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ASYMPTOTIC ANALYSIS OF BLOOD FLOW IN STENTED ARTERIES:
TIME DEPENDENCY AND DIRECT SIMULATIONS ∗, ∗∗

Vuk Milǐsić1, Amélie Rambaud2 et Kirill Pichon Gostaf3

Abstract. This work aims to extend in two distinct directions results recently obtained in [9]. In a
first step we focus on the possible extension of our results to the time dependent case. Whereas in
the second part some preliminary numerical simulations aim to give orders of magnitudes in terms of
numerical costs of direct 3D simulations.

We consider, in the first part, the time dependent rough problem for a simplified heat equation in a
straight channel that mimics the axial velocity under an oscillating pressure gradient. We derive first
order approximations with respect to ε, the size of the roughness. In order to understand the problem
and set up correct boundary layer approximations, we perform a time periodic fourier analysis and
check that no frequency can interact with the roughness. We show rigorously on this toy problem that
the boundary layers remain stationary in time (independent on the frequency number). Finally we
perform numerical tests validating our theoretical approach.

In the second part, we determine actual limits, when running three-dimensional blood flow simula-
tions of the non-homogenized stented arteries. We solve the stationary Stokes equations for an artery
containing a saccular aneurysm. Consecutive levels of uniform mesh refinement, serve to relate spatial
resolution, problem scale, and required computation time. Test computations are presented for femoral
side aneurysm, where a simplified ten-wire stent model was placed across the aneurysm throat. We
advocate the proposed stent homogenization model, by concluding that an actual computation power
is not sufficient to run accurate, direct simulations of a pulsatile flow in stented vessels.

Introduction

Rupture of aneurysm are common lethal pathologies in western countries. It is mainly due to a loss of elastic
properties of tissues that constitutes the arterial walls on some branching. Recently emerged a new kind of
stent: a metallic wired mutli-layered prosthesis (see fig. 1 right) that unlike the classical endograft stent need
not to be sutured to the arterial wall. Their form-memory metallic structure allow self-expansion recovering
the original form without a need of a balloon.

A recent work of the first author establishes, thanks to asymptotic analysis tools, several advantages of this
new device [9]. These can be summarized as follows :
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3 Université Pierre et Marie Curie (UPMC), UMR 7598, Paris, FRANCE

c© EDP Sciences, SMAI 2010



2 ESAIM: PROCEEDINGS

artery walls

blood−flow

stent’s wires

Figure 1. A sketch of stented arteries: with a collateral artery (left), an aneurysmal sac
(middle) and a 3D example of a real metallic multi-wired stent (right)

• the presence of a stent at the inlet of a collateral artery (see fig. 1 left) gives rise to a secondary
flow explicitly computable : it depends on the pressure jump occurring at zero order (when the stent
totally closes the inlet of the collateral artery) and on some periodic microscopic resistivity (computed
independently of any kind of macroscopic flow).

• the presence of a stent above a closed aneurysmal sac (see fig. 1 middle) imposes a constant averaged
pressure inside the sac, it also inverts the direction of rotation of the vortex running inside the sac:
without a stent, the cavity is driven by the mean flow in the artery, the vortex is tangential to the mean
flow whereas the pressure jump across the interface imposes an entering velocity profile upward the sac
and an outgoing profile downward the middle of the sac.

These results were established theoretically and numerically for the steady Stokes system of equations. In this
work, we set up a preliminary toy framework in order to extend those results to the unsteady case.

Although this is not a first attempt to consider the unsteady regime within the boundary layer framework
(let’s mention [3, 5]), we set up here very basic model for the time periodic case. In the context of blood flow
this regime is quite well-suited since the heart delivers a periodic pressure flow impulse to the cardio-vascular
system. Another advantage of this work is that it is self-consistent: extending tools presented in [2], we provide
self-contained proofs for every step of our approximation process. We give, for instance, a direct proof for time
periodic very weak solutions.

The paper is organized as follows: in a first section we give the basic notations and hypotheses of this
work, in the next section we construct a boundary layer approximation and then we show that an averaged
approximation, cheaper from the computational point of view, is possible. At each step we provide theoretical
error estimates wrt the direct rough solution. An interesting feature of the wall-law is exhibited: we show that
although we recover the standard ε

3
2 convergence rate in L2(Ω0) norm, the a priori estimates provide only ε

1
2

rate performing a similar error as the zero order estimate itself. The last section validates numerically theoretical
claims stated and proved in previous sections. The poor H1(Ω0) error is observed also on the numerical side.
In the second part of this paper, we run a series of direct, three-dimensional flow simulations of a femoral artery
with a side saccular aneurysm. We examine the relation between discretization parameter, problem scale, and
computation time required to solve the stationary Stokes equations. Finite element model of a two-layer 32
wire stent was constructed. We demonstrate that its coarse mesh could not be accurately incorporated in the
finest discretization of the blood medium. Finally, a simplified ten-wire stent model was build. The results of
the stented versus the unstented vessel show substantial difference in flow pattern inside the aneurysmal pouch.
Concluding remarks and possible perspectives are given at the end of the paper.
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1. The time dependency

1.1. Notations and problem setting

In this work, Ωε denotes the rough domain in R2 depicted in fig. 2, Ω0 denotes the smooth one, and Ωε \ Ω0

the complementary rough subdomain. Γε is the rough boundary and Γ0 (resp. Γ1) the lower (resp. upper)
smooth one (see fig. 2).

