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ANALYSIS OF LUMPED PARAMETER MODELS FOR BLOOD FLOW
SIMULATIONS AND THEIR RELATION WITH 1D MODELS

Vuk MILISIC AND ALFIO QUARTERONI!

Abstract. This paper provides new results of consistence and convergence of the lumped parameters
(ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped
parameter models are shown to discretize continuous 1D models at first order in the space domain.
We derive the complete set of equations useful for the blood flow networks, the stability criteria that
guarantee the convergence, the energy estimates of the limit 1D equations.
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1. INTRODUCTION

The cardiovascular system can be regarded as a wide hydraulic network under the action of a pulsatile pump.
Different behavior can be observed at various locations of the closed loop. For instance in the arterial tree,
the wave propagation is of greater influence while in the capillary bed, the flow is almost steady, putting into
evidence the lumped character of the system. On the other hand, local phenomena, like anastomosis for instance,
create flow perturbations upwardly and downwardly. This shows the interdependency of different scales of the
system, leading to a multiscale approach.

Some simplified models take into account the previous properties of the cardiovascular system. For instance
the Windkessel and similar lumped models are often used to represent blood flow and pressure in the arterial
system ( [1,17,22,31]). These lumped models can be derived from electrical circuit analogies where current
represents arterial blood flow-rate and voltage represents arterial pressure. Resistances represent arterial and
peripheral resistance that occur as a result of viscous dissipation inside the vessels, capacitors represent volume
compliance of the vessels that allows them to store large amounts of blood, and inductors represent inertia of
the blood. The idea for the Windkessel model was originally put forward by Stephen Hales in 1733 [13] and
further developed by Otto Frank in 1899 [11]. Frank used the Windkessel model to describe blood flow in the
heart and systemic arteries. The analogy starts at the left ventricle where the blood pressure varies from a low
of nearly zero to a high of approximately 120 mmHg and continues into the aorta and the systemic arteries
where the pressure variation is significantly lower because of the elasticity of the large systemic arteries. This
analogy resulted in the development of the original (two-element) Windkessel model comprising an electrical
circuit with one resistor and one capacitor. Even though the model was originally derived for the ventricle and
the aorta it can also be used for the entire systemic arteries; in this case the capacitor represents the compliance
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2 CONSISTENCY AND CONVERGENCE OF LUMPED PARAMETER MODELS

of the large arteries while the resistor represents the resistance of the small arteries and arterioles. However,
when the model is used for the systemic arteries it is not able to reproduce realistic pressure profiles when
the aortic blood flow is used as an input [27]. Therefore the Windkessel model was expanded [32] by adding
a third term (a second resistor added in parallel with the capacitor) representing the resistance of the aorta.
This version of the model is often referred to as the three-element Windkessel model or the modified Windkessel
model. It is widely used and it is able to reproduce realistic flow-rate and pressure wave profiles as well as to
fit experimental data [32]. Further expansions of the Windkessel model into a four-element model have proven
to be even more reliable. In addition to the two resistors and the capacitor of the three-element Windkessel
model, the four-element model comprises an inductor which accounts for blood inertia [27]. Besides being of
simple derivation, the main advantage of lumped models is that they are easy to solve since they give rise to
simple ordinary differential equations.

On the other hand, one dimensional models of the human arterial system were introduced by Euler in
1775, see [8]. They yield partial differential equations expressing the conservation of mass and momentum for
inviscid flow. The wave propagation in the arterial flow was first described rigorously by Young in 1808, who
derived the wave speed using an argument based on intuition and analogy to Newton’s theory of the speed of
sound in air. In 1860, Riemann provided the analytical tools for the general equations when he introduced the
method of characteristics, which was first applied to arterial flow by Anliker and co-workers [29] and Skalak [24].
Afterward, one dimensional models were extensively used to predict pressure and flow in the systemic tree, in
various configuration, pathologies, etc (see [4,10,28], and references therein). Recently, in [23], it has been
shown numerically that the linearization of the one dimensional model around a constant state matches in a
very suitable manner the non linear system itself, even for very realistic test cases.

Since both lumped parameter and one dimensional models are supposed to model the same physiological be-
havior, one natural question arises : how can two completely different approaches provide comparative answers?

The first direct derivation of a linearized 1D model from axisymmetric Navier-Stokes equations was carried
out in [21]. To solve these equations the authors use the electric analog. Namely, they compute an approximate
solution using a standard RLC-circuit containing a resistor R, an inductor L and a capacitor C. In [6], the
authors suggest that “the transmission line can be represented to any desired accuracy by a lumped section”
with a reference to the book by Mason [16], based on a sinusoidal steady state analysis. But so far, an analytical
and numerical evidence of the latter claim is still missing.

In this article, we give this proof. Precisely, for the particular case of blood flow, we prove that lumped
networks can be regarded as first order discretizations of one-dimensional linear systems: More precisely, the
solutions of lumped networks converge to that of continuous linear 1D systems when Az (the length of a single
compartment) and At (the time step) tend to zero. The convergence is established thanks to Lax-Richtmyer’s
theorem, after proving stability using Von-Neumann analysis.

First we establish this result for RLC circuits. Starting from the entropy functional associated to the nonlinear
one-dimensional hyperbolic system, we derive the energy associated to the linearized one. At the discrete level
this energy functional is found to be exactly the instantaneous power dissipated in each compartment of the
lumped network. Then the convergence toward a linear hyperbolic system is proven thanks to this energy that
“symmetrizes” the scheme.

