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Abstract

We consider a non-linear integro-differential model describing z, the position of the cell center on the
real line presented in [1]. We introduce a new ε-scaling and we prove rigorously the asymptotics when
ε goes to zero. We show that this scaling characterizes the long-time behavior of the solutions of our
problem in the cinematic regime (i.e. the velocity ż tends to a limit). The convergence results are
first given when ψ, the elastic energy associated to linkages, is convex and regular (the second order
derivative of ψ is bounded). In the absence of blood flow, when ψ, is quadratic, we compute the final
position z∞ to which we prove that z tends. We then build a rigorous mathematical framework for ψ
being convex but only Lipschitz. We extend convergence results with respect to ε to the case when ψ′
admits a finite number of jumps. In the last part, we show that in the constant force case (see Model
3 in [1], i.e. ψ is the absolute value), we solve explicitly the problem and recover the above asymptotic
results.
Keywords: Leukocyte rolling, Lipschitz mechanical energy, delayed gradient flow, Volterra integral
equations, asymptotic limits

1. Introduction

Neutrophils are the first line of defense against bacteria and fungi and help fighting parasites and
viruses. They are necessary for mammalian life, and their failure to recover after myeloablation is fatal.
Neutrophils are short-lived, effective killing machines. They take their cues directly from the infectious
organism, from tissue macrophages and other elements of the immune system. Neutrophils get close to
their destination through the blood system. When receiveing chemical signals, they express adhesion
molecules [2], responsible for their rolling, slowing down, and eventual sticking to vessel walls [3] (see
Fig. 1), followed by extravasation and crawling through tissue towards their final destination.

In this article we analyze a class of models for the process of rolling and slowing down along the
vessel wall by transient elastic linkages. The model has the nondimensionalized form

żε(t) +
∫
R+

ψ′
(
zε(t)− zε(t− εa)

ε

)
%(a, t)da = v(t) , t ∈ (0, T ] ,

zε(t) = zp(t) , t ≤ 0 .
(1)
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Figure 1: A schematic view of the interactions between a neutrophil and the arterial wall in the blood flow.

Here zε(t) ∈ R is the position of the cell at time t with the given past positions zp(t), t ≤ 0. The
integro-differential equation describes a force balance between the friction force f(t) = v(t) − żε(t)
with the blood flow velocity v(t), and the elastic linkage forces between the cell and the vessel wall,
described by the integral. These forces are parametrized by the age a of the linkages, and the density of
linkages with respect to their age is given by ρ(a, t) ≥ 0. The function ψ describes the potential energy
of a linkage, dependent on the distance zε(t)−zε(t−εa) between the present position of the cell and its
position when the linkage has been established (see Fig. 2). The dimensionless parameter ε > 0 results
from scaling and represents the ratio between the typical age of a linkage and a characteristic time for
the cell movement. Small values of ε correspond to a rapid turnover of linkages. The occurrence of
the factor 1/ε is a scaling assumption, needed to obtain an effect of the linkages in the limit ε → 0.
However, (1) can also be seen as a macroscopic rescaling of the model for the microscopic unknown
Z(τ) = zε(ετ)/ε. Note that in this interpretation we assume the data v and ρ to vary in terms of the
macroscopic time t.

z t−a1 z t z t−a2z t−a3

f t−a1 f t 

Figure 2: The position of the moving binding site at time t and time t− a1 with some of the respective linkages.

Models of the form (1) with various choices of ψ have been derived in [1], passing from a probabilistic
description to an averaged version. The simplest example is a linear model with quadratic potential
energy ψ(u) = u2/2. This has already been formulated in 1960s together with the formal macroscopic
limit as a derivation of rubber friction [4]. It has also been used in the context of the Filament Based
Lamellipodium Model [5, 6] for the crosslinking between cytoskeleton filaments and cell-substrate
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adhesion. There it is usually coupled with an age structured population model for the density ρ. Its
mathematical analysis has been developed in [7, 8, 9, 10, 11, 12].

Nonlinear models may contain the effects of material or of geometric nonlinearities. An example
for the latter is a model with linkages in the form of membrane tethers [13] connecting the anchoring
point with the closest boundary point of a circular cell with (microscopic) radius r, see Fig. 3. This
gives a tether length `(u) =

√
u2 + r2−r and, with linear material properties, ψ(u) = `(u)2/2 = O(u4)

as u → 0. Concerning material nonlinearities we also allow models with nondifferentiable potentials
such as constant force ψ(u) = |u|. Our main structural assumption is convexity of ψ.

z(t− a) z(t)

r`

v(t)

Figure 3: The actual length of filaments of a cell of radius r is the dashed (green) segment whose length is ` =√
(z(t)− z(t− a))2 + r2 − r

The formal macroscopic limit of (1) as ε→ 0 reads

ż0(t) +
∫
R+

ψ′(aż0(t))%(a, t)da = v(t) , t > 0 ,

z0(t) = zp(t) , t ≤ 0 .
(2)

