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STABILITY AND CONVERGENCE OF DISCRETE KINETIC
APPROXIMATIONS TO AN INITIAL-BOUNDARY VALUE

PROBLEM FOR CONSERVATION LAWS

VUK MILIŠIĆ

(Communicated by Suncica Canic)

Abstract. We present some new convergence results for a discrete velocities
BGK approximation to an initial boundary value problem for a single hyper-
bolic conservation law. In this paper we show stability and convergence toward
a unique entropy solution in the general BV framework without any restriction
either on the data of the limit problem or on the set of velocity of the BGK
model.

1. Introduction

We study the initial-boundary value problem for a scalar conservation law

(1.1)

 ∂tu+ ∂xF (u) = 0,

u(0, x) = u0(x)

where u is a scalar function of (x, t) ∈ R+×R+, F is a Lipschitz continuous function
and the boundary condition is

(1.2) u(t, 0) = ub(t).

Actually, this condition cannot be imposed for all t > 0, but it has to be intended
in a generalized sense as a compatibility condition between the trace of the solution
and the flux function F ; see [3] and (2.1) below. To approximate the solution of
(1.1) we choose a semi-linear hyperbolic system of BGK type

(1.3)

 ∂tfk + λk∂xfk = 1
ε (Mk(uε)− fk), k ∈ {1, . . . , N},

fk(0, x) = Mk(u0(x)), t = 0,

where λk are fixed velocities, uε is defined by uε =
∑

k = fk, and ε is a positive
parameter. In addition, we impose a boundary condition for the positive speeds

(1.4) fk(t, 0) = Mk(ub(t)), if λk > 0.

It easy to see, at least at the formal level, that if the sequence uε converges (strongly)
to a limit function u, then u is a weak solution of problem (1.1). The functions
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Mk are called Maxwellian functions and are the link between (1.3) and the scalar
conservation law (1.1), since they are chosen to satisfy the following compatibility
relationship with (1.1):

(1.5)


∑

kMk(u) = u,∑
k λkMk(u) = F (u).

To have stability with respect to the parameter ε, we introduce a monotonicity
condition on the previous functions (as already seen in [19, 13] for the Cauchy
problem) that provides all results of monotonicity on the corresponding solutions.

This kind of approximation was first introduced by S. Jin and Z. Xin in [9] for
its specific features, namely the analytical simplicity, the meaningful physical inter-
pretation and numerical flexibility. From the theoretical point of view, weak and
smooth solutions were studied in [7, 13, 14] in the case of the Cauchy problem. Sta-
bility of the boundary layers was investigated in [16] and in [11]. For more general
regular solutions the reader can refer to Yong’s works; see [20]. The specific case of
isentropic gas dynamics is studied in a recent work of [5], where the authors present
a complete theory of convergence of a kinetic approximation with a continuous set
of velocities toward the unique entropy solution using the general L∞ framework.
François James relaxed a model of chemical engineering with special reflux bound-
ary conditions in [8] using compensated compactness. A particular case of the same
model led, for the Cauchy problem, to another work, [6] using the BV theory.

For a continuous set of velocities, the weak entropy case was studied in [17] in
several space dimensions, but with a restriction on fluxes (either concave or convex).
In [18], Wei-Cheng Wang and Zhouping Xin gave an important contribution to the
weak solution in the general BV ∩ L∞ framework. In fact, the authors studied a
relaxation 2 × 2 system in one space dimension, with a rather natural boundary
condition

2∑
k=1

fk = ub(t);

this result was obtained only for a small perturbation of a nontransonic constant
state u∗ (i.e., F ′(u∗) 6= 0).

In [15], R. Natalini and A. Terracina studied the same 2× 2 relaxation case but
with a slightly different boundary condition:

f2(t, 0) = M2(ub(t))

where f2(t, 0) is the positive velocity component. They proved the existence and
uniqueness of the entropy solution when the relaxation parameter ε tends to zero,
without any restriction either on the data, or on the flux F .