Hypotheses 1.1. The rough boundary Γε is described as a periodic repetition at the microscopic scale of a
single boundary cell P0. The latter can be parametrized as the graph of a Lipschitz function f : [0, 2π[→ [−1 : 0[
such that

P0 = {y ∈ [0, 2π]× [−1 : 0[ s.t. y2 = f(y1)}. (1)

Moreover, we suppose that f is negative definite, i.e. there exists a positive constant δ such that f(y1) < δ for
all y1 ∈ [0, 2π]. Then the macroscopic boundary Γε is parametrized as

Γε =
{
x ∈ R2 s.t. x2 = εf

(x
ε

)}
.

We assume that the ratio between L (the width of Ω0) and 2πε (the width of the periodic cell) is always
an integer called N . We consider a simplified setting that avoids the theoretical difficulties and the non-linear
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Figure 2. Rough, smooth and cell domains

complications of the full time-dependent Navier-Stokes equations. Starting from the time-dependent Stokes
system, we consider a heat-like simplified problem for uε, the axial component of the velocity. The oscillating
pressure gradient is assumed to reduce to a time-periodic space-constant right hand side C(t). For sake of
conciseness, we consider only periodic inflow and outflow boundary conditions on uε. The simplified problem
reads : find uε such that 

∂tuε −∆uε = C(t), for x ∈ Ωε,
uε = 0, for x ∈ Γε ∪ Γ1,

uε is x1 periodic.
(2)

We underline that the results below can be directly extended to rough domains with smooth holes and to the
Stokes system in the case of a simple sheared flow.

In what follows, functions that do depend on y = x/ε should be indexed by an ε (e.g. Ûε,k = Ûε,k(x, x/ε)).
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1.2. Time fourier analysis and boundary layer approximations

Applying the time-fourier transform on (2) one obtains for each frequency-mode k ∈ Z∗ the problem: find
ûε,k s.t.  (ik −∆) ûε,k = Ĉk in Ω0 ,

ûε,k = 0 on Γε ∪ Γ1 ,
ûε,k x1 − periodic on Γin ∪ Γout on Γin ∪ Γout .

(3)

where Ĉk is the fourier mode associated to the frequency k ∈ Z:

Ĉk :=
1

2π

∫ 2π

0

C(t)eiktdt, C(t) =
∑
k

Ĉke
−ikt.

For the rest of the paper, one denotes Lk := (ik − ∆). When k ≡ 0 one returns to the steady case already
extensively studied in [2], so we only consider k ∈ Z∗ for the rest of this paper.

1.2.1. The zero order approximation

Passing to the limit formally wrt ε in (3), one show rigorously below that actually ûε,k converges to û0,k

solving  Lk û0,k = Ĉk in Ω0 ,
û0,k = 0 on Γ0 ∪ Γ1 ,
û0,k x1 − periodic on Γin ∪ Γout on Γin ∪ Γout .

(4)

The solution of this problem is explicit wrt to the data Ĉk and the frequency k, it reads for every x ∈ Ω0:

û0,k =
Ĉk
ik

(
1 +Aerx2 +B e−rx2

)
, r :=

√
2k
2

(1 + i), A :=
e−r − 1
er − e−r

, B :=
1− er

er − e−r
. (5)

In order to estimate the error made when we consider the solution û0,k as an approximation of ûε,k, we have
to extend û0,k to the whole rough domain Ωε. It suffices that it is continuous, since we need H1 functions for
a priori error estimates. In the literature, either the solution is extended by a constant in the rough layer [6]
or one constructs a linear extension using the Taylor expansion around the point (x1, 0) [1]. In order to correct
these errors at the next order, in the first case one corrects then the jump of the derivative, and in the second
case one should lift the Dirichlet error [2]. Here, we chose to extend û0,k by a linear function in Ωε \ Ω0:

û0,k :=
{
û0,k in Ω0,
Mk x2 in Ωε \ Ω0,

, where Mk :=
∂

∂x2
û0,k(x1, 0) =

Ĉk r (2− er − e−r)
ik (e−r − er)

.

1.2.2. Zero order error estimates

We detail here the error estimates. Identical proofs should also be used for higher order approximations
below: we detail here every step. Denote χΩ the characteristic function of the domain Ω, δΓ0 the Dirac measure
concentrated on Γ0 .

Proposition 1. There exist two positive constants c1 and c2, depending only of the mode Ĉk and the Sobolev’s
inequalities, such that:

‖ûε,k − û0,k‖H1(Ωε)
≤ c1

√
ε , ‖ûε,k − û0,k‖L2(Ω0) ≤ c2 ε . (6)

Démonstration. The the first part of the proof is based on standard a priori estimates. The existence and
uniqueness of ûε,k are well known and derive from the Lax-Milgram theorem. We focus on the error, namely
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we set Rε0 := ûε,k − û0,k. Since the extension û0,k of û0,k satisfies: Lk û0,k = Ĉk χΩ0 + ikMk x2 χΩε\Ω0 in Ωε ,
û0,k = 0 on Γ1 ,
û0,k =Mk x2 on Γε .

(7)

Then the zeroth order error solves: Lk R
ε
0 = Ĉk χΩε\Ω0 − ikMk x2 χΩε\Ω0 in Ωε ,

Rε0 = 0 on Γ1 ,
Rε0 = −Mk x2 on Γε .