The standard RLC' schemes are shown to be stable (and thus convergent) under a “parabolic” CFL condition
which severely penalizes the refinement of the spatial grid. In fact, the diagonalization of the scheme shows a
preferential direction of waves propagation. Based on this observation, we propose new 0D schemes that use
(less restrictive) hyperbolic CFL condition and do not privilege any direction.

The same analysis is then generalised to cover the case of more sophisticated 0D networks accounting for
leakage or seepage effects inside large vessels.

Numerical tests show that the difference between the entropy functional and the linear energy is grid indepen-
dent and almost negligible for realistic blood flow simulations. Moreover, an approximate order of convergence of
the solutions computed by lumped models toward the solutions of the continuous linear 1D system is established,
confirming the theoretical prediction.
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An asymptotic analysis is carried out for small vessels leading to new non linear equations. By linearization
we come out with a linear heat equation. This equation can also be obtained as a degenerate case of the linear
1D model previously introduced. The discretization of the heat equation leads to schemes that can be seen as
describing an electric circuit that contains only a resistor and a capacitor. Again a stability condition guarantees
the convergence toward the linear equation.

While for the electric networks the continuity of physical quantities between different elements is ensured by
Kirchhoff’s laws, the coupling of continuous PDE models needs more careful treatment of interface conditions.
The existence of such couplings will be carried on in a future work [18].

The preexisting framework (solid lines) and the basic contributions of this work (dashed ones) can be sketched
by figure 1, where dotted lines relate in a new approach different concepts of multiscale modelling for blood
flow. An outline of the paper is as follows. In section 2, we study the RLC circuits. At first, in paragraph 2.1,
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FIGURE 1. A sketch of the analysis performed in this work for the RLC type of electric circuits

we introduce the RLC network from a novel perspective, by linearizing the cross-sectional 1D approximation
of Navier-Stokes equations around a constant state. Then, we use the RLC networks to discretize this linear
system. This technique provides exactly the same definition of the R, L and C' constants as already found
in [10,21]. In paragraph 2.2, we introduce the energy estimates allowing us to prove the convergence result.
Analyzing the electric scheme, we provide an alternative way of discretizing the RLC system with different
upwinded schemes in paragraph 2.4. A numerical evidence is displayed in paragraph 2.5. Then, we perform
the same analysis on small vessels leading to the lumped elements associated to the capillary and venous bed
(see section 3). At this stage we have built a complete hierarchy of nonlinear linear 1D systems and lumped
parameters for blood flow.
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2. FROM LINEAR CONSERVATION LAWS TO RLC NETWORKS AND VICE-VERSA

2.1. Deriving the basic L-circuit equations

A basic description of the RLC network as an approximation of the non linear conservation law for blood
flow can be found in [10]. The authors use various considerations such as linearization arguments and physical
assumptions. Here we introduce the RLC network by following a new approach.

Starting from a simplified version of the Navier-Stokes equations in the axisymmetric form and integrating
these equations over each cross-section A(z,t) of the vessel (see [2,4,25] and references therein) we obtain the
following set of 1D equations, for 0 < z < ! (I being the vessel length) and all ¢ > 0 :

0tA+0,Q =0,
aQ?\ A, Q (1)
atQ+6m( 1 >+p8P KTZ,

where a (the momentum-flux correction coefficient), p (the blood density) and Kg (the friction parameter) are
supposed to be constant. In particular, K, is related to the velocity profile assumed in the vessel. If a Poiseuille
profile is assumed (which is of course a simplification), K, = 8mv (however, see [10] for other possible values).
A, P and @) are the unknowns. To close the system we set

P(4) = L (/A - V), @)

where A( is the section area at rest and the coefficient 5 supposed constant along the whole vessel, reads

8 = (\l/f';f) The constants E, h and o are the Young modulus, the wall thickness and the Poisson ratio,

respectively. We express the system (1) in (P, Q) variables :

&P + 94P8,Q = 0,

Q* _ Q 3)
0Q + 0 ( o)t 6 P=-K, "
Using the pressure law (2), one has
o p
0P = .
47T 04 24,/4

The non-conservative form of (3) reads:

o (g> - (‘au26?:A+% 235) 0 (g) = (8 f%) (g) (4)

where u = )/ A is the mean velocity. Now, by linearizing the system (4) around a constant state (A,u) = (4o, 0)
yields

P —

% +2A0\/_6Q o (5)
8@+ 29,p=Krg
p Ao

Remark 2.1. As pointed out in [23], the choice of this linearization is reasonable as it can reproduce most of
the essential features of the blood flow even when modelling the whole systemic tree .

If we set

Cl = 2A05/1T05 LI = AL;a RI = _pr;a (6)

0
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then we can rewrite (5) in a simple linear form

C'P+06,0=0
{ i P+ 0,Q %

L'6:Q + 8,P=-R'Q

Note that the constants derived here coincide exactly with those of [10]. If we integrate this system in the z
direction on the interval [0,!], we have

dp
Cd—+Q2—Q1:O, t>0,

d5 8)
LE-i-PQ—Pl:—RQ, t>0.

Here, P = % fol P(z,t)dz and Q = % fol Q(z,t)dx stand for the mean pressure and flow-rate over the whole
compartment, while

Ql(t) :Q(O:t)u Pl(t) :P(Oat)a QZ(t) :Q(tal): P2(t) :P(tal);

where & = 0 is the upstream vessel boundary while 2 = [ is the downstream boundary. The new constants R,
L and C read

R=RIl, L=L'1, C=C'lL
Now assume that some upstream and downstream data are available. For instance suppose that ()1 and P, are
given. Then (8) represents a system of two equations and four unknowns. In order to close mathematically
problem (8), we make the major assumption that

N

Px~P, Q=Qo, 9)

relating the mean value over the vessel and the pointwise value at the inlet (or outlet) of the vessel. Then,

dP,

Cd—1+Q2_Q1:07 t>07

ic (10)
Ld—tQ+P2—P1=—RQ2, t>0.

