. Let T40; u0ABVlocðRþÞ-L1ðRþÞ; a0ABVðð0;TÞÞ-Cðð0;TÞÞ:
A function uALNðO� ð0;TÞÞ is said to be an entropy solution of problem
(1.1)–(1.3) if and only if

(i) (regularity):

@xBðuÞAL2ðRþ � ð0;TÞÞ;

and BðuÞjf0g�ð0;TÞ
¼ Bða0Þ;

(ii) (entropy condition): let K7
x ðu; cÞ ¼ H7ðu 
 cÞðAðuÞ 
 AðcÞ 
 @xBðuÞÞ thenZ

Rþ�ð0;TÞ
f½u 
 c�7ft þ K7

x ðu; cÞfxg dx dt þ
Z

N

0

½u0 
 c�7 dxX0; ð1:8Þ

for every fAH1ðRþ � ð0;TÞÞ; fX0; such that fH7ða0 
 cÞjf0g�ð0;TÞ
¼ 0: Here

H7ðsÞ are the Heaviside functions, sgnðsÞ71
2

and ½s�7 denote, respectively,

positive and negative part of s:

We have the following definition for the weak solution to the relaxation
system (1.4).

Definition 1.2. Let u0ABVðRþÞ-L1ðRþÞ; a0ABVðð0;TÞÞ-Cðð0;TÞÞ: The N-ple
ð f e
1 ;y; f e

NÞAðBVðRþ � ð0;TÞÞ-LNðRþ � ð0;TÞÞÞN is a weak solution to problem

(1.4), (1.6), (1.7) if and only if

(i) for every fAC10ðRþ � ð0;TÞÞZ T

0

Z
Rþ

f e
i ðft þ geifxÞ þ

1

e
ðMiðue; eÞ 
 f e

i Þf dx dt ¼ 0; i ¼ 1;y;N;

(ii) f e
i ðx; 0Þ ¼ Miðu0ðxÞ; 0Þ for almost every xARþ; i ¼ 1;y;N;

(iii) f e
i ð0; tÞ ¼ Miða0ðtÞ; 0Þ for almost every tAð0;TÞ; for iAf1;y;Ng such that
gei40:
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In this paper we prove comparison and stability results with respect to the
data for the weak solutions of problem (1.4)–(1.7), moreover we prove a priori
estimates for it.
Then we prove the main result.

Theorem 1.1. Let u0ABVðRþÞ-L1ðRþÞ and a0ABVðð0;TÞÞ-Cðð0;TÞÞ; such that

u0ð�ÞAI and a0ð�ÞAI : Let ð f e
1 ;y; f e

NÞ be the solution of problem (1.4), (1.6), (1.7) in

ðRþ � ð0;T �Þ; ue ¼
PN

i¼1 f e
i and let u be the solution of the problem (1.1)–(1.3) in

Rþ � ð0;TÞÞ: Then

lim
e-0

ue ¼ u in Cð½0;T �;L1locðRþÞÞ:

We show in the last section that for every given interval I one can construct a set
of Maxwellian functions verifying conditions ðM1Þ–ðM5Þ:
The main difficulty is to treat the boundary terms that appear in this problem, in

particular we have to verify that the weak boundary condition proposed in
Definition (1.1) is achieved for the limit of solutions of the relaxation approximation
(1.4), (1.6), (1.7).
Theorem (1.1) gives the first result of convergence for BGK approximation

of problem (1.1)–(1.3), also providing another proof of existence. The results
proved in this paper can be useful to implement numerical schemes for the
approximation of the solution of the strongly degenerate parabolic boundary value
problem [28].
The paper is organized in three further sections. In the next section we state

comparison results for problems (1.4),(1.6), (1.7), existence and uniqueness theorem.
Moreover, we prove a set of a priori estimates which ensure relatively compactness in

Cð½0;T �;L1locðRþÞÞ for the sequences f f e
i g and fueg: Section 3 is devoted to prove

that the limit of the sequence fueg is in fact the unique entropy solution of problem
(1.1)–(1.3). In the last section we consider some examples of BGK systems of the
form (1.4) that approximate (1.1)–(1.3).

2. A priori estimates

The goal of this section is to establish stability, comparison, existence and
uniqueness results and some a priori estimates for the solutions of the system (1.4).
Most of the proofs are the extension of those in [18] for a particular choice of the
Maxwellian functions, to a general BGK system of type (1.4). On the contrary, the
result in Proposition 2.4 is proved by means of a different technique which does not
involve BV estimates for the traces f e

i ð0; tÞ [18]; in [18] the proofs of such boundary
estimates for i such that yi ¼ 0 are based on the assumption of parabolicity for
Eq. (1.1).
We will make use of the following lemma [20].
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Lemma 2.1. Let u be a weak solution to the linear Cauchy problem

@tu þ y@xu ¼ gðx; tÞ;

uðx; 0Þ ¼ u0ðxÞ;

for xARþ and tAð0;TÞ ðT40Þ; and v the solution of the above problem with a function

h in place of g and the initial data v0 in place of u0: Then for every fAC10ðRþ � ð0;TÞÞ;
with fX0; there holdsZ T

0

Z
Rþ

½u 
 v�þ@tfþ y½u 
 v�þ@xf dx dt

X

Z T

0

Z
Rþ

Hðu 
 vÞðg 
 hÞf dx dt; ð2:1Þ

where H is the Heaviside function.