(8)

We remark that a part of the error comes from the source term localized in Ωε \ Ω0, and another part comes
from the non homogeneous boundary term on Γε. We set the lift:

s = −Mk x2 χΩε\Ω0 , R̃ε0 = Rε0 − s .

Then: 
Lk R̃ε0 = Ĉk χΩε\Ω0 +Mk δΓ0 in Ωε ,
R̃ε0 = 0 on Γ1 ,

R̃ε0 = 0 on Γε ,
(9)

where the derivatives are computed in the sense of distributions. Then, on one hand, using Poincaré inequality,
we have: ∣∣∣∫Ωε LkR̃ε0 R̃ε0 dx∣∣∣2 =

∣∣∣ik ‖R̃ε0‖2L2(Ωε)
+ ‖∇R̃ε0‖2L2(Ωε)

∣∣∣2
= k2 ‖R̃ε0‖4L2(Ωε)

+ ‖∇R̃ε0‖4L2(Ωε)

≥ c ‖R̃ε0‖4H1(Ωε)
.

(10)

And on the other hand, for any test function φ ∈ H1
0 (Ωε):∫

Ωε

LkR̃ε0 φdx = Ĉk

∫
Ωε\Ω0

φdx+Mk

∫
Γ0

φdx .

Then, using Cauchy-Schwarz and Poincaré like inequalities, we obtain the upper bound:∣∣∣ik ‖R̃ε0‖2L2(Ωε)
+ ‖∇R̃ε0‖2L2(Ωε)

∣∣∣ ≤ c (|Ĉk| ε+ |Mk|
√
ε
)
‖R̃ε0‖H1(Ωε) , (11)

where c is a non negative constant depending on the Poincaré inequality. And |Mk| is controled as follows:

|Mk| =

∣∣∣Ĉkr (2− er − e−r)
∣∣∣

|ik (er − e−r)|
≤ |Ĉk|√

k

(
2

|er − e−r|
+ 1
)
≤ 2 |Ĉk| . (12)

Finally, combining (10)-(12), we get the H1 -error estimate.
For the L2 error, we use the concept of a very weak solution. Namely, one solves the dual problem: for a

given φ ∈ L2(Ω0), φ being x1 periodic on Γin ∪ Γout, find v̂ ∈ H2(Ω0) such that Lk v̂ = φ in Ω0 ,
v̂ = 0 on Γ1 ∪ Γ0 ,
v̂ is x1-periodic on Γin ∪ Γout .

(13)
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Then, considering the L2(Ω0) scalar product
(
. , .
)
, and using the Green formula:

(Rε0 , φ) =
∫

Ω0

Rε0 Lkv̂ = −ik
∫

Ω0

Rε0 v̂ +
∫

Ω0

∇Rε0∇v̂ −
∫
∂Ω0

Rε0
∂v̂

∂n

=
〈
v̂ ,

∂Rε0
∂n

〉
Γin∪Γout

−
(
Rε0 ,

∂v̂

∂n

)
Γ0∪Γ1

, (14)

where the brackets refer to the dual product in
(
H−1 , H1

)
(∂Ω0) and the rest of the products are in L2 either

on Γ0 or on Ω0. Then one computes:

|(Rε0 , φ)| ≤ ‖Rε0‖L2(Γ0)

∥∥∥∥ ∂v̂∂n
∥∥∥∥
L2(Γ0)

≤
√
ε‖∇Rε0‖L2(Ωε\Ω0)‖φ‖L2(Ω0) ≤

√
ε‖∇Rε0‖L2(Ωε)

‖φ‖L2(Ω0) ≤ ε
3
2 ‖φ‖L2(Ω0).

And this ends the proof of the proposition, by taking the sup over all φ ∈ L2(Ω0). But between the first and
the second estimate above, we assumed that the solutions of the regular problem (13) satisfy a kind of Rellich
estimates (see [11], chap. 5) : ∥∥∥∥ ∂v̂∂n

∥∥∥∥
L2(Γ0)

≤ c ‖φ‖L2(Ω0) . (15)

In order to prove this, we decompose φ on the Hilbert basis (e2πinx1 e2πimx2)n,m of L2(Ω0). Separating the
variables, define φn(x2) the coordinates of φ in the (e2πinx1)n Hilbert basis of L2(0, 1) , and an,m its coordinates
in the basis (e2πinx1 e2πimx2)n,m. Then φ can be written under the form:

φ =
∑
n∈Z

φn(x2) e2πinx1 =
∑
n,m∈Z

an,m e
2πinx1 e2πinx2 , and ‖φ‖2L2(Ω0) =

∑
n,m∈Z

|an,m|2 .

In the same way, one can decompose v̂ on the basis: v̂ =
∑
n∈Z v̂n(x2) e2πinx1 . Then the first equation of system

(13) can be rewritten under the form of an infinite system of ordinary differential equations:

∀l ∈ Z , (ik + 4π2l2) v̂l − v̂′′l = φl .