Convexity of ψ implies that the left hand side of the implicit ODE is a strictly increasing function of
ż0(t). A rigorous justification of the macroscopic limit has been given in [7] for the linear problem
without the additional friction force due to the blood flow. Generalizations of this result belong to the
main goals of the present work.
Strongly related is the long time asymptotics. Assuming the data (ρ(a, t), v(t)) to converge to (ρ∞(a), v∞)
as t→∞, we expect convergence of the velocity żε(t) to a constant ż∞ satisfying

ż∞ +
∫
R+

ψ′(aż∞)%∞(a)da = v∞ , (3)

essentially the same equation as in (2). Again we shall be interested in making this limit rigorous.
Another concern of this article, motivated by the formal computations made in [1] is to give a

rigorous mathematical meaning to (1) in the case, when ψ is only Lipschitz (as a consequence of
convexity), and to justify the asymptotic limits also in this situation. The main results of this paper
can be summarized as follows :

i) For ψ convex and additionally with Lipschitz continuous derivative, a comparison principle for a
class of integro-differential equations including (1) (proved in Section 2) is used in Section 3 to
obtain an a priori estimate allowing to show global existence of a unique solution of (1). The
comparison principle is also used for an error estimate in the rigorous justification of the limit
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ε → 0. Under weak convergence assumptions on the data as t → ∞ we prove z(t) = ż∞t + O(1)
for the solution z of (1) with ε = 1, where ż∞ is the unique solution of (3). The asymptotic
behaviour of the O(1)-term remains open in general, except for a simple linear model problem
with ż∞ = 0, where the limit of z(t) can be computed explicitly.

ii) In Section 4 the case of convex (and therefore locally Lipschitz) ψ without any further smoothness
assumptions is treated, except global Lipschitz continuity. In this situation a new notion of
solution is needed. We take inspiration from gradient flows for nonsmooth energy functionals [14]
and rewrite the problem with a smoothed potential as a variational inequality, where we can pass
to the nonsmooth limit. The limiting variational inequality

(v(t)− żε(t))(w−zε(t)) + ε

∫
R+

ψ

(
zε(t)− zε(t− εa)

ε

)
%(a, t)da

≤ ε
∫
R+

ψ

(
w − zε(t− εa)

ε

)
%(a, t)da , ∀w ∈ R ,

(4)

is then equivalent to the differential inclusion

v(t)− żε(t) ∈ ∂
∫
R+

εψ

(
zε(t)− zε(t− εa)

ε

)
%(a, t)da ,

where the right hand side is the subdifferential of the integral interpreted as a function of zε(t). We
prove global existence of a solution in this sense. With w = zε(t) + εŵ, the variational inequality
is written in a form where we can pass to the limit ε→ 0, giving

(v − ż0(t))ŵ +
∫
R+

ψ(aż0(t))%(a, t)da ≤
∫
R+

ψ(aż0(t) + ŵ)%(a, t)da, ∀ŵ ∈ R . (5)

The linearization approach of Section 3 for the rigorous limit does not work in the nonsmooth case.
However, convergence can be proved under the additional assumptions of time-independent data
(ρ, v), finitely many discontinuities of ψ′, and a nonvanishing limiting velocity. The proof relies
on the fact that, by the nonvanishing velocity, the argument of ψ′ is close to the discontinuities
only for a small set of values of a. Finally the convergence as t → ∞ is transformed to the
convergence as ε→ 0 by a rescaling, allowing to apply the previous result. This gives essentially
z(t) = ż∞t+o(t), i.e. a weaker result than for smooth potentials, where ż∞ is equal to the solution
γ of

(v − γ)w +
∫
R+

ψ(aγ)%(a)da ≤
∫
R+

ψ(w + aγ)%(a)da , ∀w ∈ R . (6)

iii) In order to illustrate our results, we consider in Section 5 the case when ψ(u) = |u|, and study
solutions of (5). We show a plastic asymptotic behavior of the model : if v∞ /∈ (−µ∞, µ∞) where
µ∞ :=

∫
R+
%∞(a)da, then γ + µ∞ sgn(γ) = v∞ and z ∼ γt when t is large. If v∞ ∈ [−µ∞, µ∞],

the unique solution of (5) is γ = 0 : the neutrophil should stop. In this latter case, the previous
asymptotic results do not prove that actually ż vanishes for t growing large. Assuming that
%(a, t) := %∞(a)χ{a<t}(a, t) with %∞ being a decreasing integrable function and χ{a<t}(a, t) the
characteristic function of the set {a < t}, we show that

z(t) =
{
z0 +

∫ t
0 [v∞ − µ∞(τ)]+dτ, if v∞ ≥ 0,

z0 +
∫ t

0 [v∞ + µ∞(τ)]−dτ, if v∞ ≤ 0.
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where µ∞(t) :=
∫ t

0 %∞(t)dt and [·]± denotes the positive/negative part. The same approach gives
an explicit profile of z(t) in the case when v∞ /∈ [−µ∞, µ∞]. All these arguments provide rigorous
mathematical justifications of numerical observations and formal computation in [1, Section 3.3.2].