In the following f e
i ð0; tÞ; ueð0; tÞ denote the traces of the functions f e

i ðx; tÞ; ueðx; tÞ
on the boundary x ¼ 0:
We assume e varying in a suitable small interval ð0; %eÞ where the Maxwellian

functions are increasing in u and sgn gei ¼ sgn yi for all i such that yia0: Moreover
we set Zþ ¼ fi ¼ 1;y;N : yi40g; Z
 ¼ fi ¼ 1;y;N : yio0g; Zþ

0 ¼ fi ¼ 1;y;N :

geiX0; yi ¼ 0g; Z

0 ¼ fi ¼ 1;y;N : geio0; yi ¼ 0g:

Proposition 2.1. Assume that u0; u0ABVðRþÞ; a0; a0ABVðð0;TÞÞ: Let ð f e
i Þi¼1;y;N be

a solution of problem (1.4)–(1.7) and ueAI for almost every ðx; tÞARþ � ð0;TÞ: Let

ð %fiÞi¼1;y;N be another solution corresponding to the initial-boundary conditions ðu0; a0Þ
and ue ¼

PN
i¼1 f e

i AI for almost every ðx; tÞARþ � ð0;TÞ: Let #g ¼ maxfjgei j : geio0; i ¼
1;y;Ng: Then for every KARþ and for almost every tAð0;TÞ the following

inequalities hold:

Z K

0

XN

i¼1
½ f e

i ðx; tÞ 
 f e
i ðx; tÞ�þ dxp

Z Kþ#gt

0

½u0ðxÞ 
 u0ðxÞ�þ dx

þ max
fge

i
:i¼1;y;Ng

Z t

0

½a0ðsÞ 
 a0ðsÞ�þ ds;

ð2:2Þ

X
Z
,Z


0

jgei j
Z t

0

½ f e
i ð0; sÞ 
 f e

i ð0; sÞ�þ ds

p
Z #gt

0

½u0ðxÞ 
 u0ðxÞ�þ dx þ max
fge

i
:i¼1;y;Ng

Z t

0

½a0ðsÞ 
 a0ðsÞ�þ ds: ð2:3Þ
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Proof. Setting wi ¼ f e
i 
 f e

i and using inequality (2.1) we obtainZ T

0

Z
Rþ

XN

i¼1
½wi�þðft þ geifxÞ dx dt

X
 1
e

Z T

0

Z
Rþ

XN

i¼1
HðwiÞðMiðue; eÞ 
 Miðue; eÞ 
 wiÞf dx dt;

for every fAC10ðRþ � ð0;TÞÞ; fX0: If HðwiÞ ¼ 1 for i ¼ 1;y;N or HðwiÞ ¼ 0 for
i ¼ 1;y;N then the right-hand side of the above inequality is zero. In order to
prove that it is always nonnegative set Jþ ¼ fi : HðwiÞ ¼ 1g; then, thanks to
ðM1Þ and ðM5Þ

X
Jþ

Miðue; eÞ 
 Miðue; eÞ 
 wið Þp
X
Jþ

Mj
0ðZ; eÞ 
 1

 !X
Jþ

wjp0;

where Z is a suitable intermediate value.
Hence

Z T

0

Z
Rþ

XN

i¼1
½ f e

i 
 f e
i �þðft þ geifxÞ dx dtX0:

Now, choosing a sequence of test functions approximating the characteristic

function of the set fðx; sÞARþ � ð0; tÞ : 0pxpK þ #gðt 
 sÞg we obtain
Z K

0

XN

i¼1
½ f e

i ðx; tÞ 
 f e
i ðx; tÞ�þ dx

p
Z Kþ#gt

0

XN

i¼1
½Miðu0; eÞ 
 Miðu0; eÞ�þ dx þ

Z t

0

XN

i¼1
gei ½ f e

i ð0; sÞ 
 f e
i ð0; sÞ�þ ds

þ
Z t

0

XN

i¼1
ð
#g
 gei Þ½ f e

i ðK þ #gðt 
 sÞ; sÞ 
 f e
i ðK þ #gðt 
 sÞ; sÞ�þ ds

and (2.2) follows since 
#g
 geip0 for i ¼ 1;y;N:
In order to prove inequality (2.3) we introduce a sequence of test functions

approximating the characteristic function of the set fðx; sÞARþ � ð0; tÞ : 0p
xp#gðt 
 sÞg and, with the same technique used in the first part of the proof, we
obtain the claim. &

As a consequence of the previous proposition we have the following two results.

Corollary 2.1. Assume that u0; u0ABVðRþÞ; a0; a0ABVðð0;TÞÞ: Let ð f e
i Þi¼1;y;N be a

solution of problem (1.4)–(1.7) and ueAI for almost every ðx; tÞARþ � ð0;TÞ: Let

ð %fiÞi¼1;y;N be another solution corresponding to the initial-boundary conditions ðu0; a0Þ
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and ue ¼
PN

i¼1 f e
i AI for almost every ðx; tÞARþ � ð0;TÞ: Assume that

u0p %u0 almost everywhere in Rþ;

a0p %a0 almost everywhere in ð0;TÞ:

Then

f e
i p %f e

i almost everywhere in Rþ � ð0;TÞ for i ¼ 1;y;N:

Corollary 2.2. Assume that u0ABVðRþÞ; a0ABVðð0;TÞÞ and u0; a0AI : Let

ð f e
i Þi¼1;y;N be a solution of problem (1.4)–(1.7) and ueAI for almost every ðx; tÞARþ �

ð0;TÞ: Then for almost every ðx; tÞARþ � ð0;TÞ

Miðminfessinf ðu0Þ; essinf ða0Þg; eÞpf e
i pMiðmaxfesssupðu0Þ; esssupða0Þg; eÞ

for i ¼ 1;y;N:

Proof. Observe that for every pAR the vector ðM1ð p; eÞ;y;MNð p; eÞÞ is a weak
solution to the system (1.4)–(1.7) with initial and boundary data identically equal
to p: Then the claim follows by Corollary 2.1. &

In the following we set

I :¼ fuAR;minfessinfðu0Þ; essinfða0Þgpupmaxfesssupðu0Þ; esssupða0Þgg:

By using standard regularity properties, Corollary 2.2 and proceeding as
in [30] we obtain the following result for the solutions of the problem (1.4)–(1.7)
(see [27]).

Theorem 2.1. Let u0ABVðRþÞ; a0ABVðð0;TÞÞ: Then there exists a unique global

weak solution ð f e
i Þi¼1;y;N to problem (1.4)–(1.7) and ueAI : Moreover, when the

data u0; a0 are in the class Ck (kX1) with u0ð0Þ ¼ a0ð0Þ; u0
0ð0Þ ¼ a0

0ð0Þ ¼ 0
then f e

i AC1ðRþ � ½0;TÞÞ-CkðRþ � ð0;TÞ\,Zþ,Zþ
0
GjÞ; i ¼ 1;y;N; where Gj :¼

fðx; tÞARþ � ½0;TÞ : x ¼ gej tg:

Now we prove some estimates for the solutions of problem (1.4)–(1.7) in
the case of smooth data, which can be extended to the general BV case thanks to
Proposition 2.1.