And the solution, for a fixed l, is given by:

v̂l = Aebx2 +B e−bx2 + v̂p,l,

where v̂p,l stands for the particular solution and reads

v̂p,l :=
∑
m∈Z

−al,m
4π2m2 + b2

e2πimx2 , A−B = tanh(b) v̂p,l(0)− v̂p,l(1)
sinh(b)

, b2 = 4π2l2 + ik,

Then, since ∥∥∥∥ ∂v̂∂n
∥∥∥∥2

L2(Γ0)

=
∑
l∈Z
|v̂′l(0)|2 ,

it remains to estimate:

|v̂′l(0)|2 =
∣∣b (A−B) + v̂′p,l(0)

∣∣2 ≤ 2
(
|b(A−B)|2 + |v̂′p,l(0)|2

)
. (16)

The intermediate variable b solves in C the equation b2 = 4π2l2 + ik which implies that

b := br + ibi, br := ±
√

2π2l2 +
√

4π4l4 + k2, bi := ±
√
−2π2l2 +

√
4π4l4 + k2,
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so that
|b|2 = b2r + b2i = 2

√
4π4l4 + k2 ≥ 2, ∀l ∈ Z, ∀k ∈ Z∗

We return to the rhs of (16), the first term of the rhs can be split in two parts:

|b|2|v̂p,l(0)|2| tanh(b)|2 ≤

∣∣∣∣∣∑
m

am,l
4π2m2 + b2

∣∣∣∣∣
2

|b|2| tanh(b)|2 ≤ 2

(∑
m

|am,l|2
)(∑

m

|b|2

4π4m4 + |b|4

)
| tanh(b)|2

for sake of conciseness we set:

I :=

(∑
m∈Z

|b|2

4π4m4 + |b|4

)
,

then it is equivalent to write

I =
1
|b|2

+ 2
∑
m≥1

|b|2

4π4m4 + |b|4
=: I1 + I2

If x is a positive real, we set m := E[x] where E[·] is the integer part of its argument, one then has

I2 ≤
∫ ∞

1

|b|2

4π4(x− 1)4 + |b|4
dx =

∫ ∞
0

|b|2

4π4x4 + |b|4
dx ≤

∫ 1

0

+
∫ ∞

1

|b|2

4π4x4 + |b|4
dx ≤ c

(
1
|b|2

+
1
|b|

)
,

so that finally I ≤ c, the constant c being independent on either l or k. Because br 6= 0 one has that

| tanh(b)| = e2br + e−2br + 2 cos(bi)
e2br + e−2br − 2 cos(bi)

≤
4 +

∑∞
q=1

(2br)2q

(2q)!∑∞
q=1

(2br)2q

(2q)!

≤ c

where c does not depend on k nor on l. In a similar way one gets again using Cauch-Schwartz

|v̂p,l(1)|2|b|2

| sinh(b)|2
≤
∑
m

|am,l|2
(∑

m

|b|2

4π4m4 + |b|4

)
1

| sinh(b)|2
≤ c‖φl‖2L2(0,1)

where again c is a generic constant independent on k, l. The estimates of |v̂′p,l(0)| follow the same lines. �

1.2.3. First order correction

We have already seen that the zeroth order approximation contains two distinct sources of errors: a part is
due to the order of the extension û0,k in Ωε \ Ω0 and another part comes from the non homogeneous rest on Γε.
In order to correct the non zero value of û0,k on the rough boundary Γε, we introduce the corrector β, defined
on the microscopic cell Z+ ∪ Γ ∪ P  ∆β = 0 in Z+ ∪ P ,

β = −y2 on P0 ,
β is y1-periodic .

(17)

We define the microscopic average along the fictitious interface Γ:

β =
1

2π

∫ 2π

0

β(y1, 0) dy1 .

The existence and uniqueness of β, and its properties, as the exponential convergence towards β when y2 tends
to infinity, are described in [2] and references therein. Because β tends to β when y2 goes to infinity, we subtract
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this constant in the final asymptotic ansatz. As the constant should be relevant only far from the roughness we
correct the ansatz by adding û1,k a “counter-flow” approximation solving:

Lk û1,k = 0 in Ω0 ,
û1,k = 0 on Γ1 ,

û1,k = βMk on Γ0 ,
û1,k is x1-periodic on Γin ∪ Γout .

(18)

The solution is explicit:

û1,k =
−βMk

er − e−r
(
e−r erx2 − er e−rx2

)
= βMk

sinh(r(1 + x2))
sinh(r)

. (19)

Now we are in the position to define the full boundary layer approximation :

Ûε,k := û0,k + εMk

(
β
(x
ε

)
− β

)
+ εû1,k .

1.2.4. First order estimates

The gain obtained when introducing the microscopic corrector is of order
√
ε. Indeed, the following error

estimates hold.

Proposition 2. There exist two positive constants c3 and c4, depending only on the mode Ĉk and not on the
frequency k, such that:

‖ûε,k − Ûε,k‖H1(Ωε) ≤ c3 ε , ‖ûε,k − Ûε,k‖L2(Ω0) ≤ c4 ε3/2 . (20)

Démonstration. Denote Rε := ûε,k − Ûε,k the error to estimate. It is solution of the problem:
Lk Rε = ĈkχΩε\Ω0 − ikMkx2χΩε\Ω0 − ikMkε

(
β(xε )− β + βχΩε\Ω0

)
− εMkβδΓ0 , in Ωε

Rε = −εMk

(
β(x1

ε ,
1
ε )− β

)
on Γ1 ,

Rε = 0 on Γε ,
Rε is x1-periodic on Γin ∪ Γout .