2. Notations, generic hypotheses, and a comparison principle

We introduce some notation for the rest of this article. For the final time T ∈ (0,∞] we introduce
IT := [0, T ] for T < ∞ and IT := [0,∞) for T = ∞. For functional spaces we write LptLqa :=
Lp(IT ;Lq(R+)) for any real (p, q) ∈ [1,∞]2, and similarly L∞a,t := L∞(R+ × IT ). The weighted Lp

space of functions of a ∈ R+ with non-negative weight ω(a) is denoted by Lp(ω(a)da), 1 ≤ p ≤ ∞.
We state the basic hypotheses that are common to results presented hereafter. Extra hypotheses

will be assumed locally in the claims.

Assumptions 2.1. For 0 < T ≤ ∞ we assume that
i) The potential ψ is even, convex, and ψ(0) = 0 ≤ ψ(u), u ∈ R.
ii) The past data zp is bounded and Lipschitz on R−, i.e.,

|zp(a1)− zp(a2)| ≤ Lp|a1 − a2|, (a1, a2) ∈ R2
− .

iii) The source term satisfies v ∈ C1(IT ).
iv) The nonnegative kernel satisfies % ∈ CB(IT ;L1((1 + a2)da)).

For later use we prove a comparison principle and a stability estimate for a class of integro-
differential equations including (1).

Lemma 2.1. Let ε, T > 0 and let φ(a, t, u) be measurable with respect to (a, t), and let it be odd and
nondecreasing as a function of u. Let the operator H be defined by

H[z](t) := ż(t) +
∫ ∞

0
φ

(
a, t,

z(t)− z(t− εa)
ε

)
da , 0 < t ≤ T ,

acting on functions z, whose values on (−∞, 0] are prescribed. Then H satisfies the comparison
principle (

H[z](t) ≥ 0 for t > 0
)

and
(
z(t) ≥ 0 for t ≤ 0

)
=⇒ z ≥ 0 .

Any solution z ∈ C([0, T ]) of the problem

H[z](t) = f(t) , t > 0 ; z(t) = zp(t) , t ≤ 0 ,

satisfies

|z(t)| ≤ sup
(−∞,0)

|zp|+
∫ t

0
|f(τ)|dτ , 0 ≤ t ≤ T .

Proof. The comparison principle is, as usual, first shown for the case of strict inequalities. Thus, we
assume H[z](t) > 0, t > 0, and z(t) > 0, t ≤ 0. Let t0 > 0 denote the smallest zero of z. Then we
arrive at the contradiction

ż(t0) > −
∫ ∞

0
φ

(
a, t0,

−z(t0 − εa)
ε

)
da ≥ 0 ,
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implying z > 0. The statement with non-strict inequalities is obtained in the standard way by an
approximation argument: For δ > 0 let zδ := z + δ(1 + t+). This implies

H[zδ](t) ≥ δ +H[z](t) ≥ δ > 0 , t > 0 , zδ(t) ≥ δ > 0 , t ≤ 0 ,

giving z ≥ −δ(1 + t+) by the argument with strict inequalities and z ≥ 0 in the limit δ → 0.
Finally we define Z(t) := supτ≤0 |zp(τ)| +

∫ t
0 |f(τ)|dτ , t > 0, and Z(t) := supτ≤t |zp(τ)|, t ≤ 0. This

implies

H[Z − |z|](t) = |f(t)| − sgn(z(t))f(t)

+
∫ ∞

0

(
sgn(z(t))φ

(
a, t,

z(t)− z(t− εa)
ε

)
+ φ

(
a, t,

Z(t)− Z(t− εa)− |z(t)|+ |z(t− εa)|
ε

))
da

≥
∫ ∞

0

(
sgn(z(t))φ

(
a, t,

z(t)− z(t− εa)
ε

)
+ φ

(
a, t,
−|z(t)|+ |z(t− εa)|

ε

))
da ,

where we have used the monotonicities of Z and of φ. For z(t) > 0 we use the oddness of φ and write
the integrand on the right hand side as

φ

(
a, t,

z(t)− z(t− εa)
ε

)
− φ

(
a, t,

z(t)− |z(t− εa)|
ε

)
≥ 0 ,

by the monontonicity of φ. For z(t) < 0 the integrand reads

φ

(
a, t,

z(t) + |z(t− εa)|
ε

)
− φ

(
a, t,

z(t)− z(t− εa)
ε

)
≥ 0 ,

showing H[Z − |z|](t) ≥ 0, t > 0. Since obviously Z(t) − |z(t)| ≥ 0 for t ≤ 0, an application of the
comparison principle completes the proof.

3. The regular convex potential

In this section the additional assumption ψ ∈ C1,1(R) on the potential is used. We start with
existence results for (1) and for the formal limit (2) as ε→ 0.

Theorem 3.1. Let Assumptions 2.1 hold and let furthermore ψ′ be Lipschitz on R+. Then there exists
a unique solution zε ∈ C1(IT ) of problem (1).