The direct extension of the techniques of [15] to the case of any set of velocity
(λk)1≤k≤N , with N > 2 seems to be a difficult problem. On the other hand, this
extension seems to be of interest for at least three reasons: the multidimensional
case cannot be considered with a two velocities model, and, from a numerical point
of view, more velocities can decrease the numerical diffusion, and, at last, every flux
splitting scheme can be derived from a kinetic model with at least three velocities
(see [4]).

All these considerations give motivation to establish stability and convergence
results for a general velocity case.
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The main difficulty lies in the estimates of the total variation in space. In
[15], those estimates are established thanks to a bound on the total variation of
the solution’s trace. It is possible to show the same kind of result for any set of
velocity, but for null-velocity components the total variation of the trace is not
uniform in ε. In this paper, we show how to avoid the time dependency, and obtain
uniform estimates. The key argument is the use of all the information available on
the boundary for positive velocity components of (1.3). Note that all the previous
arguments permitted to expand numerics of the Cauchy problem already studied
in [2] to the case with boundary in [1].

The paper is organized as follows: first we recall all results that are in the back-
ground of the proofs below; later, in section 3, we establish a new way of obtaining
the BV ∩L∞(R+) bounds, and we end the paper by showing the consistency with
the entropy condition, using some weak convergence arguments.

2. Preliminaries

Definition 2.1. Let u0 ∈ BV (R+) and ub ∈ BV (0, T ) (T > 0). We say that a
function u ∈ BV (R+ × (t, 0) is an entropy solution to the boundary value problem
(1.1) if

i) for any φ ∈ C1
0 (R+ × [0, T )), with φ ≥ 0, and for any k ∈ R,∫ T

0

∫
R+
|u− k|∂tφ+ sgn(u− k)(F (u)− F (k)∂xφdxdt

+
∫
R+
|u0 − k|φdx ≥ 0;

ii) for almost any t ∈ (0, T ),

(2.1) max{sgn(u(t, 0)− ub(t))(F (u(t, 0)) − F (k)) : k ∈ I(ub(t), u(t, 0))} = 0.

Here BV stands for the space of the functions of bounded variation and u = (t, 0)
for the trace of the function u = u(t, x) on the boundary, which is well-defined for
u ∈ BV ; see [3].

We recall also some standard properties established for the relaxation problem
with boundary from [15] that are easily extendable to our case. Considering problem
(1.3), set for every bounded initial-boundary data u0 and ub,

I(u0, ub) =
{
u ∈ R;βm(u0, ub) ≤ u ≤ βM (u0, ub)

}
,

where  βm(u0, ub) = min{ess inf(u0), ess inf(ub)},

βM (u0, ub) = max{ess sup(u0), ess sup(ub)}.

Proposition 2.1. Fix ε > 0 and assume the Maxwellian functions that satisfy (1.5)
and are nondecreasing on the interval I. Let (f εk)1≤k≤N and (f

ε

k)1≤k≤N be two weak
solutions to problem (1.3), with initial data (u0, ub) and (u0, ub) respectively, and
uε :=

∑
k f

ε
k, u

ε :=
∑

k f
ε
k for almost every (t, x) ∈ R+ × (0, T ). Then for every

K ∈ R+, and almost every t ∈ (0, T ), the following inequalities hold true:

(2.2)

∫ K
0

∑N
k=1[f εk(t, x)− f εk(t, x)]+dx ≤

∫K+σt

0
[u0(x)− u0(x)]+dx

+
∑
λk>0 λk

∫ t
0

[Mk(ub(τ)) −Mk(ub(τ))]+dτ.
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For negative velocity components one has

(2.3)

∑
λk<0 |λk|

∫ t
0

[f εk(0, τ)− f εk(0, τ)]+ dτ ≤
∫ σt

0
[u0(x)− u0(x)]+ dx

+
∑
λk>0 λk

∫ t
0 [Mk(ub(τ)) −Mk(ub(τ))]+ dτ

where σ = maxk |λk|.