(21)

The existence and uniqueness of Rε are standard. We focus again on the a priori estimates: test the system
above by Rε and estimate the lhs from below as in (10), then estimate from above the rhs. The last step includes
new terms wrt the zeroth order approximation :{

A1 = Ĉk
∫

Ωε\Ω0
Rε dx, A2 = −ikMk

∫
Ωε\Ω0

x2Rε dx, A3 = −ikMk ε
∫

Ωε
(β(xε )− β)Rε dx ,

A4 = −ikMk ε β
∫

Ωε\Ω0
Rε dx, A5 = −ε βMk

∫
Γ0
Rε dx1.

(22)

Then, estimating these terms, one gets

|
5∑
j=1

Aj | ≤ ε
3
2 c‖∇Rε‖L2(Ωε)

which ends the proof for the a priori estimates. Again very weak estimates give:

‖Rε‖L2(Ω0) ≤ ‖Rε‖L2(Γ1∪Γ0) + ε|kMk|
∥∥∥β ( ·

ε

)
− β

∥∥∥
L2(Ω0)

≤ c
(
e−

1
ε +
√
ε‖∇Rε‖L2(Ωε\Ω0) + ε

3
2

)
≤ cε 3

2 .

�
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1.2.5. Derivation of Wall-laws

Averaging the ansatz. We aim to derive a system of equations defined on the smooth domain Ω0, for which the
effect of the roughness is included as a macroscopic boundary condition on Γ0. First, averaging wrt the fast
variable in the horizontal direction, we get:

Ûε,k = û0,k + εû1,k := uε,k.

Though, the averaging process cancels the oscillations, the averaged ansatz still contains a first order macroscopic
correction û1,k accounting for averaged first order effects. This new averaged quantity solves a problem in the
smooth limiting domain Ω0: 

Lkuε,k = Ĉk in Ω0 ,
uε,k = 0 on Γ1 ,

uε,k = εMk β on Γ0 ,
uε,k is x1-periodic on Γin ∪ Γout .

(23)

We compute the L2-error estimate between the exact solution ûε,k of problem (3) and the averaged first order
approximation uε,k.

Proposition 3. There exists one positive constant c5 , depending only of the mode Ĉk such that:

‖ûε,k − uε,k‖L2(Ω0) ≤ c5 ε3/2 . (24)

Démonstration. We write a triangular inequality:

‖ûε,k − uε,k‖L2(Ω0) ≤ ‖ûε,k − Ûε,k‖L2(Ω0) + ‖Ûε,k − uε,k‖L2(Ω0) .

The second term in the rhs is explicit :

Ûε,k − uε,k = εMk

(
β
(x
ε

)
− β

)
.

One thus estimates this quantity directly in the L2(Ω0) norm. Thanks to the multi-scale structure of this
corrector one gets by a simple change of variable and thanks to the specific boundary layer properties of β that∥∥∥β ( ·

ε

)
− β

∥∥∥
L2(Ω0)

≤
√
ε
∥∥β − β∥∥

L2(Z+∪Γ∪P )

which ends the proof. �

1.2.6. Implicit wall-law

In order to derive an implicit wall-law, we rewrite the boundary condition satisfied by uε,k on Γ0:

uε,k = εMk β = ε β ∂
∂x2

(û0,k + εû1,k − εû1,k) = ε β
∂uε,k
∂x2
− ε2 β

∂û1,k
∂x2

on Γ0 . (25)

Hence, since the term ∂û1,k/∂x2 can be bounded independently from the frequency k, we derive a first order
implicit wall-law. Indeed,

∂û1,k

∂x2
(x2 = 0) = −Ĉk

(
er + e−r

er − e−r

)2

. (26)

So, when k 6= 1: ∣∣∣∣∂û1,k

∂x2
(x2 = 0)

∣∣∣∣ ≤ |Ĉk| ( 1
1− e−

√
2

)2

. (27)
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We set the following approximate problem, posed in the smooth domain Ω0:
LkV̂ε,k = Ĉk in Ω0 ,

V̂ε,k = 0 on Γ1 ,

V̂ε,k = ε β
∂V̂ε,k
∂x2

on Γ0 ,

V̂ε,k is x1-periodic on Γin ∪ Γout .

(28)

It remains to show that this first order implicit wall-law has a solution and is an approximation in the smooth
domain Ω0 of the rough problem (3). The existence of solution in H1

Γ1
(Ω0) (H1-functions vanishing on Γ1)

for problem (28) is not discussed here (see for example [2]), but the error estimate are given in the following
theorem.

Theorem 1.1. There exists two positive constants c6 and c7, depending only of the mode Ĉk and not on the
frequency k such that:

‖ûε,k − V̂ε,k‖L2(Ω0) ≤ c6 ε3/2 and
∥∥∥ûε,k − V̂ε,k∥∥∥

H1(Ω0)
≤ c7
√
ε. (29)

Démonstration. We split the error into two parts:

‖ûε,k − V̂ε,k‖L2(Ω0) ≤ ‖ûε,k − uε,k‖L2(Ω0) + ‖uε,k − V̂ε,k‖L2(Ω0) .

The first term is controlled thanks to Proposition 3. For the second one, let us define Θ := uε,k − V̂ε,k and
consider the boundary value problem it satisfies:

Lk Θ = 0 in Ω0 ,
Θ = 0 on Γ1 ,

Θ = ε β
(
∂û0,k
∂x2
− ∂V̂ε,k

∂x2

)
on Γ0 ,

Θ is x1-periodic on Γin ∪ Γout .