Proof. Local existence will be proven by Picard iteration as for ODEs in the space C([0, τ ]) with
τ > 0 small enough. Since this is completely standard, we only prove the contraction property of the
fixed point map

F [z](t) = zp(0) +
∫ t

0
v(s)ds−

∫ t

0

∫ ∞
0

ρ(a, s)ψ′
(
z(s)− z(s− εa)

ε

)
da ds .

Let z1, z2 ∈ C([0, τ ]) with z1(t) = z2(t) = zp(t), t ≤ 0. Then we estimate

|F [z1](t)− F [z2](t)| ≤ 2L′τ
ε

sup
s∈(0,T )

∫ ∞
0

ρ(a, s)da sup
s∈(0,τ)

|z1(s)− z2(s)| ,
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with the Lipschitz constant L′ of ψ′, showing that F is a contraction for τ small enough. Existence on
[0, T ] follows from the a priori estimate

|zε(t)| ≤ sup
(−∞,0)

|zp|+
∫ t

0
|v(s)|ds ,

obtained by an application of Lemma 2.1 with φ(a, t, u) = ρ(a, t)ψ′(u) and f = v. Continuous differ-
entiability of zε follows from the continuity of v and ρ with respect to t.

Lemma 3.1. Let the assumptions of Theorem 3.1 hold. Then there exists a unique solution z0 ∈
C1(IT ) of (2).

Proof. This is an initial value problem for an implicit ODE. The monotonicity of ψ′ and ψ′(0) = 0
imply existence and uniqueness of ż0(t) as well as the stability estimate |ż0(t)| ≤ |v(t)|. By the Lipschitz
continuity of ψ′ and by ρ ∈ C(IT ;L1(a da)), the left hand side of (2) is continuous as a function of
ż0(t) and t. This and the stability estimate imply continuity of ż0, completing the proof.

Now we are in the position to prove a convergence result.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Then limε→0 zε = z0 uniformly in bounded
subsets of IT .

Proof. A straightforward computation shows that the difference between (1) and (2) can be written
as a linearized problem for the error ẑε := zε − z0:

Lε[ẑε](t) = Rε(t) , t > 0 ; ẑε(t) = 0 , t ≤ 0 ,

with

Lε[z](t) := ż(t) +
∫
R+

kε(a, t)
z(t)− z(t− εa)

ε
da ,

kε(a, t) := %(a, t)
∫ 1

0
ψ′′
(
s
zε(t)− zε(t− εa)

ε
+ (1− s)aż0(t)

)
ds ,

and with
Rε(t) =

∫ ∞
0

kε(a, t)a
(
ż0(t)− z0(t)− z0(t− εa)

εa

)
da . (7)

Since ψ′′ ≥ 0, Lemma 2.1 (with φ(a, t, u) = kε(a, t)u) can be applied to the linearized problem, giving
|ẑε(t)| ≤

∫ t
0 Rε(τ)dτ . It remains to estimate (7). We start with∣∣∣∣ż0(t)− z0(t)− z0(t− εa)

εa

∣∣∣∣ ≤ 1
εa

∫ t

t−εa
|ż0(t)− ż0(s)| ds

≤ 1
εa

∫ t

t−εa
|ż0(t)− ż0(s+)| ds+ 1

εa

∫ t

t−εa
|ż0(s+)− ż0(s)| ds .

In the first term on the right hand side we use the modulus of continuity ωt of ż0 on the interval [0, t].
In the second term the integrand is bounded by Assumption 2.1 (ii). Thus,∣∣∣∣ż0(t)− z0(t)− z0(t− εa)

εa

∣∣∣∣ ≤ ωt(εa) + (|ż0(0+)|+ Lp) 1t−εa<0 .
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Since kε ≤ L′ρ (with the Lipschitz constant L′ of ψ′ already used above),

|Rε(t)| ≤ L′
∫ ∞

0
aρ(a, t)ωt(εa)da+ L′ (|ż0(0+)|+ Lp)

∫ ∞
t/ε

aρ(a, t)da

≤ L′
∫ ∞

0
aρ(a, t)ωt(εa)da+ L′ (|ż0(0+)|+ Lp)

∫ ∞
0

(1 + a)aρ(a, t)da ε

ε+ t
.

The result follows by integration with respect to t and by using the dominated convergence theorem
for the first term on the right hand side.

The rest of this section is concerned with large time asymptotics. For notational simplicity the pa-
rameter ε is set to 1, whence (1) reads

ż(t) +
∫
R+

ψ′ (z(t)− z(t− a)) %(a, t)da = v(t) , t > 0 ,

z(t) = zp(t) , t ≤ 0 .
(8)

First we prove that for large time the velocity becomes approximately constant. For the time dependent
data, a weak convergence assumption is sufficient, in the sense that the difference between the data
and its asymptotic limit is integrable up to t =∞.

Theorem 3.3. Let the assumptions of Theorem 3.1 hold with T = ∞ and let v∞ ∈ R and %∞ ∈
L1((1 + a)da) satisfy∫ ∞

0
|v(t)− v∞|dt <∞ ,

∫ ∞
0

∫ ∞
0

a|%(a, t)− %∞(a)| da dt <∞ .