Remark 2.2. The waves are smooth and propagate very rapidly inside the cardiovascular system (between 1.5
and 10 m/s), the length of a single tube inside the systemic network can vary between few millimeters up to 10
cm. Thus two pointwise values can be very close for a sufficiently small time delay, justifying why the averaged
quantities are themselves close to the pointwise ones. This may explain why assumption (9) should be relevant
from the physiological point of view.

Note that we have identified P with the upstream pressure and Q with the downstream flow-rate; what follows
is coherent with this choice. However, the opposite choice would be acceptable as well, and would lead to a
different circuit that we mention later (see remark 2.3).

In what follows we deal with the issue of “convergence” of 0D-models to 1D-models. To simplify our analysis,
we will assume that the 1D system (7) holds for all z € R, and that it is replaced by an infinite number of
elementary circuits like (10) whose length is Az. More precisely, we connect an infinite number of similar

elements 4P
dtl = —(Qiy1 — Qi),

(11)
dQ;

L =—(P,— P;_1) — RQ;
dt (z zl) RQza

C
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where (P;, Q;) indicate the pressure and the flow-rate computed at the point z; = Az for i € Z, (note that in
the case of finite length, say for ¢ € {1, M} this system would require Py to be provided at the inlet (beginning
of the network) and Q41 at the outlet of the network). System (11) can be equivalently regarded as the
mathematical description of an electric circuit which is known as L-circuit (see figure 2.a). In fact, in this
hydraulic/electric analogy, pressure and flow rate correspond to the electric voltage and current, the resistance
R is related to the blood viscosity, the inductance L to the blood inertia and the capacitance C to the wall
compliance.

F; Fitq1 F; 4 F; F;_, F;
— LT MNwI _— TNM A WW—T T T

L R R L R L
P;_q C P; P; C P,'+ 1 P; —_—C P; +1

a) J b) c)

FIGURE 2. The classical L-circuit (left), the inverse-L-circuit (center), and the transversal
resistor which accounts for seepage effect (right).

In order to establish our convergence result, we shall introduce a specific norm related to the non linear
entropy function of system (1).

2.2. From nonlinear entropy function to energy dissipated in the L-circuit

2.2.1. From nonlinear entropy to an energy estimate

One question arises after passing from the non linear model (3) to the linearized equations (7) : is there some
link between energetic considerations from both sides? The answer represent a new way to connect the entropy
function related to instantaneous power dissipated in an electric circuit.

Following [9], an a-priori energy estimate for the non linear system (1) can be obtained. Define

s(A,u) = gAu2 + T (12)
where u = Q/A and ¥ = ¥(A) is given by
A
¥(A) = B P(C, Ao, B)dC. (13)

and ¢ is a given wall law relating blood pressure and cross-section area. Here we consider a simple algebraic
relation:

p=1(A, Ay, B), with 949 > 0 and (A, Ag,8) =0 (14)
for given constants Ag and §. Then

l];'(140) = l];'1(140) = 0, and l];'”(14) > 0, VA > 0.

Since ¥(A) is non-negative, so is s(A4,u). Thus we can define the averaged total energy of the 1D model by
£(t) = / s(A(w, ), ulz, 8))dz, V> 0. (15)
R

We express ¥, a function of the cross-section area, as a function of the pressure, namely:

A P(A)
v(A) = [ Qdc = / VOuCdp = Y(P), (16)
Ao P(Ao)
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¢ being the cross-section area variable associated with 1. For the particular case of pressure law given by (2),
¢ can be explicitly obtained as a function of 1 as follows

Ao >
¢~ [o+ vl

Consequently,

3
v(p) = [Cwouas =2 [ vy s A= 2 (2) p Vg ("

The order of magnitude of the pressure inside the arterial tree is approximatively P, ~ 90mmH g ~ 12000dyne /cm>

and the order of magnitude of 3 is about 106 dyne per cm. The cubic term is, in general, 10 to 100 times smaller
than the the quadratic one. Thus we can approximate Y (P) as follows

(VAg)?

T(P) ~ 5

P2:—IP2
2 )

where C' is the constant introduced in (6).
It remains to examine the other term in (12), namely

p pQ’
At = £
Y=o

Linearizing around the given cross-section area A = Ay, we have

pQ p@ _ L

4 L A2
24724, Q
Finally, starting from (12), that we rewrite in P, (Q variables,
2 p 3
Q 2<A0)2 s VAo s
A, Q) =e(P, +-\— ) PP+ ——FP°, 18
5(4,Q) = e(P,Q) = (AOP+F 3 (5 ; (18)
we obtain the following “linearized energy” functional
Cl
eiin(P, Q) = ( P® + Q ) (19)

that suggests the introduction of the following norm

D=

B0 = ([ elm<P(x,t),Q<w,t))dw)% - ([ &P+ oA nas) "
20

1
! } 4 5
= (GIPIEm + My )

equivalent to the L2(R) norm. Multiplying the first equation of (7) by P, the second by @, summing up the
two equations and integrating over R, we get:
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Lemma 2.1. The solutions of system (7) are stable w.r. to norm E defined in (20); precisely

%E(PQ) —R/Q (2,0)dz <0, Vt>0. (21)

This proposition provides energy estimates for the linearized system as the non linear entropy function
guarantees the stability for solutions of the non linear system (1) (see [9]).