(30)

We re-express the boundary condition on Γ0 introducing a Robin like condition, namely:

Θ− ε β ∂Θ
∂x2

= ε β

(
∂û0,k

∂x2
− ∂uε,k

∂x2

)
= −ε2β ∂û1,k

∂x2
on Γ0 , (31)

where the rhs is now explicitly known. One sets

ak(θ, v) = (∇θ,∇v)Ω0 + ik(θ, v)Ω0 +
(
θ

εβ
, v

)
,

and it is easy to show that this bi-linear form is bi-continuous and coercive. The variational problem becomes
now

ak(θ, v) = −ε2
(
∂û0,k

∂x2
, v

)
Γ0

, ∀v ∈ H1
Γ1

(Ω0) ,

which gives directly by a priori estimates that

‖∇θ‖L2(Ω0) ≤ cε
2, ‖θ‖L2(Γ0) ≤ cε

3.

One then uses the very weak estimates in order to estimate θ in the L2(Ω0) norm and concludes thanks to the
last trace estimate. For the a priori part we simply decompose the error using every result established above
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to get: ∥∥∥ûε,k − V̂ε,k∥∥∥
H1(Ω0)

≤
∥∥∥ûε,k − Ûε,k∥∥∥

H1(Ω0)
+
∥∥∥Ûε,k − uε,k∥∥∥

H1(Ω0)
+
∥∥∥uε,k − V̂ε,k∥∥∥

H1(Ω0)

≤
∥∥∥ûε,k − Ûε,k∥∥∥

H1(Ωε)
+ c
√
ε‖∇yβ‖L2(Z+∪Γ∪P ) + ε2 ≤ c(ε+

√
ε+ ε2) ≤ c′

√
ε .

�

1.3. Numerical resutls

1.3.1. Discretization

In this part we aim to prove numerically that wall-laws perform better approximation than the zeroth order
guess. For this sake we define an explicit shape of the roughness setting f in (1) to be :

f(y1) := − (1 + cos(y1))
2

− δ,

with δ being is a positive constant equal to 5e − 2. The periodicity of the bottom shape and of the boundary
conditions on Γin ∪ Γout allows to discretize only a single rough period, i.e. we set

Ω#,ε,− := {x1 ∈]0, 2πε[ and x2 ∈]εf(x1/ε), 0[}, Ω#,ε,+ :=]0, 2πε[×]0, 1[, Ω#,ε := Ω#,ε,+ ∪ Ω#,ε,−,

Figure 3. Meshes Ω#,ε, Ω#,ε,+, when ε = 0.1 and Z+ ∪ Γ ∪ P ∩ {y2 ≤ L = 10} (coarse grids,
see below for actual mesh sizes)

The mesh is periodic, i.e. the vertices on Γin are associated to elements containing edges on Γout (see p. 142
of the freefem++ documentation for further information on this facility). For a given ε, the meshes of Ω#,ε and
Ω#,0 are conforming on the upper part {x2 ≥ 0}. We take several values of ε, namely we set i ∈ {1, . . . , 10}
and ε = qi, where q := 0.85. In order to avoid discretization errors we set nε := 90/εα, α = 0.2 nodes on the
horizontal fictitious boundary, and linearly proportional numbers of nodes on the other boundaries. This gives
a mesh size h (maximal diameter of a triangulation, see p.88 [4]) depicted in fig. 4 (right) as a function of ε.
Thus there exists a constant c independent of ε such that h ≤ cε. We fix a frequency k = 10 for which Ĉk ≡ 10,
we compute numerical approximations of

• ûε,k,h solving the discretized problem (3)
• û0,k,h, the zeroth order Poiseuille-like approximation solving system (4)
• V̂ε,k,h, the implicit discrete wall-law.
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In order to compute the cell problem and β, the constant at infinity related to the specific roughness f , we
discretize a cell problem defined on a truncated domain : find βL solving

−∆βL = 0 in Z+ ∪ Γ ∪ P ∩ {y2 < L}
∂nβ = 0 on {y2 = L}
β = −y2 on P0

It is shown in [7] that the solution βL converges exponentially fast wrt L towards the solution of (17). Then we
obtain βL that we actually use in the boundary condition defined on Γ0 in order to compute V̂ε,k,h. The code is
written in freefem++ language [4]: it is very well suited for solving complex valued variational problems with
finite elements. Our code is available online 1.

1.3.2. Results

We compute numerical equivalent norms for a priori and very weak estimates. We plot this results in the
log-log scale for various sizes ε (in abscissa) in fig. 4. We recover better orders of convergence than expected:
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ε0.525

0.001

0.01

0.1

1

0.1 1

‖
·‖
L

2
(Ω

0
)

ε
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Figure 4. Numerical error estimates in H1(Ω0) (left) and L2(Ω0) (middle) norms, and mesh
parameters (right)

the very weak estimates provide ε
3
2 convergence for the Poiseuille profile while they give ε

9
4 for the wall-law.

The H1(Ω0) norm (∼ ε 3
4 ) is better then expected for the Poiseuille profile while surprisingly the error is worse

for the wall-law wrt this norm. This is due to the
√
ε Dirichlet norm of gradient of boundary layers as already

shown in Theorem 1.1. This numerical test shows that for this geometry case this latter estimate is almost
optimal.