Then there exists a unique solution ż∞ ∈ R of (3), such that the solution z of (8) satisfies

z(t) = ż∞t+O(1) , as t→∞ .

Proof. Existence and uniqueness for (3) follows as in the proof of Lemma 3.1, and we denote the
solution by ż∞ := γ. A straightforward computation shows that ẑ, defined by ẑ(t) := z(t)−ż∞t−zp(0),
t > 0, and ẑ(t) = 0, t ≤ 0, satisfies the linearized equation L[ẑ](t) = R(t), t > 0, with

L[z](t) := ż(t) +
∫ ∞

0
k(a, t)(z(t)− z(t− a))da ,

k(a, t) := ρ(a, t)
∫ 1

0
ψ′′(s(z(t)− z(t− a)) + (1− s)aż∞)ds ,

R(t) := v(t)− v∞ −
∫ ∞

0
ψ′(aż∞)(ρ(a, t)− ρ∞(a))da .

Lemma 2.1 can be applied with ε = 1, φ(a, t, u) = k(a, t)u, and f = R, to show that, for any t > 0,

|z(t)− ż∞t| ≤ |zp(0)|+ |ẑ(t)| ≤ |zp(0)|+
∫ ∞

0
|R(τ)|dτ

≤ |zp(0)|+
∫ ∞

0
|v(τ)− v∞|dτ + L′|ż∞|

∫ ∞
0

∫ ∞
0

a|ρ(a, τ)− ρ∞(a)|da dτ ,

completing the proof.

8



An improvement of this result, i.e. convergence of ż(t) and of z(t) − ż∞t, can be achieved under
additional assumptions, in particular for vanishing flow velocity v.

Proposition 3.1. Let the assumptions of Theorem 3.1 hold with T =∞ and let v ≡ 0. Let % satisfy
0 ≥ (∂t + ∂a)% ∈ (L∞ ∩ L1)(R+ × R+) and 0 ≤ %(0, t) ∈ L∞(R+). Furthermore let there exist
%∞ ∈ L1(R+, (1 + a)) such that %(·, t)→ %∞ in L1(R+, (1 + a)). Then the solution of (8) satisfies∫ ∞

0
|ż(t)|2dt ≤

∫
R+

%(a, 0)ψ(zp(0)− zp(−a))da

and limt→∞ ż(t) = 0.

Proof. Setting u(a, t) := z(t)− z(t− a), the function ψ(u(a, t)) solves the transport problem

(∂t + ∂a)ψ(u) = ψ′(u)ż, ψ(u(0, t)) = 0 and ψ(u(a, 0)) = ψ(uI(a)) .

with uI(a) := zp(0) − zp(−a). This connection between the delay equation and age structured popu-
lation models has already been used in [7], see also [15]. Considering %(a, t)ψ(u(a, t)), it solves in the
sense of characteristics (cf [7, Theorem 2.1 and Lemma 2.1]) :

(∂t + ∂a)%ψ(u)− ((∂t + ∂a)%)ψ(u) = %ψ′(u)ż,

integrated in age this gives :

d
dt

∫
R+

%(a, t)ψ(u(a, t))da ≤
∫
R+

%ψ′(u(a, t))daż = −ż2,

which then leads to : [∫
R+

%(a, t)ψ(u(a, t))da
]s=t

s=0

+
∫ t

0
ż2ds ≤ 0.

This shows that ż belongs to L2(R+) since

‖ż‖2
L2(R+) ≤

∫
R+

ψ(uI)%(a, 0)da <∞.

With the formula u(a0, t) =
∫ t
t−a0

ż(τ)dτ , a0 < t, the Cauchy-Schwarz inequality implies

|u(a0, t)| ≤
√
a0‖ż‖L2(t−a0,t).

Using Lebesgue’s Theorem, it is easy to show that limt→∞ ‖ż‖L2(t−a0,t) = 0. Thanks to Lebesgue’s
Theorem again, one shows that ∫ t

0
%∞(a)|u(a, t)|da→ 0

when t grows large. By hypothesis, ψ′(0) = 0, so that∣∣∣∣∫ t

0
ψ′(u(a, t))%∞(a)da

∣∣∣∣ ≤ ‖ψ′′‖L∞(R)

∫ t

0
|u(a, t)|%∞(a)da,
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which shows that the left hand side also tends to zero as t tends to infinity.
In order to study the convergence of

∫
R+
%(a, t)ψ′(u(a, t))da when t goes to infinity, we split the

integral in two parts :∫
R+

ψ′(u)%(a, t)da =
(∫ t

0
+
∫ ∞
t

)
ψ′(u)%(a, t)da =: I1 + I2.