Proposition 2.2. Let u0AC2ðRþÞ-BVðRþÞ and a0AC2ð½0;TÞÞ-BVðð0;TÞÞ with

u0ð0Þ ¼ a0ð0Þ; u0
0ð0Þ ¼ a0

0ð0Þ ¼ 0: Let ð f e
i Þi¼1;y;N be the solution of

problem (1.4)–(1.7). Then for every tA½0;TÞ the following estimate holds
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for i ¼ 1;y;N

Z
Rþ

j@tf
e

i ðx; tÞj dxpmaxfjgei j : i ¼ 1;y;NgTVðu0Þ

þ maxfgei : i ¼ 1;y;NgTVða0Þ: ð2:4Þ

Proof. We fix L; tARþ and we set pi ¼ @tf
e

i : Now we first differentiate the

equations with respect to t and multiply each equation by the corresponding
sgnð piÞ; then taking the sum for i ¼ 1;y;N and integrating on the

domain D ¼ fðx; sÞARþ � ð0; tÞ : 0pxpL þ #gðt 
 sÞg; where #g is defined as in
Proposition 2.1, we have

Z Z
D

@t

XN

i¼1
jpiðx; tÞj

 !
þ @x

XN

i¼1
gei jpiðx; tÞj

 !
dx dt ¼ 1

e

Z Z
D

Fðx; tÞ dx dt;

where

Fðx; tÞ :¼
XN

i¼1

XN

j¼1
Mj

0ðueðx; tÞÞsgnð pjÞ 
 sgnð piÞ
 !

piðx; tÞ:

Since Fðx; tÞp0 (thanks to condition ðM1Þ and ðM5ÞÞ; using the divergence theorem
on the domain D we obtain

Z L

0

XN

i¼1
jpiðx; sÞj dxp

Z Lþ#gt

0

XN

i¼1
jpiðx; 0Þj dx þ

Z t

0

XN

i¼1
gei jpið0; sÞj ds;

then, using the initial and the boundary conditions, we have the claim. &

The estimate proved in the above proposition is not uniform in e; due to the
expressions of gei ; however it allows to obtain the following uniform estimate

for the BV norm of the traces of f e
i on the boundary, for each index i such

that yio0:

Proposition 2.3. Let u0AC2ðRþÞ-BVðRþÞ and a0AC2ð½0;TÞÞ-BVðð0;TÞÞ
with u0ð0Þ ¼ a0ð0Þ; u0

0ð0Þ ¼ a0
0ð0Þ ¼ 0: Let ð f e

i Þi¼1;y;N be the solution of

problem (1.4)–(1.7). Then there exists a constant K1 ¼ K1ðli; yi;TVða0Þ;TVðu0ÞÞ;
not depending on e; such that for every h40 small enough

Z T
h

0

X
Z


jf e
i ð0; t þ hÞ 
 f e

i ð0; tÞj dtpK1h: ð2:5Þ

ARTICLE IN PRESS
F.R. Guarguaglini et al. / J. Differential Equations 202 (2004) 183–207 191



Proof. For i ¼ 1;y;N we set wiðx; tÞ ¼ f e
i ðx; t þ hÞ 
 f e

i ðx; tÞ and

Ciðx; tÞ :¼ Miðueðx; t þ hÞÞ 
 Miðueðx; tÞÞ
ueðx; t þ hÞ 
 ueðx; tÞ :

We consider now the equations verified by the functions wi for i ¼ 1;y;N

@twiðx; tÞ þ gei@xwiðx; tÞ ¼ 1
e

ðCiðx; tÞ 
 1Þwiðx; tÞ þ Ciðx; tÞ
X
jai

wjðx; tÞ
 !

and we multiply each of them by the corresponding sgnðwiÞ; summing up the
equations and integrating on the domain D :¼ fðx; tÞARþ � ð0;TÞ : 0o
xo#gðT 
 tÞg we obtain the equality

Z Z
D

@t

XN

i¼1
jwij

 !
þ @x

XN

i¼1
gei jwij

 !
dx dt ¼ 1

e

Z Z
D

F dx dt;

where

Fðx; tÞ :¼
XN

i¼1

XN

j¼1
Cjðx; tÞsgnðwjÞ 
 sgnðwiÞ

 !
wiðx; tÞ:

We observe that the conditions ðM1Þ and ðM5Þ imply that 0pCiðx; tÞp1 for
i ¼ 1;y;N and

PN
i¼1 Ciðx; tÞ ¼ 1 and then that Fðx; tÞp0; therefore, using the

divergence theorem on the domain D we obtain

X
Z
,Z


0

jgei j
Z t

0

jf e
i ð0; t þ hÞ 
 f e

i ð0; tÞj dt

p
Z #gt

0

XN

i¼1
jf e

i ðx; hÞ 
 f e
i ðx; 0Þj dx þ

X
Zþ,Zþ

0

gei

Z t

0

jMiða0ðt þ hÞÞ 
 Miða0ðtÞÞj dt

and then

X
Z


Z t

0

jf e
i ð0; t þ hÞ 
 f e

i ð0; tÞj dt

p
ffiffi
e

p

minf
ffiffi
e

p
li þ yi : iAZ
g

Z #gt

0

XN

i¼1
jf e

i ðx; hÞ 
 f e
i ðx; 0Þj dx

þ maxf
ffiffi
e

p
li þ yi : iAZþ,Zþ

0 g
minf

ffiffi
e

p
li þ yi : iAZ
g TVða0Þh:

The claim follows using (2.4). &

ARTICLE IN PRESS
F.R. Guarguaglini et al. / J. Differential Equations 202 (2004) 183–207192



Next lemma gives an estimate for the spatial derivatives of the functions f e
i on the

boundary, in terms of the BV-norm of a0ðtÞ: The result is crucial to prove a further
uniform estimate holding for sequence f f e

i g; which will be useful to derive
compactness properties .