2. Numerical investigation

2.1. Saccular side aneurysm

The objective of this numerical experiment is to determine actual computational limits, when running three-
dimensional blood flow simulations of the non-homogenized stented vessels. Extremely small wire cross-section,
�=0.1 mm, complex, almost random, spacing between braided wires could not be properly modeled in actual
computational reality. Even when such models have been developed, industrial computer aided design (CAD)
programs, mesh generators and finite element analysis tools are not well optimized for processing complex free-
form geometries. However, it is important to analyze modeling and discretization limits, spatial resolution,
memory needs and computation time required to guarantee an accurate and reliable hemodynamic simulation
of stented vessels. The authors hope that the sequence of direct simulations brings an additional design insight,
and could be used as a reference solution for the further three-dimensional homogenization research.

Parametric, three-dimensional model of a blood vessel with a side saccular aneurysm was built using com-
mercial software, CATIA V5. The aneurysm has an ellipsoidal extended shape of 22 mm over 17 mm across its

1http://ljk.imag.fr/membres/Vuk.Milisic/Software/complexWallLaw.edp
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largest and smallest diameters, respectively. It is attached to the parent vessel of 60 mm long within a constant
diameter of 10 mm, fig. 5, (left). These values are representative of the femoral artery. A braided tabular
assembly of thin metallic wires is lodged against the lumen of the vessel to serve as a porous barrier disrupting
blood flow into the aneurysm, fig. 5, (right). A finite element model of a two-layer stent, braided of 32 wires
has been built, fig. 5, (bottom). Similar to commercial stents, but not being an exact replica, it has a 10 mm
diameter, a length of 30 mm, and a wire diameter of �=0.1 mm. Its coarse mesh, 5-7 tetrahedral faces per wire
cross-section, contains more than half a million 4-node tetrahedral elements.

Figure 5. CAD model of a parent vessel with a side wall aneurysm (top left). Schematic
illustration of a wire multi-layer stent, which reduces blood flow into the aneurysm (top right).
The cutout is for visualization purpose only. A coarse finite element model of a wire two-layer
stent counts 546K tetrahedral elements (bottom).

First, we discretize the unstented artery vessel, imposing a uniform node spacing for the whole medium.
Tetrahedral meshes were generated by an advancing front, followed by a tetrahedral filler technique, in order
to produce high-quality, quasi-uniform meshes with a low element size variance. Consecutive levels of mesh
refinement are presented in fig. 6. Computation time, required to simulate one or several cardiac cycles could
then be related to a spatial mesh resolution, by solving a given hemodynamic problem for each of the presented
discretization. Freefem++ open source finite element code was used to compute a steady-state solution of the
Stokes equations. The velocity-pressure fields were discretized by the Taylor-Hood element ((P2/P1) finite
element basis). The blood was assumed to behave like an incompressible Newtonian fluid, with a constant
dynamic viscosity of 3.5 · 10−3 Pa·s, and an homogeneous density of 1060 kg·m−3. We do not consider the
compliance of arterial walls due to the complexity of the numerical modeling and requirement for a fluid
structure interaction environment to solve a coupled problem. The assumption of rigid wall is based on [8],
where the authors conclude that a presence of wall motion does not have significant influence of the global
fluid dynamic characteristics of the femoral artery bifurcation. The inflow boundary condition is based on the
constant pressure profile of 80 mmHg. We imposed the usual non-slip boundary conditions on the vessel wall,
while a pressure drop of 0.07 mmHg was prescribed on the outflow boundary. In addition, the tangential velocity
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component was set to be zero on the non-slip boundaries, u · τ|Γin,Γout = 0. These boundary conditions together
with a pressure gradient establish a steady laminar flow with a Reynolds number Re=443, and a flow rate of
11.51 ml/sec.

(a) h=3.5 (b) h=3.0 (c) h=2.5

(d) h=2.0 (e) h=1.5 (f) h=1.0

Figure 6. Different levels of mesh refinement. Quasi-uniform meshes with a prescribed dis-
cretization element size h in millimeters. An overall mesh data is reported in table 1.

We made use of a non-parallel version of a conjugate gradient solver with a convergence criteria of 10−8.
An overall mesh, finite element, and computation data are organized in table 1. For a given discretization
parameter h, it reports a number of produced mesh nodes, tetrahedral elements, degrees of freedom, non-zero
coefficients of the symmetric finite element matrix, numerically computed flow rates in units of ml/sec. Solution
time, in seconds, required to solve the stationary Stokes equations is reported in the extreme right column. The
computational results reported in table 1 reveal that even the finest discretization of a fluid medium would not
be sufficient to properly incorporate a coarse finite element model of the wire two-layer stent, presented in fig. 5.
The finest mesh discretization parameter is 5 times larger than a wire diameter.

Remark : The tasks were executed on the laboratory cluster, powered by 16 Intel Xeon E5462 @2.80GHz
processors; 12Gb of available RAM memory are designated for each two processors. For the finest mesh,
h=0.5, 4Gb of memory were allocated. Reported cpu time represents the total cpu time taken by one single
processor to obtain the converged solution. We note that since each discretization was built in the stand alone
way, each processor worked independently and there was no communication or synchronization overhead in the
calculations. Each processor was assigned only one mesh and one variational problem to be resolved. We have
repeated each computation several times, observing negligible variance in computation time.