For the first part one has :

I1 =
∫ t

0
ψ′(u) (%(a, t)− %∞(a)) da+

∫ t

0
ψ′(u)%∞(a)da

The last term is already estimated above and tends to zero when t goes large. For the first one, as
ψ′(0) = 0, one has∫ t

0
ψ′(u)(%(a, t)− %∞(a))da ≤ ‖ψ′′‖L∞

∥∥∥∥ u√
1 + a

∥∥∥∥
L∞(0,t)

‖(1 + a)(%(·, t)− %∞)‖L1(R+)

the latter term vanishing when t grows by hypothesis. It remains to consider I2. By the definition of
u we have

u(a, t) = uI(a− t) +
∫ t

0
ż(τ)dτ , a ≥ t ,

and thus
|u(a, t)| ≤ |uI(a− t)|+

√
t‖ż‖L2

t
,

which finally provides : ∣∣∣∣ u(a, t)
(1 + a)

∣∣∣∣ ≤ ∥∥∥∥ uI
(1 + a)

∥∥∥∥
L∞
a

+ ‖ż‖L2
t
.

By Lebesgue’s Theorem, this gives that I2 tends to zero as t goes to infinity. These arguments show
that ż vanishes at infinity since ż(t) = −

∫
R+
%(a, t)ψ′(u(a, t))da.

Finally we are able to identify the limit of z(t) under the further assumptions that % is time
independent and nonincreasing, and the problem is linear. We assume that ψ(u) = u2/2 and ∂a%(a) ≤
0, and set p(a, t) :=

∫ t
0 u(a, τ)dτ =

∫ t
0 (z(τ)− z(τ − a))dτ , which solves

(∂t + ∂a)p = −
∫
R+

%(a)p(a, t)da+ uI(a) , a.e. (a, t) ∈ (R+)2

p(0, t) = 0, p(a, 0) = 0.
(9)

If p reaches a steady state p∞, it should satisfy

∂ap∞(a) = −
∫
R+

%(ã)p∞(ã)dã+ uI(a) , p∞(0) = 0 ,

with the explicit solution

p∞(a) =
∫ a

0
uI(ã)dã− a

∫ ∞
0

%(ã)
∫ ã

0
uI(â)dâ dã

(
1 +

∫ ∞
0

%(ã)ã dã
)−1

.
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Then, setting p̂(a, t) := p(a, t) − p∞(a), it solves the homogeneous problem associated with (9),
with the initial condition p̂(a, 0) = −p∞(a). Multiplication by ρp̂ and integration with respect to a
and t gives ∫ ∞

0
ρp̂2da− 2

∫ t

0

∫ ∞
0

p̂2∂aρ da ds+ 2
∫ t

0

(∫ ∞
0

ρp̂ da

)2
ds =

∫ ∞
0

ρp2
∞da .

We use the monotonicity of ρ for the second term and the Cauchy-Schwarz inequality for the first to
obtain (∫ ∞

0
ρp̂ da

)2
+ 2

∫ ∞
0

ρ da

∫ t

0

(∫ ∞
0

ρp̂ da

)2
ds ≤

∫ ∞
0

ρ da

∫ ∞
0

ρp2
∞da ,

which implies
∫∞

0 ρ(a)p̂(a, t)da→ 0 as t→∞ using the same arguments as for ż and
∫
R+
ρ(a)u(a, t)da

in Proposition 3.1. The simple computation

z(t)− zp(0) +
∫
R+

%(a)p∞(a)da = −
∫
R+

%(a)p̂(a, t)da

completes the proof of the following result.

Proposition 3.2. Let the assumptions of Proposition 3.1 hold, let % be independent of t and nonin-
creasing, and let ψ(u) = u2/2. Then the solution of (8) satisfies

lim
t→∞

z(t) = zp(0)−
∫ ∞

0
ρ(a)p∞(a)da =

(
zp(0) +

∫ ∞
0

%(a)
∫ 0

−a
zp(τ)dτ

)(
1 +

∫ ∞
0

%(ã)ã dã
)−1

,

and the convergence is exponential.

For instance if %(a) := β exp(−ζa), where ζ and β are constants,

lim
t→∞

z(t) =
ζ2zp(0) + βζ

∫ 0
−∞ exp(ζτ)zp(τ)dτ
ζ2 + β

.

4. Discontinuous stretching force – differential inclusions

In this section we allow the elastic response function ψ′ to be discontinuous. However, different
from the preceding section, we assume its boundedness. Note that in terms of the potential ψ this
means that the convexity assumption, which implies local Lipschitz continuity, is strengthened to
global Lipschitz continuity. We start by smoothing ψ, to be able to apply results from the preceding
section.

Lemma 4.1. Let Assumptions 2.1 hold and furthermore ψ ∈ C0,1(R) with Lipschitz constant L. Let
ω1 denote a smooth, even probability density and ωδ := δ−1ω1(·/δ). Then, for δ > 0, ψδ := ωδ ? ψ −
(ωδ ? ψ)(0) is smooth, even, convex, and Lipschitz continuous with Lipschitz constant L. Furthermore
ψ′δ is Lipschitz continuous on R and limδ→0+ ψδ = ψ, uniformly on bounded subsets of R.
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Proof. Since ψ is convex we have

ψ(θu+ (1− θ)v − y) = ψ(θ(u− y) + (1− θ)(v − y)) ≤ θψ(u− y) + (1− θ)ψ(v − y) .