2.2.2. From dissipated power in the L-circuit to a discrete energy estimate

If we compute the instantaneous power dissipated in both branches of a single L-circuit described by (11),
we have [7] :

II; = Qc¢,iPc,i + Qrr,iPrL,i» (22)

where (Pc,i, Qc,;) are the values of pressure and flow-rate in the capacitor part, while (Prr;, QR ;) are those
crossing the resistance R and the inductance L. The pressure in the latter branch reads

Prri=PFP_1-F;,
while the pressure inside the capacitor is simply P;. For the flow rate, by definition of a capacitor, we have

d
Qc,i=C=Ph;.
G Cdt

Summing (22) over ¢, and using the first equation of (11), one can write
ZH = Z (Qit1 — Q)P+ Qi(Pim1 — P) =0
which is the consequence of Kirchhoff’s laws. Re-expressing the latter equation one can write
_C d _, L d o 2

Thus, we recover a stability estimate for the solutions of (11) in a discrete version of the norm (20), namely we
can claim

Lemma 2.2. For the solution (Pa,Qa) of an infinite network of L-circuits described by the semi-discrete
scheme (11), the following discrete energy estimates holds

d I
d(EA(PAaQA) = ( Z P2+—ZA$Q> ( I1Pallfamy + 5 ||QA||l22(R))

=-F ||QA||I2(R) <

(23)

In section 2.1 we show how to build a hierarchy of models passing from 1D-nonlinear equations to the linear
1D system and ending with the 0D discretization. So it is possible to derive the corresponding hierarchy of
energy estimates associated to each model. In what follows we use the previous norms to ensure the convergence
of fully discrete schemes toward the solutions of the continuous system (7).
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2.3. Convergence of (11) to (7)

If we turn back to the adimensionalized constants R’ L' and C’, we can write (11) as

dPp; 1
CF T TR Q@)

/in ! 1 (24)
L el -RQ;— E(Pi - Pi_1).

where Az denotes now the (constant) length of the i-th element of the network. If we regard Q; as being the
pointwise value at = z; of the flow-rate function @Q(z,t) (that we assume regular enough), and the same
assumption is made for P;, then

Az?
2
Az? 3
P(zi_1,t) = P(x;,t) — Axd, P(x;,t) + TQMP(mi,t) + O(Az?),

Q@it1,t) = Q(xi, 1) + Az8,Q(x, 1) + —— 052 Q(x:, 1) + O(Az?),

we draw that (24) can be regarded as a first order approximation in space of system (7). In this section,
we prove that the scheme provided by the semi discrete system (24) is stable. Then, a linear scheme being
stable and consistent, it is also convergent owing to the Lax-Richtmyer equivalence theorem (by Von Neumann
analysis) [30].

We discretize the system (24) in time using the first order forward Euler scheme,

3 n )\ n n
Pi+1=Pi_a( z'+1_Qi)7

n RI n A n n
Qi = (1 - EAt)Qi - f(Pz - Pz'—1)a

(25)

where P is an approximation of P(x;,t" = nAt) (and QF of Q(z;,t" = nAt)), At being the time step, and

A= ﬁ—; is the Courant number.

Theorem 2.1. The scheme (25) is unstable in the L2(R) norm under any hyperbolic CFL condition, i.e. if
A < k for any choice of k independent of At and Ax. However, under the “parabolic CFL condition”

R'C'Ax?® L'

At < min(T, i

) (26)

the scheme is stable for the Ex norm defined by (23). Moreover it provides solutions converging to the solution
of system (7) w.r. to the L*(R) or E norms.

PROOFYF. Using the inverse Fourier transform formula we have

1 /ﬂ mATE 5
P =—7= e P (§)dE,
ol 27)

Qn, = ¢i2_ﬁ /_ " emanegnie)de,
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o _1, We obtain

substituting this in (25) for Q7 ,, Qn, P2, P}

1 - . X A
Pt = o [T e [prig) - S - 1Qn0)] e
1 Ai: ! A 25)
n+l _ imAz An —iAz€\ Pn
ot E/_ “la- a0 - - e prg) ae

The Fourier transform being unique [30], we identify (28) and the formula (27) taken at the next time step

"1 to write:
13n+1 1 A’E f)n
()= (32 72) (&) 29)

where we have set a = %At and z = 1 — e~#*%¢_ We call A the amplification matrix in equation (29), and is
function of the frequency £ and the constants R', L', C" and At, Az.

In a first time, we estimate p(A), the spectral radius of A in order to obtain a necessary condition of
convergence.
Study of p(A). The eigenvalues of A can be found by inspecting the roots of the characteristic polynomial

2
det(A—BI) = 2~ (2= )+ (1 —a + ¥, (30)
the associated discriminant is
|2[? . o Az
A(g) = a® —4)? ok with |z|> = 4sin® — ) (31)

The sign of A(€) as function of £
At first, we can remark that A({) is a monotone in [0, Z&=]. We notice that A(0) = o® > 0. Then if

A < %\ / %, one guarantees that A(£>) < 0. This yields the existence of a unique root of A on [0, -] which

Az

2 . (R |C'
& = Az arcsin (Z fA$>

For y small enough, arcsin(y) behaves like y + £y* + O (y°) yielding

R [C"  R°As? (C'\? ]
& = S\ + 3.5 <?) +O(A.’L’ ) (32)

This means that & belong to a small neighborhood of %I, / % whose width depends on Ax.

is

As A(&) is monotone there are two subsets of [~ A~ , a—], where its sign is constant. We call
e ™
V;ext(EO) - I:_A_.’E,_&]] U [607 A_.’L'] ’
the subset where A(€) is negative, while in Vit (£0) =] — o, &o[, A(§) is positive.