ESAIM: PROCEEDINGS 15

h nodes tetrahedra dof !=0 coef. flow rate cpu time

3.5 443 1664 8918 385982 9.87 17
3.0 685 2778 14272 632774 10.17 39
2.5 1184 5225 25628 1166637 10.61 126
2.0 2012 9278 44483 2052252 11.10 324
1.5 4725 23456 108144 5103210 11.29 1363
1.0 14276 75051 335807 16124234 11.49 10499
0.8 28257 153582 675171 32749351 11.51 39314
0.5 109211 616710 2657609 130403575 11.51 378162

Tableau 1. Mesh data summary, non-zero coefficients of the symmetric finite element matrix,
computed flow rate [ml/sec], computation time [sec] of the steady-state Stokes equations.

In the second part of our numerical experiment, we simplify the original stent model, by replacing it with a
pattern of unattached ring-like struts across an aneurysm throat. A similar two-dimensional version has been
recently proposed in [9]. Two modeling techniques were tested to place stent wires. The first technique was to
construct stent wires, completely enclosed by the blood medium. Wire centers were displaced into the parent
vessel from the outer boundary by 3/2 of the wire radius. An automated mesh generator had difficulties to
properly define all enclosed surfaces, and to complete a meshing procedure. Moreover, this technique produced
extremely small elements, located between stent wires and vessel boundary. Therefore, a unique six-wire model
was constructed, fig. 7 (left). Almost worthless, it takes 214 hours to solve the Stokes equations, using a
non-parallel conjugate gradient solver. A model related data was summarized in table 2.

wire � h nodes tetrahedra dof !=0 coef. flow rate cpu time

0.8 0.1 - 0.5 218.9·103 1.2·106 5.3·106 261.4·106 8.34 769384

Tableau 2. Stented aneurysm with completely enclosed stent wires: mesh data summary,
non-zero coefficients of the symmetric finite element matrix, computed flow rate [ml/sec], com-
putation time [sec] of the steady-state Stokes equations.

The second strategy was to partially enclose stent wires by the blood medium; thus, wire centers were displaced
into the vessel by 1/6 of the wire radius. Wires were cloned along the parent vessel direction with respect to its
curvature. The distance between two wire centers is 2 mm, fig. 7 (right). Four separate ten-wire models were
constructed. Keeping the same distance between wire centers, we have consequently decreased a wire diameter,
from 0.9 to 0.6 mm. We note that it is, however, about 10 times larger than the actual wire diameter used for
commercial stents. Locally refined, adaptative meshes were built using the octree algorithm, imposing a nodal
spacing of 0.12 mm around stent struts. The transitional element distribution between the respective regions
of refined and global mesh density is presented in fig. 8.

wire � h nodes tetrahedra dof !=0 coef. flow rate cpu time

0.9 0.12 - 0.7 95196 481845 2.2·106 104.5·106 9.90 235311
0.8 0.12 - 0.7 97405 495366 2.2·106 107.3·106 10.10 180206
0.7 0.12 - 0.7 99913 511385 2.3·106 110.6·106 10.23 214308
0.6 0.12 - 0.7 100184 515291 2.3·106 111.3·106 10.49 233170

Tableau 3. Stented aneurysm with partially enclosed stent wires: wire diameter, mesh data
summary, non-zero coefficients of the symmetric finite element matrix, computed flow rate
[ml/sec], computation time [sec] of the steady-state Stokes equations.
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Figure 7. Three-dimensional CAD model of a saccular aneurysm within struts pattern across
the aneurysm throat. Wire diameter is �=0.8 mm. The cutout exposes struts location, and
is for visualization purpose only. Stents struts are completely enclosed by the blood medium
(left), struts are partially displaced outside of the blood medium (right).

Figure 8. Finite element model of a saccular aneurysm within ten partially enclosed struts of
�=0.8 mm. Zoom view over the stented region. A cross-section of the stent strut is represented
by approximately 16 elements. Discretization parameter h=0.7 for a global domain, h=0.12
near the stent struts.

The results of computations show that the presence of a stent induces a truly remarkable change of a blood flow
near the throat region, fig. 9. In the case of a stented vessel the streamlines are not bent towards the aneurysm
pouch, but remain similar to the bulk flow behavior. A parabolic flow profile is observed at the extreme ends
of the vessel. The flow rates were computed at the upstream and downstream boundaries. The presence of
the stent struts decreased the flow rate in the parent vessel. It averages the pressure inside the aneurysmal
sac (this fact was already proven rigorously in [9] in 2D), and eliminates neck singularities, see fig. 10 (bottom
left). Velocity vectors, depicted in fig. 11 illustrate that after stent placement, the aneurysmal vortex was no
longer present. This confirms in 3D results theoretically proven in 2D in [9]. Adaptive refinement and extremely
fine mesh found to be insufficient to properly model commercial multi-layer stents. It is evident that direct
finite element simulations could give an additional insight, a better understanding of blood flow nature within a
specific stent design, but we actually need much more computational power to simulate a pulsatile flow, where
hundreds of time steps should be computed within one cardiac cycle. For this reason a work in preparation [10]
aims at incorporating homogenized interface conditions and at providing some quantitative averaged results
useful for clinical purposes.
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Figure 10. Sequence of pressure (left), velocity (right) solution contours. From top to bottom:
unstented vessel, wire �=0.6 mm, 0.7 mm, 0.8 mm, and 0.9 mm, respectively.
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(a) no stent (b) �=0.8 mm (completely enclosed wires)

(c) �=0.6 mm (d) �=0.7 mm

(e) �=0.8 mm (f) �=0.9 mm

Figure 11. Velocity vectors colored by magnitude (not scaled arrow symbols).