Corollary 2.2. With the same assumptions as in Proposition 2.1, let (f εk)1≤k≤N
be a weak solution to problem (1.3) with initial data (u0, ub). Then, for almost
every (t, x) ∈ R+ × (0, T ), and for k = 1, . . . , N ,

Mk(inf I(u0, ub)) ≤ f εk ≤Mk(sup I(u0, ub)).

We recall here a lemma describing the behavior of the TV semi-norm for trun-
cated function of BV . We call χδ a monotone decreasing truncature function whose
value is 1 in x ∈ [0, δ2 ] and whose support is included in [0, δ], and c is a real constant.

Lemma 2.1. If u is a BV (R+) function and uδ its truncature defined as uδ =
u(1− χδ) + cχδ, we have

∀γ > 0 ∃αγ s.t. ∀ δ < αγ TV (uδ) ≤ TV (u) + |u(0+)− c|+ γ.

If v ∈ BV(R+), then

(2.4) vδ,ν = (v(1 − χδ) + cχδ) ∗ φν
where φν is the standard approximation of unity. Note that to obtain a C∞ regu-
larity in a right neighborhood of x = 0, we have to take ν < δ

2 .
By using the propagation of singularity results (see [12]) and the approximation

of the solutions of the problem (1.3) by truncature and regularization, we obtain
the following result. The proof is omitted.

Proposition 2.3. For some given functions u0 ∈ BV (R+) and ub ∈ BV ((0, T )),
we take (u0

δ,ν, u
δ,ν
b ) as defined in (2.4). Also let the Maxwellian functions Mk satisfy

(1.5) for u ∈ I = I(u0, ub), and assume that they are nondecreasing on this interval.
Then for every ε > 0 there exists a unique vector solution f εδ,ν to problem (1.3),
and f εδ,ν ∈ (C∞((0, T ) × R+))N . Moreover, if f ε is a weak solution associated to
the data (u0, ub), then we have that f εδ,ν → f ε in (L1

loc((0, T ) × R+))N , when δ, ν
go to 0.

3. Stability

The a priori estimates that will be obtained for regular solutions are extendable
to the general BV case thanks to Proposition 2.3, so that we treat only the smooth
case. First we need to establish a very basic lemma to extend properties of the
collision already used in [15].

Lemma 3.1. Suppose that the Maxwellian functions are nondecreasing and satisfy
(1.5). We have ∑

k

sgn(∂xfk)∂x(Mk(u)− fk) ≤ 0.
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Proof. We write the previous expression as∑
k

sgn(∂xfk)∂x(Mk(u)− fk) =
∑
k

sgn(∂xfk)M ′k(u)
∑
l

∂xfl −
∑
k

|∂xfk|.

Inverting the sums in the first term of the right-hand side, we have∑
k sgn(∂xfk) ∂x(Mk(u)− fk) =

∑
l ∂xfl

∑
k sgn(∂xfk)M ′k(u)−

∑
k |∂xfk|

=
∑
l |∂xfl|

∑
k sgn(∂xfl)sgn(∂xfk)M ′k(u)−

∑
k |∂xfk|

=
∑
l |∂xfl|(

∑
k sgn(∂xfl)sgn(∂xfk)M ′k(u)− 1);

and because the Mk are nondecreasing and

sgn(a)sgn(b) ≤ 1 ∀a, b ∈ R,
we have the desired result. �

Here we expose the key argument of this paper, in fact the following lemma
shows that there is no need to use total variation in time to estimate the space total
variation along the trace. Those estimates are obtained thanks to a very careful
use of the information that entering characteristics provide on the boundary.

Lemma 3.2. For any set of velocities one has∑
k

∫ t

0

λk|∂xfk|(τ, 0)dτ ≤
∫ t

0

|u′b(τ)|dτ − |u(t, 0)− ub(t)|+ |u(0, 0)− ub(0)|.