The case § € Vext(éo)
As A(€) < 0, in this region the roots of (30) are complex

/\2|Z|2

|/6ﬂ:|2 =l-a+ L'c'
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1) Hyperbolic CFL condition: A is constant
If we take Az small enough so that ;71— belongs to the interior of Vext(&o), one can write

T C'R' = . o [AzE 1 L’C”
V€ € A T o A] sin (—2 ) 3t e (33)

Note that %fl is a constant, implying that there exists Az small enough such that 53— + %fl < az-
Then (33) provides the lower bound for the eigenvalues:

2

L+ 2 < 1B2(6)] = ol ).

2) “Parabolic” CFL condition: At < (R'C'Az?/4)
On the contrary, for this type of condition we have that

2

|/B:t |<1_a+L'C'

< ]-a vé. S %xt(&O)
For the rest of the frequency spectrum, p(.A) is less or equal to one, for At small enough.

The sufficient condition. Here we show the sufficient condition of stability under a “parabolic” CFL condition.
The Parseval relation gives :

1P| = As S P2 = = [ PP
; L2(-45.8%)  Joz

thus we can write

AATONTE:

@

L>(-%52%5)

We set D = diag(y/ <, , and we define the 2-norm of X in C2 by ||X||, = 1/|P|? + |Q|2, then
s(/$ 2

the previous energy term becomes

c L C'il 5|2
2 _ 2 2 -
[Ea(P,Q)” = Il + Sl = [ 2],

_ L)
Az’ Az

Ea(P.Q) = / IDx@©IZae = [ Ix(@)1
T Az Az
where || X, = ||DX]||,. Applying matrix D to (29) leads for a fixed £ to

DX™(¢) = DA€)D™ DX" (), er]m Aw[

which gives to the following estimate

n T "
@l < Ipa@p e, vee | g |

The quantity ||DAD_1 ||§ can be explicitly computed as

|IDAD|> = p(DAD™)*DAD™).
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The entries of the symmetric matrix A" = (DAD~')*DAD~! are easy to obtain, and read

A2z[2 Az
N — ]- + LICI a /L,C/
_aAz NP 1-a)?)
Jier LT
Its eigenvalues are
3 24 2a+T £ /I? 4+ 4daa
:l: =

2

where a = ’\Lz,lél,2 and T = a(a — 2). At this point, if we suppose that a < 1 and that L‘l,)‘é, < a, then for every

£, a < aand
B+ < (1 + ?a)z.

Finally, this gives the energy estimate reading :

EA(P™, Q™) < (1+2V3a)Ea (P, Q) < (1+2V3a)"Ea(P°,Q°)

< e (MDA E, (PO, Q0) < ¢S (THU EA (P, QO),

where the bound is uniform in At and Az.

Instability under the hyperbolic CFL condition. To prove that the solution blows up in finite time for
such a CFL condition, we take a particular solution. Let v(€) be an eigenvector of A associated to the biggest
eigenvalue B4. Then

a+vVA 2—a+VA 5 A2z)?
R (e G B
We can estimate the lower bound of v(§) in the 2-norm

)\2|Z|2 )\2|Z|2
(L,)2 Z 4W7 VE € V.eXt(go)'

lo(€)ll; = o® + |A] +4

We call v = %, and we set I(&) = ]I[2Z ]

Fourier transform of the initial condition to be

(€), the characteristic function of [5A- + 7, Z]. We set the

X"(fs)=<%§ ﬁ)r@)v@), vee -5 5]

For any fixed Az, this function belongs to L?(—Z=, Z=). Applying (29) to this particular initial data gives the
explicit solution as

X" =prX°.
Then, the following estimate holds

(L')? Az

n _ 5 n 2 — _
X7y = [ 184X e = 5

2)\2 2n
> (1 + —L'C')

/ S|
5Az T
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For a hyperbolic CFL condition, the Courant number A is a fixed constant, and thanks to the previous inequality

there is no possible bound for X™ in L?(— 4, ). O

Remark 2.3. Another configuration of lumped circuit, called the inverse-L network, is driven by the following
system of equations

P;
0 = (@i~ Qi)
v (35)
1,40 ) 1
dci :—RQZ ,'E(PH_I P)

This is the symmetric form of the system (24), and is sketched by the electric network on figure 2.b. For this
network, the Von Neumann analysis follows the same lines until one obtains the same discriminant (31) that
guides the amplification matriz. Then it is clear that both networks can be regarded as approrimations of the
system (7).

2.4. New 0D schemes for blood flow

2.4.1. The characteristic variables and the related diagonal system

Through the change of variables

the system (7) becomes
!

1
b o R
Covem Tt Tt T

where (w, z) are called the characteristic variables. This system is completely decoupled in the differential part,
the two equations being coupled only by the source term.
The scheme (25) rewritten for the characteristic variables, becomes

R A A Zh g — 220 4 2 R
o = (- g AN g tut —u )+ e { B e e,

R A A [wi = 2wf + ) i
n+l _ +1 —
2 =(1- ﬁAt)zi” + W[z,ﬂl -z - VIO { : 2z : } + ﬁAtw

This corresponds to having discretized the characteristic system (36) by centered differences with the addition
of two terms, one dissipative for the first equation, the other antidissipative for the latter one. This asymmetry
indicates that the L-circuit prioritizes backward waves and damps the amplitude of the forward ones. The
centered differences are unstable under hyperbolic CFL conditions which might explain why we need a parabolic
CFL condition to stabilize the numerical solutions. In the same way for an explicit discretization of (35), one
has

R X (2, — 220 427 R
n+1 _ _ i+1 i i—1
z (1 2L' At)wz" \/L'—C”[ i+1 z—l] \/L'—C” { 2 } + 2L/Atzzn (38)
R A wi — 2wi +w} R
n+1 _ _ 0 7 N T i+1 i i—1 sv y
2 =1 577 At)z + 2\/L/—C/[zzn+1 zi ]+ NiTei { 5 } + 2L,Atw?

which is the complementary version of (37). Here again we see the opposite priority for wave propagations.
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2.4.2.