Lemma 2.2 (VukMilišić [27]). Let u0AC2ðRþÞ-BVðRþÞ and a0AC2ð½0;TÞÞ-BVðð0;TÞÞ
with u0ð0Þ ¼ a0ð0Þ; u0

0ð0Þ ¼ a0
0ð0Þ ¼ 0: Let ð f e

i Þi¼1;y;N be the solution of problem (1.4)–

(1.7). Then

XN

i¼1

Z T

0

gei j@xf e
i ðt; 0Þj dtp

Z T

0

ja00ðtÞj dt: ð2:6Þ

Proof. Using the equations for f e
i we obtain the following inequality:

XN

i¼1
gei j@xf e

i ð0; tÞjp
X

iAZþ,Zþ
0

jMiðueð0; tÞÞ 
 Miða0ðtÞj
e

þ j@tMiða0ðtÞÞj
� �



X

iAZ
,Z

0

Miðueð0; tÞÞ 
 f e
i ð0; tÞ

e

 @tf

e
i ð0; tÞ

				
				

which can be rewritten as

XN

i¼1
gei j@xf e

i ð0; tÞjp jueð0; tÞ 
 a0ðtÞj
e

þ ja00ðtÞj



X

iAZ
,Z

0

jMiðueð0; tÞ 
 Miða0ðtÞÞj
e

þ jMi
0ða0ðtÞÞj

�

þ Miðueð0; tÞ 
 f e
i ð0; tÞ

e

 @tf

e
i ð0; tÞ

				
				
�
:

Now, it is readily seen that

XN

i¼1
gei j@xf e

i ð0; tÞjp jueð0; tÞ 
 a0ðtÞj
e

þ ja00ðtÞj



X

iAZ
,Z

0

Miða0ðtÞÞ 
 f e
i ð0; tÞ

e
þ @tðMiða0ðtÞÞ 
 f e

i ð0; tÞÞ
� �						

						
and using that ueð0; tÞ ¼

P
Zþ,Zþ

0
Miða0ðtÞÞ þ

P
Z
,Z


0
f e
i ð0; tÞ we derive the follow-

ing inequality:

XN

i¼1
gei j@xf e

i ð0; tÞjpjueð0; tÞ 
 a0ðtÞj
e

þ ja00ðtÞj 

a0ðtÞ 
 ueð0; tÞ

e
þ @tða0ðtÞ 
 ueð0; tÞÞ

				
				:
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Thanks to convexity property of the absolute value function we obtain

XN

i¼1
gei j@xf e

i ð0; tÞjp 
 sgn a0ðtÞ 
 ueð0; tÞ
e

� �
@tða0ðtÞ 
 ueð0; tÞÞ þ ja00ðtÞj

¼ 
 @tðja0ðtÞ 
 ueð0; tÞjÞ þ ja00ðtÞj:

Integrating on ð0;TÞ the above estimate we obtain

XN

i¼1

Z T

0

gei j@xf e
i ð0; tÞj dtp

Z T

0


ð@tðja0ðtÞ 
 ueð0; tÞjÞ þ ja00ðtÞjÞ dt

and the claim follows.
Now we use the previous lemma to estimate the spatial derivatives of f e

i in the

interior domain.

Proposition 2.4. Let u0AC2ðRþÞ-BVðRþÞ and a0AC2ð½0;TÞÞ-BVðð0;TÞÞ with

u0ð0Þ ¼ a0ð0Þ; u0
0ð0Þ ¼ a0

0ð0Þ ¼ 0: Let ð f e
i Þi¼1;y;N be the solution of problem (1.4)–

(1.7). Then there exists a constant K2 ¼ K2ðTVða0Þ;TVðu0ÞÞ; not depending on e; such

that for every L40 and for every h40 small enough

Z L

0

j@xf e
i ðx; tÞj dxpK2; for i ¼ 1;y;N: ð2:7Þ

Proof. We fix L; t40 and we set mi ¼ @xf e
i ; applying the technique of the previous

proofs we establish that

Z L

0

XN

i¼1
jmiðx; tÞj dxp

Z Lþ#gt

0

XN

i¼1
jmiðx; 0Þj dx þ

Z t

0

XN

i¼1
gei jmið0; sÞj ds:

The last integral can be estimate using Lemma 2.2 and the proof is complete. &

Now we state a proposition which gives an estimate of the deviation from the

equilibrium in the L1 norm (see [11] for the proof). The result will be crucial in the
proof of the last uniform estimate in this section and in the proof of consistency of
our relaxation approximation in the next section.

Proposition 2.5. Let u0AC2ðRþÞ-BVðRþÞ and a0AC2ð½0;TÞÞ-BVðð0;TÞÞ with

u0ð0Þ ¼ a0ð0Þ; u0
0ð0Þ ¼ a0

0ð0Þ ¼ 0: Let ð f e
i Þi¼1;y;N be the solution of problem

(1.4)–(1.7). Then there exists a constant K3 ¼ K3ðli; yi;TVða0Þ;TVðu0ÞÞ; not

depending on e; such that for every L40

XN

i¼1

Z L

0

jf e
i ðx; tÞ 
 Miðue; eÞj dxp

ffiffi
e

p
K3:
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The following proposition completes the set of estimates necessary to prove the
convergence result in the next section.

Proposition 2.6. Let u0AC2ðRþÞ-BVðRþÞ and a0AC2ð½0;TÞÞ-BVðð0;TÞÞ with

u0ð0Þ ¼ a0ð0Þ; u0
0ð0Þ ¼ a0

0ð0Þ ¼ 0: Let ð f e
i Þi¼1;y;N be the solution of problem (1.4)–

(1.7). Then for every L40 there exist a positive constant h0 and a continuous

nondecreasing function w : ½0; h0�-R; not depending on e; with wð0Þ ¼ 0; such that, for

tAð0;T 
 hÞ and hAð0; h0ÞZ L

0

jueðx; t þ hÞ 
 ueðx; tÞj dxpwðhÞ:

Proof. We use Lemma 5 in [20]; in view of Proposition 2.4 we must only prove that
there exists a constant CL such thatZ L

0

@tu
eðx; tÞjðxÞ dx

				
				pCLjjjjjC1 for every function jAC10ðð0;LÞÞ:

Using the equations (1.4) for f e
i and condition ðM2Þ we establish that

Z t

0

@tu
eðx; tÞjðxÞ dx

				
				p jjjjjC1

Z L

0

maxfjgei jg
XN

i¼1
jf e

i ðx; tÞ 
 Miðue; eÞj dx

þ jjjjjC1
Z L

0

jAðueÞj dx

and using Proposition 2.5 we conclude the proof. &

Now the above propositions in combination with the comparison results (2.2)–
(2.3) imply the following theorem.