Integrating against ωδ(y)dy gives the convexity of ψδ. The estimate

|ψ′′δ (u)| =
∣∣∣∣∫

R
ψ′(u− v)ω′δ(v)dv

∣∣∣∣ ≤ L

δ

∫
R
|ω′1(η)|dη

shows the Lipschitz continuity of ψ′δ. The remaining results are standard and can be found in basic
textbooks (cf. Appendix C Theorem 6 in [14, Appendix C, Theorem 6]).

Lemma 4.2. Let the assumptions of Lemma 4.1 hold. Then problem (1) with ψ replaced by ψδ has
a unique solution zδε ∈ C1(IT ), which is, for every compact Ĩ ⊂ IT , bounded in C1(Ĩ) uniformly in δ
and ε.

Proof. The data with ψ replaced by ψδ satisfy the assumptions of Theorem 3.1, implying the existence
and uniqueness statement. The obvious estimates

|żδε(t)| ≤ ‖v‖L∞(IT ) + L

∥∥∥∥∫ ∞
0

%(a, ·)da
∥∥∥∥
L∞(IT )

, |zδε(t)| ≤ |zp(0)|+ t‖żδε‖L∞(IT ) ,

complete the proof.

We shall deal with the lack of smoothness of the potential by passing to a variational formulation
analogous to the treatment of gradient flows with nonsmooth convex potentials (see, e.g., [14]). For
t ∈ IT , z : (−∞, t)→ R, and w ∈ R, we define

Iδ[z, t](w) := ε

∫
R+

ψδ

(
w − z(t− εa)

ε

)
%(a, t)da ,

which is (for each δ > 0) a smooth function of w. With the notation from Lemma 4.2 we have by the
convexity and smoothness of ψδ that for each t ∈ IT

zδε(t) = argmin
w∈R

(
Iδ[zδε , t](w) + w(żδε(t)− v(t))

)
,

or, equivalently,

Iδ[zδε , t](w) ≥ Iδ[zδε , t](zδε(t)) + (v(t)− żδε(t))(w − zδε(t)) , ∀w ∈ R . (10)

The formal limit
I[z, t](w) := ε

∫
R+

ψ

(
w − z(t− εa)

ε

)
%(a, t)da ,

of Iδ is still a convex, but not necessarily a smooth function of w. We define its set valued subdiffer-
ential by

∂I[z, t](w) := {q ∈ R : I[z, t](ŵ) ≥ I[z, t](w) + q(ŵ − w), ∀ŵ ∈ R} .

For each w ∈ R it is a nonempty closed interval. An existence result, where (1) is replaced by a
differential inclusion can now be proven by passing to the limit δ → 0 in (10).
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Theorem 4.1. Let the assumptions of Lemma 4.1 hold. Then there exists zε ∈ C0,1
loc (IT ) such that,

for almost every t ∈ IT ,
v(t)− żε(t) ∈ ∂I[zε, t](zε(t)) . (11)

Proof. By Lemma 4.2 and the Arzela-Ascoli theorem, there exists zε ∈ C0,1
loc (IT ), such that, as δ → 0,

zδε converges (up to the choice of an appropriate subsequence) to zε uniformly on bounded subintervals
of IT . Also żδε converges to żε in L∞(IT ) weak star, where the notation is justified, since it is equal to
the derivative of zε almost everywhere in IT . By Lemma 4.1, ii) and iii), the integrands in Iδ[zδε , t](w)
and Iδ[zδε , t](zδε(t)) converge pointwise in a ∈ R+. By the uniform Lipschitz continuities of ψδ and zδε
the integrands can be bound by C(1+a)ρ ∈ L1(R+). Therefore we can pass to the limit in Iδ[zδε , t](w)
and Iδ[zδε , t](zδε(t)) by dominated convergence.
The last term in (10) converges in L∞(IT ) weak star, as a consequence of the strong convergence of
zδε and of the weak star convergence of żδε . Therefore the limiting variational inequality

I[zε, t](w) ≥ I[zε, t](zε(t)) + (v(t)− żε(t))(w − zε(t)) , ∀w ∈ R ,

holds for all Lebesgue points t of żε, and this is equivalent to (11).

The formal limit problem (5) is equivalent to

0 ∈ ∂Jt(ż0(t)) with Jt(w) = w2

2 − v(t)w +
∫ ∞

0

ψ(aw)
a

ρ(a, t)da ,

which means that we are looking for a minimizer of Jt. Since this a strictly convex, coercive function,
a unique minimizer exists, showing the existence of a unique solution of (5).

In the following proof we shall need a result on the representation of subdifferentials [16]. With
the definition

uε(a, t) :=
{
zε(t)−zε(t−εa)

ε if t > εa
zε(t)−zp(t−εa)

ε otherwise
, u0(a, t) := aż0(t), for a.e. (a, t) ∈ R+ × (0, T ).

we define the function
f(w) :=

∫
R+

ψ(uε(a, t) + w)%(a, t)da .