Thanks to the previous arguments, we can list the major drawbacks of the standard electric circuits : expen-
sive CFL, asymmetric wave propagation, no strict decrease of energy in the EA norm (only a time exponential
bound is available from (34)). To remove them, we propose here new schemes inspired by convenient hyperbolic
discretizations of system (7).

Correctly upwinded 0D schemes

e First order discretization in space
A space discretization of system (7) by first order upwind schemes yields

1 1 /C
Co,P; = —3 Qit1 — Qi—1] + 5\/ E(Pi-i-l — 2P, + P_1)
(39)

Lo,Q; = —% [Pit1 — Pia] + %\/g(Qi—H -2Q; + Qi—1) — RQ;

Its forward Euler time discretization gives the well-known Lax-Friedrichs’ scheme. This scheme is strictly
stable in the FaA norm, namely it’s easy to prove the following result

Corollary 2.1. Under the CFL condition :
At < VL'C'Az =VLC,

the solution given by forward Euler time discretization of (39) satisfies the following energy estimate
EA(P"+17Q"+1) S EA(PnJQ")

The proof is straightforward, indeed in the characteristic variables the scheme reduces to the first order
upwind scheme in both directions that can be set in a convex form. This ensures the decrease of Ea in
time.
A second order discretization in space can be used as well

For regular solutions it could be the Lax-Wendroff scheme:

. At At?
P =P, 50 Q%1 — ?_1]+2LC(P’11 2P+ P,)
n+1l __ n At n n At2 n (40)
QI =(1-a)Q7 - [Pz—l—l P ]+ m( 1 — 207 + Q7).
For less regular ones, a MUSCL scheme can be set up
Q' =(1-0)Q} - [‘Pz—i-l Py ]+ 2\/—L_C( 1~ 2Q7 + Q1)
1 At | At C
-l =)= % (01 —01i1— 0311 +034),
) 2 \)\/LC \/LC L (41)
Pz'n+1 Pzn_zc/[ ?+1 ]+ \/—( z+1_2Pn+Pn )
1 At | At "
\ _5(1 \/—)m (01— 011 + 03,41 —03;).
here @ = At%, and o7 ;= minmod (w}; —w},w —w} ), and 03 ; = minmod (27, — 27", 2" — 2" )

are the slope limiters ensuring the L' N L™ stability of the scheme (see [12] for more details).

The major difference when discretizing system (7) with some upwind scheme relies on the way the variables are
exchanged with neighbor elements: while the £ network takes the pressure P;_; from the left neighbor cell and
the flow rate Q;+1 from the right one (see (11)), upwind schemes need both physical quantities on each side.
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Az cm RA €Az o
6.0000 | 0.0489 | 414.2032 | 1.0969
1.2000 | 0.0416 | 70.8780 | 1.0998
0.6000 | 0.0409 | 33.0700 | 1.1840
0.3000 | 0.0405 | 14.5550 | 1.5399
0.1200 | 0.0403 | 3.5500 -

TABLE 1. Error between the two energy functionals, 0D solution against 1D linear solution
and order of convergence

2.5. Numerical assessment

In this section, we perform a numerical simulation in order to check the above theoretical results. Using
scheme (11), we compute the pressure Pyp, the flow rate Qop inside a vessel of fixed length (60 cm), for
different grid-size Azx.

For each Az, we display the difference between the entropy functional e from (12) and the linear energy ey,
given in (18). Precisely, for each pair of solutions (Pop, Qop) we compute

Zi,n |6(P0nD,z" QgD,i) - elin(POnD,z'a QgD,i)l
Zi,n e(P(JnD,i7 QgD,i)

Ra =

We show in table 1, that this quantity is grid independent (which is expected because it is the discrete version of
continuous functionals) and that the error is of only 4% approximatively. Then, we compare (Pyp, Qop) to the
numerical solution of (7) computed using the second order Lax-Wendroff scheme on a very refined grid (1000
grid-cells). In the third row of table 1, using again the EA norm, we compute

2

€Az = (Z EA(P(?D - Pew('7tn)anD - Qew('7tn))>

=

AtAz Y en (P ; — Pea(7i,1"), Qfp ; — Qea (i, "))

n,i
Then, the approximate order of convergence agpp is computed thanks to the standard formula [20] :

a _ IOg(eAl /6A2)
PP log(Ar/Ag)

and its value (see forth row in table 1) corresponds actually to the first order exhibited when using the Taylor
expansion. In figure 4, we plot: the solution of the non-linear system (1) obtained using a second order Taylor-
Galerkin scheme [9], the linear solution used as reference in the previous table, and the solution (Pyp,Qop)
obtained for a grid size Az = 1.2e¢m. We plot these solutions at four different locations in space (z = 0, z = 20,
2 = 40 and z = 60 cm). The time is given in seconds on the x-axis during two cycles. The pressure is given
at the left boundary (see left upper corner of figure 3), and the flow-rate is imposed at the right outflow (right
down corner in figure 3)). We can observe that the difference between the solution of the linear system (7)
and the 0D solution is negligible, while the differences are more important with the solution of the non linear
system (1), however the non-linearity plays a role for high frequencies only. For the solution of (1), we plot
the curves of Ea and Ea, in time during the same time period. Differences are negligible, but they appear for
higher values of pressure where the cubic term starts to account. We remark that entropy and energy do not
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Pressure at x=20 cm
Pressure at x=0 10

20000 T T T

15000 — — non-lin

10000

P dyne/cm?