Theorem 2.2. Let L40; u0ABVðRþÞ and a0ABVðð0;TÞÞ: Let ð f e
i Þi¼1;y;N be the

solution of problem (1.4)–(1.7) in ðRþ � ð0;TÞÞ: Then for every L; h40 there exist two

positive constants h0;C1 ¼ C1ðli; yi;TVða0Þ;TVðu0Þ;LÞ and a continuous nondecreas-

ing function w : ½0; h0�-R; not depending on e; with wð0Þ ¼ 0; such that

TVð f e
i ð�; tÞ; ð0;LÞÞpC1 for tAð0;T �; i ¼ 1;y;N;Z L

0

j f e
i ðx; tÞ 
 Miðueðx; tÞ; eÞj dxpC1

ffiffi
e

p
for tAð0;T �; i ¼ 1;y;N;

X
Zþ

Z T
h

0

j f e
i ð0; t þ hÞ 
 f e

i ð0; tÞj dtpC1h;

Z L

0

jueðx; t þ hÞ 
 ueðx; tÞj dxpwðhÞ for tAð0;T 
 hÞ; hAð0; h0Þ:
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Using the above results we can extract a subsequence from fueg converging to some
limit function u: In the next section we will show that such a limit is the solution of
problem (1.4)–(1.7), concluding the proof of Theorem 1.1 stated in the Introduction.

3. Proof of Theorem 1.1

The last step in the proof of Theorem 1.1 is to prove that the function u obtained
as limit of a subsequence of fueg verifies conditions (i) and (ii) of Definition 1.1.
As in [11] we are going to use the convex kinetic entropies He

Z;k associated to each

macroscopic convex entropy Z of (1.1). According to [9], they can be obtained as

He
k;Zð f e

k Þ ¼
Z
R

1
2
ðj f e

k 
 Me
kðcÞj 
 jMe

kðcÞjÞZ00ðcÞ dc

þ 1
2

f e
k ðZ0ð
NÞ þ Z0ðNÞÞ

which are convex in f e
k and have a Lipschitz constant independent of e:

As in [11] we make first a simplifying assumption: we assume that

Me
kð�Þ is strictly increasing in I ¼ fuAR : jujpm

N
g; ð3:1Þ

where m
N

¼ maxðjju0jjLNðRþÞ; jja0jjLNðRþÞÞ and let us consider only entropies ZAC2:

Now for such C2 entropies, (3.1) ensures that He
k;ZAC1ð½Me

kð
m
N
Þ;Me

kð
m
N
Þ�Þ: As

in [11], using ðM1Þ–ðM4Þ; we have the following relationships:
ðHe

k;ZðMe
kðwÞÞ0 ¼ Z0ðwÞ; 8wAI ; ð3:2Þ

X
k

He
k;ZðMe

kðwÞÞ ¼ ZðwÞ 
 Zð0Þ;
X

k

gekHe
k;ZðMe

kðwÞÞ ¼ GZðwÞ for GZ
0 ¼ Z0A0; GZð0Þ ¼ 0;X

k

y2kHe
k;ZðMe

kðwÞÞ ¼ BZðwÞ þ oð1Þ for BZ
0 ¼ Z0B0; BZð0Þ ¼ 0: ð3:3Þ

In the following we set Q ¼ Rþ � ð0;TÞ:
The first result we need is an L2ðQÞ-estimate of the quantities ðMiðueÞ 
 f e

i Þ: In
order to do this we will prove some preliminary results.

Let us multiply (1.4) by Hk
0ð f e

k Þ; which is possible since we suppose HkAC1: We

get

@tHkð f e
k Þ þ @xgekHkð f e

k Þ ¼ Hk
0ð f e

k Þ
Me

kð f e
k Þ 
 f e

k

e
: ð3:4Þ

If we choose Z such that Zð0Þ ¼ 0; Z0ð0Þ ¼ 0; then HkðMe
kð0ÞÞ ¼ 0;Hk

0ðMe
kð0ÞÞ ¼ 0;

and thus HkX0: Integrating over a semi cone and letting it tend to infinity after
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summing up with respect to k we have

X
k

Z L

0

Hkð f e
k Þðx;TÞ dx þ

X
k

Z
Q

½Hk
0ðMe

kðueÞÞ 
 Hk
0ð f e

k Þ�
Me

kð f e
k Þ 
 f e

k

e
dQ

p
X

k

Z
Rþ

HkðMkðu0ÞÞ dx þ
X

k

Z T

0

gekHkð f e
k ð0; tÞÞ dt

¼
Z
Rþ

Zðu0Þ dx þ
X

k

Z T

0

gekHkð f e
k ð0; tÞÞ dt: ð3:5Þ

In the following lemma we find an upper bound for the last boundary term.

Lemma 3.1. Assume hypothesis (3.1). For any C2 convex entropy Zð�Þ; on the boundary

we have the following estimate:

Z T

0

X
k

gekHZ;kð f e
k Þð0; tÞ dtpC;

where C is independent of e:

Proof. Observe that it is not restrictive to assume that the data and the solution of
(1.4) are regular since using the stability results of Proposition 2.1 we can treat
general data. Imposing boundary condition on the entering characteristics we have
for any entropy functions