Proof. Using the equations of (1.3), we transform the space derivatives into the
difference between the collision term and the time derivatives∑

k

∫ t
0
λk|∂xfk|(τ, 0)dτ ≤

∑
λk>0

∫ t
0
|1ε (Mk(u)−Mk(ub))− ∂tMk(ub)|dτ

−
∑
λk≤0

∫ t
0
|1ε (Mk(u)− fk)− ∂tfk|dτ.

By a simple triangular inequality this becomes∑
k

∫ t
0
λk|∂xfk|(τ, 0)dτ ≤

∫ t
0

∑
λk>0 |1ε (Mk(u)−Mk(ub))|+ |∂tMk(ub)|

−
∑
λk≤0 |1ε (Mk(u)− fk)− ∂tfk|dτ.

We now see that the last three terms inside the integral can be rewritten as∑
k λk|∂xfk| ≤

|u−ub|
ε + |u′b|

−
(∑

λk≤0 |
Mk(u)−Mk(ub)

ε |+ |∂t(Mk(ub))|+ | (Mk(u)−fk)
ε − ∂tfk|

)
.

Adding all terms in the last sum over nonpositive velocities, we get∑
k λk|∂xfk| ≤

|u−ub|
ε + |u′b|

−
∑
λk≤0 |

Mk(ub)−fk
ε + ∂t(Mk(ub)− fk)|,

which becomes∑
k λk|∂xfk| ≤

|u−ub|
ε + |u′b|

−|
∑
λk≤0

Mk(ub)−fk
ε + ∂t(Mk(ub)− fk)|.
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Now, using that u =
∑
λk>0Mk(ub) +

∑
λk≤0 fk, we obtain the following esti-

mate: ∑
k

λk|∂xfk| ≤
|ub − u|

ε
+ |u′b| − |

ub − u
ε

+ ∂t(ub − u)|.

We use the convexity of the absolute value∑
k λk|∂xfk| ≤ −sgn(ub−uε )∂t(ub − u) + |u′b|

= −sgn(ub − u)∂t(ub − u) + |u′b|

= −∂t|u− ub|+ |u′b|,

so that the previous quantity integrated over (0, t) can be estimated in fact by∑
k

∫ t

0

λk|∂xfk|(τ, 0)dτ ≤ −
∫ t

0

∂t|ub − u|+ |u′b|dτ,

which gives the desired result. �

Now we just use the results presented previously to end the estimates of BV -
space bounds.

Proposition 3.1. Suppose that the Maxwellian functions are nondecreasing, and
that u0 ∈ BV (R+) and ub ∈ BV ((0, T )). So if (fk)1≤k≤N is a solution of (1.3), it
satisfies the estimate∑

k

TV (fk(t, ·)) ≤ TV (u0,R+) + TV (ub, (0, T )) + |ub(0)− u0(0)|.

Proof. For simplicity of notation we omit the parameter ε.
* Results on regularized data. As in Proposition 2.3, we approximate the data

(ub, u0) by truncature and regularization (uδb , u
0
δ), so that the solution f δ,ν of (1.3)

is in C∞((0, T ) × R+). We take the x-derivative of all the equations in (1.3) and
then we multiply each one by sgn(∂xf δk ). Summing up and integrating over Dt

L =
{(x, τ) ∈ R+ × (0, T ) : 0 < x < L+ σ(t− τ)}, yields∑

k

∫ L
0 |∂xf

δ,ν
k (t, x)|dx ≤

∑
k

∫ L+σt

0 |∂xf δ,νk (0, x)|dx +
∑

k

∫ t
0 λk|∂xf

δ,ν
k (s, 0)| ds

+ 1
ε

∑
k

∫
DtL

sgn(∂xf
δ,ν
k )∂x(Mk(uδ,ν)− f δ,νk ) dx dt.

The parameter σ is chosen to make a negative contribution on the boundary
(L + σ(t − τ)), that is, σ = maxk |λk|. Now it is clear that by using Lemma 3.1
the last term is also negative; whereas by applying Lemma 3.2 the second one is
bounded. Then we have∑

k

TV (f δ,νk ) ≤ TV (uδ,νb ) + TV (u0
δ,ν).