5000

P dyne/cm2

-5000
0

200 200 : :

— lin
—- 0D
— — non-lin |4

100 100

Qmlis
=)
Qml/s
o

-100 -100

-200 L L L L 200 L L L L

tsec tsec
Pressure at x=40 cm Pressure at x=60 cm

P dyne/cmZ
P dyne/cm2

Flow-rate at x=60 cm
80 T T T

Qmls

5 0.5 1 15 2 25
tsec tsec

F1cURE 3. Display of numerical solutions at four different locations in space: linear 1D model,
0D network (50 elements), non linear 1D model

decrease simply because the solutions is computed on a bounded interval with imposed boundary conditions at
both ends of the interval.

We consider a vessel whose length is 60 cm, its radius 0.5 cm, and its thickness 0.1 cm. The blood viscosity
is equal to 0.035 cm?/s, its density is set to 1g/cm®, the Young modulus is set to 3 - 106 dyne/cm?, while the
momentum-flux correction coefficient « is set to one (these data are taken from [10, p 1.24]).

2.6. RLC Systems accounting for more particular effects

2.6.1. Blood seepage

Blood seepage (due e.g. to some small branches that we do not want to model) can be accounted in the
original RLC £ and inverse-£L circuits by adding some transversal resistance G governing the amount of seepage
(see [10,14]). In [31], the coefficient G is defined as a function of the length of the section as

GI

G_A_x'
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x 10

10

— entropy
— - energy

9k i

F1cURE 4. Comparison between linear energy Ea and a discrete version of £ in time

For the exact definition of G’ with respect to the physical constants of the vessel see [14]. The corresponding
scheme related to this network (see fig 2.¢), is obtained by modifying the system (11) as follows :

dF; 1 P
It (O — 0 = 2
C dt Az (Qz—i—l QZ) G,: 49
at ATy

Applying again Lax-Richtmyer’s theorem we can claim

Corollary 2.2. Under the following parabolic CFL condition

C'R' L_’, !
At < min ((#) Az?, L—,C”G’)

the scheme (42) is stable and its solution tends toward the solution of the following hyperbolic system

P
Clatp+6$Q = —a
L'9,Q +0,P =—R'Q

Again the same matrix can be used to diagonalize the system, the same norm can be applied to obtain energy
estimates. Moreover, we should discretize this system using the same techniques as in section 2.4.2 providing
new and efficient numerical schemes.

2.6.2. The sleeve effect

To deal with a large vessel, axial averaging could turn to be a rough approximation. We may deduce a more
realistic model by considering the vessel as a set of cylindrical shells or annular elements (see figure 5.a). In
this way the transversal average is not taken over the whole section but over n concentric annuli, reducing
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Lg
Tannpt
R3 %
Lo
Faaapt
Rs
F;_q L F;
Core q\ T T R
To trio T2 Py C Py
Shell 1
Shell 2
a) b)

FIGURE 5. Representation of a cylindrical vessel as a set of concentric cylindrical shells, and
its corresponding electric network

the associated approximation error, see [10,14,21]. The resulting model can still be interpreted as an electric
network as illustrated in figure 5.b.

Applying Kirchhoff’s laws one can derive the ODE system that models the general electric network with
n resistors R; and n inductances L;. Then under a suitable CFL condition, its forward Euler discretization
converges as At, Az tend to zero toward the following n x n hyperbolic system:

(C'0,P+0,Q =0
Li0;F1 +0,P = —R|Q
LyoiFy + 0, P = —R{Q — Ry,(Q — F1)
) Ly0iF3 + 0, P = —R1Q — Ry(Q — F1) — Ry(Q — Fy — Fy)

i J n  [min(i,j)
Lid,F; +0,P=—> R; (Q—ZFk>:—Z > Ry |F
L j=1 k=1 j=1 \ k=1
for i = {1,...,n}, with Q = >, F;. The primed quantities being as previously adimensionalized with respect

to the vessel’s length.

3. SMALL VESSELS

The micro-circulation network formed by the arterioles, capillaries, as vessels with radii less than (roughly)
100 pm is both topologically and functionally different from the network of large and medium size vessels, [25].
At this spatial scale, blood can no longer be considered as a Newtonian fluid. The properties of the flow
are strongly influenced by the individual red blood cells it contains in suspension [19]. This affects fluid
viscosity (known as Fahraeus effect), flow profiles and distribution of flow at bifurcations. Thus the equations
used to model flow through the larger vessels are no longer valid. The large number of micro-circulation
networks connecting each small artery to small vein also makes the method of discretely modelling individual
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vessel segments computationally prohibitive. To overcome this problems, a lumped parameter model of micro-
circulation is used [26]. This model contains only a resistor and a capacitance.