X
k

gekHZ;kð f e
k Þ ¼

X
ge

k
40

gekHZ;kðMe
kða0ÞÞ þ

X
ge

k
o0

gekHZ;kð f e
k Þ

¼GZða0Þ þ
X
ge

k
o0

gekðHZ;kð f e
k Þ 
 HZ;kðMe

kða0ÞÞÞ

pGZða0Þ þ
X
ge

k
o0

gekH 0
Z;kðMe

kða0ÞÞð f e
k 
 Me

kða0ÞÞ

¼GZða0Þ þ Z0ða0Þ
X
ge

k
o0

gekð f e
k 
 Me

kða0ÞÞ

¼GZða0Þ þ Z0ða0Þ
X

k

gekf e
k 
 Aða0Þ

" #
: ð3:6Þ

The boundary term that we want to control can then be written

Z T

0

Z0ða0ðtÞÞveðt; 0Þ dt; ð3:7Þ
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where

ve ¼
X

k

gekf e
k

and ve satisfies in the interior of the domain

@tu
e þ @xve ¼ 0: ð3:8Þ

Let us introduce a function r such that

rAC2ðRþÞ; rðxÞ ¼ 0; 8x41;

rð0Þ ¼ 1 and jr0ð�Þjpc:

We aim to control

Z T

0

Z0ða0Þve dt ¼ 

Z T

0

Z 1

0

@xðZ0ða0ÞveÞr dx dt 

Z T

0

Z 1

0

Z0ða0Þver0 dt

¼ I1 þ I2:

Let us examine the first term I1: Using (3.8) we have

I1 ¼
Z T

0

Z 1

0

Z0ða0Þ@tu
er dx dt

¼
Z T

0

Z 1

0

ð@tðZ0ða0ÞueÞ 
 ð@tZ0ða0ÞÞueÞr dx dt

¼
Z 1

0

ðZ0ða0ðTÞÞueðx;TÞ 
 Z0ða0ð0ÞÞueðx; 0ÞÞr dx 

Z T

0

Z 1

0

ð@tZ0ða0ÞÞuer dx dt:

So that we can bound I1 by

jI1jpCðjja0jjLNð0;TÞjjuejjLNðð0;TÞ�RþÞ þ jjuejjLNBVða0ÞÞ

independently of e
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For the last term it is enough to write

jI2jp
Z T

0

Z 1

0

Z0ða0ÞAðueÞr0 dx dt

				
				þ

Z T

0

Z 1

0

Z0ða0Þðve 
 AðueÞÞr0 dx dt

				
				

pCjja0jjLNð0;TÞðjjAðueÞjjL1ð0;T�ð0;1ÞÞ þ
maxifjyijgffiffi

e
p

�
Z T

0

Z 1

0

X
i

j f e
i ðt; xÞ 
 Miðue; eÞj dxÞ

pC:

So that again this is independent of e; and C only depends of the data ðu0; a0Þ and
Lipshitz constant of Z0ð�Þ: &

Now we can derive the desired L2 estimate.

Lemma 3.2. There exists a positive constant C such that, for all e40 and for all

k ¼ 1;y;N

Z T

0

Z
Rþ

½Me
kð f e

k Þ 
 f e
k �
2

dxpeC:

Proof. Using the previous lemma, one has for any C2 convex entropy that

X
k

Z T

0

Z
Rþ

½He
k;Z

0ðMe
kðwÞÞ 
 He

k;Z
0ð f e

k Þ�
Me

kð f e
k Þ 
 f e

k

e
dx dtpC:

Now we choose ZðuÞ ¼ u2

2
: Again using the method of [11], one has that

½ f e
k 
 Me

kðueÞ�2p½Hk
0ð f e

k Þ 
 Hk
0ðMe

kðueÞÞ�ð f e
k 
 Me

kð f e
k ÞÞ ð3:9Þ

which ends the proof. &

Remark 1. In [11] the authors show that assumption (3.1) can be removed, so that

He
k;Z is not C1: The main point is to replace He

k;Z
0ðMe

kðwÞÞ with Z0ðwÞ; since, in this
case, equality (3.2) does not make sense for some values of w: Then, inequality (3.5)
and Lemmas 3.1–3.2 are still true.

The previous lemma is crucial for establishing convergence when e goes to zero,
for interior regions as for boundary terms.
An immediate consequence is that the first part of condition (i) in Definition (1.1)

is verified by the limit function u; as the following lemma shows.
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Lemma 3.3. Let u be the limit of a subsequence of fueg: Then

@xBðuÞAL2ðRþ � ð0;TÞÞ:

Proof. Using the equations for f e
k we have, for all fACN

0 ðRþ � ð0;TÞÞ
Z

Q

gk ð f e
k 
 Me

kðueÞÞf dQ ¼ e
Z

Q

gkf e
kft þ e

Z
Q

g2kf e
kfx dQ 8kAf1;y;Ng

and then

Z
Q

gkð f e
k 
 Me

kðueÞÞf dQ

¼ e
Z

Q

gkf e
kft þ e

Z
Q

g2kð f e
k 
 Me

kðueÞÞfx dQ þ e
Z

Q

g2kMe
kðueÞfx dQ:

Summing over k and letting e-0 we have

lim
e-0

XN

k¼1

Z
Q

gkð f e
k 
 Me

kðueÞÞf dQ ¼
Z

Q

BðuÞfx dQ;

where we used Proposition 2.5, condition ðM4Þ and the immediate estimate

e
Z

Q

gekfkft dQ

				
				pCjj fkjjLNðQÞjjftjjL1ðQÞ

ffiffi
e

p
:

On the other hand we know that
PN

k¼1 gkð f e
k 
 Me

kðueÞÞ is bounded in L2ðQÞ; hence

XN

k¼1
gkð f e

k 
 Me
kðueÞÞ,@xBðuÞ in L2ðQÞ 
 weak

and

@xBðuÞAL2ðQÞ: &

In the following lemma, using again the L2 estimate of Lemma 3.2, we obtain the
important information that when the velocity yka0; the trace of the solution f e

k ð0; tÞ
tends to the equilibrium state Mkða0ðtÞÞ when e goes to zero. This is not the case for
the hyperbolic equations (see [27]).