* TV properties of the regularized data. We regularize and truncate as in (2.4).
A very standard property of the BV functions allows us to write

TV (uδ,νb ) ≤ TV (uδb)
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and twice applying Lemma 2.1, we have that

lim inf
δ,ν→0

(
TV (uδ,νb ) + TV (u0

δ,ν)
)
≤ lim inf

δ→0

(
TV (uδb) + TV (u0

δ)
)

≤ TV (ub) + TV (u0) + |ub(0+)− c|+ |u0(0+)− c|.

* General BV ∩ L∞ solution. Since f δ,ν → f in (L1
loc((0, T )×R+))N by Propo-

sition 2.3, we have also that∑
k

TV (fk) ≤ lim inf
δ,ν→0

∑
k

TV (f δ,νk ).

Thus we have the following estimate:∑
k

TV (fk) ≤ TV (ub) + TV (u0) + |ub(0+)− c|+ |u0(0+)− c|.

To obtain an optimal estimate we apply the last result with the constant c, namely
setting

c =
ub(0) + u0(0)

2
.

We obtain the desired result. �

Now that we have obtained the BV ∩L∞ bounds, the rest of the stability criteria
follow exactly the same ideas already exposed in [15], so that we can claim

Theorem 3.1. Let u0 ∈ BV (R+), ub ∈ BV (0, T ). Then the solution (fkε)1≤k≤N
to problem (1.3) satisfies the following uniform estimates for every t ∈ (0, T ):

TV (f εk(·, t)) ≤ C,∑
k

∫
R+ |f εk(t+ h, x)− f εk(t, x)| dx ≤ C|h|,∫ L

0

∑
k |(Mk(uε)− fk)(t, x)| dx ≤ Cε.

4. Entropy consistency

In this section we prove that the solution given by the system (1.3) converges
when ε goes to zero towards the unique entropy solution of (1.1). With respect to
the arguments used in [15], our proof does not use the strong convergence of the
traces, which is actually much more difficult to obtain in the present multivelocities
case.

To establish the kinetic entropy inequalities for fixed ε, we argue exactly as in
[15], so we omit the proof.

Lemma 4.1. Let u0 ∈ BV (R+), let ub ∈ BV (0, T ), and let (f εk)1≤k≤N be the weak
solution of problem (1.3). Then for every φ ∈ C1

0 (R+× [0, T )), with φ ≥ 0, and for

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1734 VUK MILIŠIĆ

every c ∈ R, it holds that

(4.1)

∫ T

0

∫
R+

∑
k

|f εk −Mk(c)|(∂tφ+ λk∂xφ) dxdt

+
∫
R+

∑
k

|Mk(u0)−Mk(c)|φ(0, x) dx +
∫ T

0

∑
k

λk|f εk −Mk(c)|φ(t, 0) dt

≥ 1
ε

∫ T

0

∫
R+

(
∑
k

|f εk −Mk(c)| − |u− c|)φdxdt ≥ 0.

To show the convergence towards the entropy solution, we need the following
result.

Lemma 4.2. If we call Sk(fk) = |fk−Mk(c)| the microscopic entropies associated
to the Kružkov entropy for (1.1), we have

(4.2)

∑
λk>0 λk|Mk(ub)−Mk(c)|+

∑
λk<0 λk|fk −Mk(c)|

≤ sgn(ub − c)[
∑

λk>0 λkMk(ub) +
∑
λk<0 λkfk − F (c)].

Proof. Using that∑
k

λk|Mk(ub)−Mk(c)| = sgn(ub − c)[F (ub)− F (c)],

thanks to the compatibility relations (1.5), we see that∑
λk>0 λk|Mk(ub)−Mk(c)|+

∑
λk<0 λk|fk −Mk(c)|

= sgn(ub − c)[F (ub)− F (c)] +
∑

λk<0 λk(|fk −Mk(c)| − |Mk(ub)−Mk(c)|).