3.1. Introducing the underlying equations
In the small vessels it is reasonable to assume that the velocity profile is almost steady so that it solves the
Stokes problem. If the vessel is axisymmetric, we can write the equation in cylindric coordinates

1 1 w02
;(‘BEP =v (;6,«10 + W + @'LH)

1 1 o?
;BTP =v (6T (;&(rv)) + wv)

and suppose the incompressibility condition
v
oyv + ;+6$w =0,

where v and w are the radial and the axial components of the velocity and r is the radial coordinate. Following
the asymptotic reduction already performed in [4], in a more general case, we suppose the following characteristic
quantities: Vy and Wy are the characteristic radial and axial velocities, A is the characteristic length, Ry is the
characteristic inner vessel radius, and the corresponding non-dimensional variables read

r=R,F, =M, t w = Wow, v="VW0, P=pW0215.

- A
Wy’

We set A = ROTEVO and € = 2o is of order O(10~2) in small vessels. The previous equations become

)
0, ... px [0 (0w
35 = o o7 (73|

9 44
5z =0 (44)
o . o ..

%(rv)—%%(rw)—o

where we have neglected terms of order greater than 1 in e. The second equation in (44) implies that the
pressure is constant on each cross-section, that’s why we only introduce the averaged axial velocity

1 jé

R? Jg
where R is the inner vessel radius in the adimensional variables. Integrating the incompressibility equation in
the radial direction and using the standard streamline condition :

dR OR OR

I
udx

we obtain

%Rz + % (R"’@) =0
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In the same way, the first momentum equation becomes :

R
- bA = .
: Pdr = s
/0 70, dr—WOR(Q)R[a (] Pt

If we define the dimensional axial velocity by

1 (B
U= — 2rwdr,
=5

we obtain that u = Wy@. This gives finally in the dimensional variables

45
%(%P = 2mvR[0,w),_p - (45)

where the A is the cross-section area of the vessel, and @ = Au is the flow-rate. To close the system we assume
the typical velocity profile
v+ 2 N\
w="ufi-(g) |
5y R
(here this is very reasonable because the flow is almost steady see [33]). Notice that v = 2 corresponds to the

Newtonian fluid. When v = 9 the profile is closed to the plug flow profile. Thanks to this assumption, the right
hand-side of the latter equation in (45) becomes

f=2mRBw)_, = 2R (=020 = ou(y+ 2Qu= —Kou
r=R R
leading to the following nonlinear system
OA+0,Q =0
Ao p= K9 (46)
p xr ’I‘A‘

Applying again the strategy used in section 2.1, we express the latter system in the P,Q variables using the
closure law (2). Then we linearize around A = Ag to obtain the following system

C'@tP + 61'@ = O
’ 47)
0:P=-RQ
that can be rewritten in a single equation that reads
1
C'o,P — E@,MP =0, t>0. (48)

As previously the constants can be defined as in (6) by

R, _ pKr C, _ 2A0\/A0

Az N B

Remark 3.1. A similar linearized law is derived in [3, 5] without assumptions on the profile leading to different
definitions of constants R' and C'.
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Remark 3.2. System (48) can be seen as the limit equation when the inductance term goes to 0 in (7), when
the latter is written as a linear wave equation with a parabolic perturbation

L'C'@ttP+R'C'8tP—6MP = 0
This shows that there is a coherent approach at every scale of approximation.

3.2. Discretizing (48) with 0D models

As in section 2.1 we integrate (47) in the axial direction and we suppose the same simplifying assumptions
(9). This provides the following ODE system

dF;
C dt = Qz - Qz+1
RQ;=P_1— P

(49)

that can be regarded again as the mathematical description of an RC-electric circuit like that depicted in figure
3.2.a. Again, we have assumed that R = R'Az and C = C' Az where Az is the length of a single compartment
described by (49). By letting the index 7 vary from —oo to 400, and connecting together the same structure

F; Fiyq
AN
R

P C — | p

FIGURE 6. The RC-circuit
for all i, we obtain :
dp; 1
CW =Qi— Qit1 = = [Piy1 — 2P + Pi1], (50)
which is a first order discretization (w.r. to Az) of (48).
If we use the forward Euler scheme to discretize (50) in time, we need the following condition

Fall
At < (RZC ) Az?,

in order to guarantee stability and therefore convergence toward the solution of the parabolic equation (48).

3.3. Energy estimates

In a very standard way, we multiply equation (48) by P and integrate by parts to obtain
1 d 2 2
C'R'— | Pde =— | |0,P|°dz <0
which means that the energy dissipated by this element is bounded, and depends only on the initial and

boundary data. Note that the energy functional Ea introduced in 2.2 degenerates here to a single function of
the pressure.
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4. COUPLING DIFFERENT SYSTEMS

At this stage we have derived continuous models for different compartments in the cardiovascular systems,
and proved the convergence of the lumped parameter models related to each type of continuous law.

We can envisage the coupling of different compartments modelled by different continuous models or discrete
schemes. In order to build the complete systemic tree [1,28,31] or even a complete cardiovascular loop, we need
to specify carefully the interface conditions at each level of approximation (non-linear systems, linearized 1D
equations, lumped parameter models).

This is the next step of this work [18].

5. CONCLUSIONS AND PERSPECTIVES

In this work we have derived the underlying partial differential equations that lumped parameter models
discretize at first order in space. A fore-coming numerical investigation should enhance the results already
obtained in section 2, [15]. The coupling of linear one-dimensional models with appropriate interface condition
is under investigation too, [18]. This analysis should enlighten the interface techniques necessary to consider
couplings of systems of different kinds: in a first step between the different linear PDE’s and ODE’s, and in a
second step between non linear systems that are currently used for blood flow simulations.

When studying the continuous models, this work provides arguments for relating hyperbolic linear and non
linear 1D models, improving observations already made in [23].

This is a first step in order to unify the concepts used coming from the lumped parameter models, the 1D
linear theory and the non-linear modelling for blood flow simulations.
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