We recall that, thanks to Theorem 2.2, for kAZþ,Z
 there exists a subsequence

of f f e
k ð0; tÞg converging to some function wkðtÞ in L1ðð0;TÞÞ:
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Lemma 3.4. For all kAZþ,Z


wkðtÞ ¼ Mkðuð0; tÞÞ tAð0;TÞ:

Proof. For all fACN

0 ð½0;þNÞ � ð0;TÞÞ we haveZ
Q

gekð f e
k 
 Me

kðueÞÞf dQ

¼
Z

Q

egekf e
kft dQ þ

Z
Q

ege2k fkfx dQ þ
Z T

0

ege2k f e
k ð0; tÞfð0; tÞ dt:

ð3:10Þ

The first and the second term on the right-hand side can be treated as in the previous
lemma, for e going to zero.
For the last term, which gives information on the boundary, it can be easily

proved that

e
Z T

0

ge2k fkfðt; 0Þ dt-

Z T

0

y2kwkðtÞfðt; 0Þ dt:

For the source term part, one has again that gekð f e
k 
 Me

kðueÞÞAL2ðQÞ; then, up to
extracting a subsequence, it converges in the weak topology. It follows that, letting e
go to zero in (3.10) we obtainZ

Q

hf dQ ¼
Z T

0

y2kwkðtÞfð0; tÞ dt þ
Z

Q

y2kMkðuÞfx dQ; ð3:11Þ

where h is a suitable function in L2ðQÞ: Choosing as text function fd ¼ tdðxÞcðtÞ;
where tdðxÞ ¼ maxð0; 1
 x

dÞ and cACN

0 ðð0;TÞÞ; since
lim
d-0

jjfdjjL2ðQÞ ¼ 0;

the left-hand side of (3.11) vanishes when d goes to zero. So the claim follows letting
d go to zero in (3.11). &

The result stated in the previous lemma allows to prove that u satisfies the
boundary condition in Definition 1.1.

Lemma 3.5. For tAð0;TÞ

Bðuð0; tÞÞ ¼ Bða0ðtÞÞ:

Proof. From condition ðM4Þ we know that BðuÞ ¼
PN

i¼1 y
2
kMkðu; 0Þ; so the result is

proved if we show that

Mkða0Þ ¼ MkðuÞ 8kAZþ,Z
: ð3:12Þ
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Condition ðM2Þ implies that, for e ¼ 0 the Maxwellian functions must satisfy the
following property: X

k

ykMkðuÞ ¼ 0 8uAI : ð3:13Þ

But, due to the convergence results obtained previously and the boundary condition
imposed on entering characteristics (yk40), one has that on the boundary

Mkða0Þ ¼ MkðuÞ 8kAZþ

so that, in fact, we have the following constraint:X
kAZ


ykMkðuÞ þ
X

kAZþ

ykMkða0Þ ¼ 0:

Using again the same property (3.13) on a0; one hasX
yko0

ykðMkðuÞ 
 Mkða0ÞÞ ¼ 0:

The monotonicity property of all the Maxwellian functions implies that all the terms
in the above sum have to be equal to zero. Therefore (3.12) holds and the claim
follows. &

If the Maxwellian functions are strictly increasing the previous lemma tells us that
uðt; 0Þ ¼ a0ðtÞ; which corresponds to the expected regularity for non-degenerate
parabolic case.
Moreover, if yka0 for every k ¼ 1;y;N; Lemma 3.4 implies that uðt; 0Þ ¼ a0ðtÞ:

This shows that in the strongly degenerate case, when the boundary condition is not
achieved in the classical sense, one of the yk must vanish.
Equality (3.12) obtained in the proof of the above lemma shows that for all

kAZþ,Z
 the functions wkðtÞ are in fact the limits of the whole sequences
f f e

k ð0; tÞg:
In the remaining of this section we prove that the function u verifies the entropy

condition (ii) of Definition 1.1. After this proof, thanks to uniqueness result for
entropy solutions of Eq. (1.1), we will be able to state that the whole sequence fueg
converges in Cð½0;T �;L1locðRþÞÞ to u; solution of problem (1.1)–(1.3). In order to

establish this result we have to work with entropies that are only lipschitz

continuous, more precisely we are interested in the entropies Z7c ðsÞ ¼ ½s 
 c�7 and

the associated kinetic entropies H7;e
k;c ðsÞ ¼ ½s 
 Me

kðcÞ�7: It is a simple check to prove

that the equalities (3.3) are verified for these entropies (see [11]). In such a case, we

set AZ7c ðsÞ ¼ H7ðs 
 cÞðAðsÞ 
 AðcÞÞ and BZ7c ðsÞ ¼ H7ðs 
 cÞðBðsÞ 
 BðcÞÞ:

Proposition 3.1. The function uACð½0;T �;L1locðRþÞÞ-LNðð0;TÞ � RþÞ verifies

condition (ii) of Definition 1.1.
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Proof. Let us consider the entropy Zþc ðsÞ: In order to simplify the notation in this
proof we put HkðsÞ ¼ Hþ;e

k;c ðsÞ:
In [11] the authors observe that the multiplication of Eq. (1.4) with the

multivalued function Hk
0ðsÞ ¼ Hþðs 
 Me

kðcÞÞ is well defined, and gives again
(3.4), (see [10, Theorem 3.1]). Let us sum these equalities, multiply with a test

function fAC10ðRþ � ½0;TÞÞ; fX0 and integrate in Q:
Let us note thatX

k

Hþð f e
k 
 Me

kðcÞÞð f e
k 
 Me

kðueÞÞ

¼
X

k

ðHþð f e
k 
 Me

kðcÞÞ 
 Hþðue 
 cÞÞð f e
k 
 Me

kðueÞÞX0:

ð3:14Þ

In fact the equality in (3.13) is obvious and the inequality can be proved cheking as in
[11] that every term of the sum is positive.
We obtain



Z

Q

X
k

Hkð f e
k Þft dQ 


Z
Q

X
k

gekHkð f e
k Þfx dQ 


Z
Rþ

Zþc ðu0Þfðx; 0Þ dx

p
Z
Rþ

X
k

gekHkð f e
k Þfð0; tÞ dt:

Proceeding as in the proof of Lemma 3.1 (see (3.6)) it can be observed thatX
k

gekHkð f e
k ÞpHþða0 
 cÞðAða0Þ 
 AðcÞÞ

þ Hþða0 
 cÞ
X

k

gekð f e
k 
 Me

kða0ÞÞ: ð3:15Þ

Let us consider a test function f such that Hþða0 
 cÞfðt; 0Þ ¼ 0; then for such test
function we obtain, using inequality (3.15)Z