Because of the convexity of the microscopic entropies, the last inequality becomes∑
λk>0 λk|Mk(ub)−Mk(c)|+

∑
λk<0 λk|fk −Mk(c)|

≤ sgn(ub − c)[F (ub)− F (c)] +
∑
λk<0 λksgn(Mk(ub)−Mk(c))(fk −Mk(ub)).

The functions Mk are all nondecreasing, so that∑
λk>0 λk|Mk(ub)−Mk(c)|+

∑
λk<0 λk|fk −Mk(c)|

≤ sgn(ub − c)[F (ub)− F (c) +
∑

λk<0 λk(fk −Mk(ub))].

Thus ∑
λk>0

λkMk(ub) = F (ub)−
∑
λk<0

λkMk(ub)

gives the desired result. �
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Finally we present the proof of the consistency of the entropy inequalities.

Theorem 4.1. The sequence of solutions to (1.3) and (1.4) converges to the
(unique) entropic solution that satisfies the following entropy condition:∫

R+×(0,T ) |u− c|∂tφ + sgn(u − c)(f(u)− f(c))∂xφdxdt

+
∫
R+
|u(0, x)− c|φ(0, x)dx

+
∫ T

0
sgn(ub(t)− c)(f(u(t, 0))− f(c))dt ≥ 0.

Proof. By Lemma 4.1 we have

−
∫ T

0

∫
R+

∑
k |f εk −Mk(c)|(∂t + λk∂x)φ(t, x)dxdt

−
∫
R+

∑
k |Mk(u0)−Mk(c)|φ(0, x)dx

≤
∫ T

0

∑
k λk|f εk(t, 0)−Mk(c)|φ(t, 0)dt.

The last term can be rewritten as∫ T

0

∑
λk>0

λk|Mk(ub(t))−Mk(c)|+
∑
λk<0

λk|f εk(t, 0)−Mk(c)|φ(t, 0)dt.

Then, we use our new inequality (4.2) to obtain

(4.3)

−
∫ T

0

∫
R+

∑
k |f εk −Mk(c)|(∂t + λk∂x)φ(t, x)dxdt

−
∫
R+

∑
k |Mk(u0)−Mk(c)|φ(0, x)dx

≤
∫ T

0
sgn(ub(t)− c)[

∑
λk>0 λkMk(ub(t)) +

∑
λk<0 λkf

ε
k − F (c)]φ(t, 0)dt.

So because of stability results already established, the previous expression tends
to its limit:

(4.4)

−
∫
R+×(0,T ) |u− c|∂tφ− sgn(u − c)(F (u)− F (c))∂xφ = dxdt

−
∫
R+
|u(0, x)− c|φ(0, x)dx

≤
∫ T

0
sgn(ub(t)− c)[

∑
λk>0 λkMk(ub(t)) + ξ(t)− F (c)]φ(t, 0)dt.

Note that the terms inside the domain and at t = 0 are limits due to convergence
in C([0, T ], L1

loc(R+)) while the boundary one is obtained only in L∞(0, T ) weak-*
sense. If we take

φ(t, x) = ρ(t) max{0, 1− x

η
}, η ∈ R+ ,

with ρ(0) = 0, and let η tend to zero. It holds that∫ T
0

sgn(u(t, 0)− c)(F (u(t, 0))− F (c))ρ(t)dt

≤
∫ T

0
sgn(ub(t)− c)[

∑
λk>0 λkMk(ub) + ξ(t)− F (c)]ρ(t)dt,
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that is,

sgn(u(t, 0)− c)(F (u(t, 0))− F (c)) ≤ sgn(ub(t)− c)[
∑
λk>0

λkMk(ub) + ξ(t)− F (c)].

Taking c > sup(u(t, 0), ub(t)) and c < inf(u(t, 0), ub(t)) yields

ξ(t) = F (u(t, 0))−
∑
λk>0

λkMk(ub(t)),

we replace ξ(t) by its value in (4.4) and we get the desired result. �
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