Q

X
k

Hkð f e
k Þft dQ þ

Z
Q

X
k

gekHkð f e
k Þfx dQ

þ
Z
Rþ

½u0 
 c�þfðx; 0Þ dxX0: ð3:16Þ

The idea is to pass to the limit when e goes to zero in the inequality (3.16). It is easy
to verify that the first and the last term in inequality (3.16) converge to the
corresponding term of (1.8). We want to investigate the second term. To this aim we
prove that for every k ¼ 1;y;N

Hkð f e
k Þ ¼ HkðMe

kðueÞÞ 
 ðHk
0Þð f e

k ÞðMe
kðueÞ 
 f e

k Þ þ oð
ffiffi
e

p
Þ in L1locðQÞ:

ð3:17Þ
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As in [11] we have that

0pHkðMe
kðueÞÞ 
 Hkð f e

k Þ 
 Hk
0ð f e

k ÞðMe
kðueÞ 
 f e

k Þ

p ðZþc 0ðueÞ 
 Hk
0ð f e

k ÞÞðMe
kðueÞ 
 f e

k Þ

p
X

i

ðZþc 0ðueÞ 
 Hi
0ð f e

i ÞÞðMe
i ðueÞ 
 f e

i Þ: ð3:18Þ

Proceeding as (3.16) and Lemma 3.1 we haveZ
Q

X
i

ðZc
0þðueÞ 
 Hi

0ð f e
i ÞÞðMe

i ðueÞ 
 f e
i Þ dQ

pe
Z
Rþ

Zþc ðu0Þ dx þ
Z T

0

Hþða0 
 cÞðAða0Þ 
 AðcÞÞ
 

þ Hþða0 
 cÞ
X

i

gekð f e
i 
 Me

i ða0ÞÞ dt

!
: ð3:19Þ

Using Lemma 3.4 and inequalities (3.18)–(3.19) we obtain (3.17). From (3.17) we
deduceX

k

gekHkð f e
k Þ ¼Hþðu 
 cÞðAðuÞ 
 AðcÞÞ 


X
k

gekHk
0ð f e

k ÞðMe
kðueÞ 
 f e

k Þ þ oð1Þ

in L1locðQÞ: ð3:20Þ

To complete the proof, using Eq. (1.4), we prove as in Lemma 3.3 that

lim
e-0

X
k

gekHk
0ð f e

k ÞðMe
kðueÞ 
 f e

k Þ ¼ ðBZþc Þx ¼ Hþðu 
 cÞðBðuÞÞx

in L2locðQÞ 
 weak: ð3:21Þ

Letting e goes to zero in the inequality (3.16) and using (3.20)–(3.21) we obtain the
result in the case of the entropy Zþc : The proof for the entropy Z



c follows exactly the

same lines. &

4. Examples

In [10], the authors present several examples of BGK systems of type (1.4),
showing that one can always define Maxwellian functions and fix parameters yi and
li in such a way conditions ðM1Þ–ðM5Þ are satisfied.
We already remarked that, in cases of strongly degeneracy involving boundary

data, we are forced to set yi ¼ 0 for some i (at least one). Here we reconsider some
examples in order to show that in fact it is possible to introduce BGK systems
satisfying ðM1Þ–ðM5Þ with some yi equal to zero.
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Models with three equations can be obtained only by considering Maxwellian
functions depending on e: In such a situation one can achieve compatibility
conditions without using parameters li: As an example we can consider a model
presented in [18]: the parameters li; y2 are imposed to be zero, y1o0; y340 and the
Maxwellian functions are defined as follows

M1ðu; eÞ ¼
ffiffi
e

p
y3u þ AðuÞ

y1 
 y3

� �
þ BðuÞ
ðy1 
 y3Þy1

;

M2ðu; eÞ ¼ ½1

ffiffi
e

p
ðy3 
 y1Þ�u þ BðuÞ

y1y3
;

M3ðu; eÞ ¼
ffiffi
e

p

y1u 
 AðuÞ

y1 
 y3

� �

 BðuÞ
ðy1 
 y3Þy3

:

ð4:1Þ

The conditions (M1)–(M4) can be easily verified. If we choose y1 and y3 in such a
way that

maxfB0ðuÞ : uAIgo
 y1y3
y1ðy3 
 y1ÞpA0ðuÞpy3ðy3 
 y1Þ uAI

�
ð4:2Þ

the stability condition (M5) holds for eo*e; *e sufficiently small.
To construct systems with NX4 we can use the general procedure proposed in [10]

for d-dimensional cases, with Maxwellian functions not depending on e:
In this case the compatibility condition (M2) can be written

ðM2aÞ
PN

i¼1liMiðw; eÞ ¼ AðwÞ for all eA�0; 1� and for all wAI ;

ðM2bÞ
PN

i¼1yiMiðw; eÞ ¼ 0 for all eA�0; 1� and for all wAI :

We fix N̂ such that 1oN̂oN 
 1: Then we consider parameters li satisfying
conditions

lia0 for some i;
XN̂

i¼1
li ¼

XN

i¼N̂þ1

li ¼ 0:

While for parameters yi we set

yi ¼ 0 for i ¼ 1;y; N̂;
XN

i¼N̂þ1

yi ¼ 0;
XN

i¼N̂þ1

y2i ¼ b2; ba0:

In this case, the Maxwellian function are defined as follows

MiðuÞ ¼
u

N̂
þ AðuÞliPN̂

i¼1l
2
i

 !
vi þ

BðuÞ
b2

mi;

where vi ¼ 1 for i ¼ 1;y; N̂; vi ¼ 0 for i ¼ N̂ þ 1;y;N; mi ¼ 
N
N̂

N̂
for i ¼ 1;y; N̂;

and mi ¼ 1 for i ¼ N̂ þ 1;y;N: These functions satisfy the compatibility conditions
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(M1)–(M3). The monotonicity condition requires that

M 0
iðuÞ ¼

1

N̂
þ A0ðuÞliPN̂

i¼1l
2
i


 N 
 N̂

N̂

B0ðuÞ
b2

X0 i ¼ 1;y; N̂;

the above inequalities hold if b and jlij are sufficiently large for any iAf1;y; N̂g:
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