As a consequence of ψ being convex and Lipschitz, the subdifferentials of ψ and f coincide with their
generalized gradients, as defined in [16], see [16, Proposition 2.2.7]. This allows to use [16, Theorem
2.7.2] implying

∂f(w) ⊂
∫
R+

∂ψ(w + uε(a, t))%(a, t)da .

As a consequence there exist measurable selections ζuε(a, t) ∈ ∂ψ(uε(a, t)) and ζu0(a, t) ∈ ∂ψ(u0(a, t))
such that

żε(t) +
∫
R+

ζuε(a, t)%(a, t)da = v(t) , ż0(t) +
∫
R+

ζu0(a, t)%(a, t)da = v(t) .

Theorem 4.2. Assume that zε solves the differential inclusion (4), with

• % is constant in time, and % ∈ L1(R+, (1 + a)2) ∩ L∞(R+)
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• v is constant,

• ψ is convex, Lψ-Lipschitz and there exists a finite set U := {ui, i ∈ {1, . . . , N}} such that
u1 < u2 < · · · < uN , ψ ∈ C1,1(R+ \ U) and there exists Lψ′ such that

|ψ′(w1)− ψ′(w2)| ≤ Lψ′ |w2 − w1|.

for all (w1, w2) ∈ (−∞, u1)2 ∪
⋃N−1
i=1 (ui, ui+1)2 ∪ (uN ,∞)2.

Then there exists a unique real γ ∈ R solving (5). Moreover if γ 6= 0, then

‖zε − z0‖C([0,T ]) ≤ C(v, ρ, Lψ′ , zp, T )
√
ε |ln ε| (12)

Proof. We prove the result for N = 1, the general proof for N > 1 works the same. Unique solvability
of (5) has been shown above. Obviously, with a kernel %(a) and a source term v both constant in time,
its solution γ := ż0 is time independent. For the rest of the proof, we set u0(a, t) := aγ and we assume
that γ 6= 0. Then, one defines Aη,t := {a ∈ R+ s.t. |uε(a, t)− u0(a, t)| ≤ η}. Since, for a fixed t, the
function a 7→ (uε(a, t)−u0(a, t)) is continuous, Aη,t is a closed set. It is also Lebesgue-measurable. By
hypothesis, there exists u ∈ R such that ψ ∈ C1,1(R \ {u}) and there exists a constant Lψ′ such that

|ψ′(u)− ψ′(v)| ≤ Lψ′ |u− v|, ∀(u, v) ∈ (−∞, u)2 ∪ (u,+∞)2.

In this context, we consider four cases depending on whether γ > 0 (resp γ < 0) and u ≥ 0 (resp.
u < 0) :

i) If γ > 0 and u < 0, we assume that η < |u|. For every a ∈ Aη,t, one has :

u0(a, t) = γa ≥ 0 > u

and
−η < uε(a, t)− γa < η

which implies :
u < γa+ u < γa− η < uε(a, t).

This means that for every a ∈ Aη,t,

(u0(a, t), uε(a, t)) ∈ (u,∞)2.

Both solutions lie in the domain where ψ′ is Lipschitz. Thus ζuε(a, t) = ψ′(uε(a, t)) and ζu0(a, t) =
ψ′(u0(a, t)), and thus setting

Rη(t) :=
∫
Aη,t

(ζuε(a, t)− ζu0(a, t)) %(a)da

one has that |Rη(t)| ≤ ηLψ′‖%‖L1
a
. The symmetric case when γ < 0 and u > 0 works the same

provided again that η < u.

ii) If instead, γ > 0 and u ≥ 0, there exists a0 ≥ 0 such that u = γa0. We split the previous integral
in two parts :

Rη(t) =
(∫

Aη,t∩B(a0,ω)
+
∫
Aη,t\B(a0,ω)

)
(ζuε(a, t)− ζu0(a, t)) %(a)da =: I1(t) + I2(t)
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where ω is a small positive parameter yet to be fixed.
The first term can be bounded by the measure of B(a0, ω), indeed :

|I1(t)| ≤ 2Lψ
∫
B(a0,ω)

%(a)da ≤ Cω (13)

the latter bound being possible since % is also a bounded function.
Next, if a ∈ Aη,t \B(a0, ω) we start by choosing a ≤ a0 − ω. Moreover, we assume that

ω >
η

γ
(14)

These two latter inequalities allow to write :

0 < η < ωγ ≤ γ(a0 − a) = u0(a0, t)− u0(a, t) = u− u0(a, t)

which implies obviously that u0(a, t) < u− η < u. Since a ∈ Aη,t,

uε(a, t) < η + u0(a, t) < η + u0(a0, t)− η = u

so that uε(a, t) < u as well. This implies that : for a ∈ Aη,t and a ≤ a0 − ω, (uε(a, t), u0(a, t)) ∈
(−∞,−u)2.
If a ≥ a0 + ω and a ∈ Aη,t, then one shows in the same way that : (uε(a, t), u0(a, t)) ∈ (u,∞)2.
The case when γ < 0 and u ≤ 0 follows exactly the same lines and leads to the same conclusion :
when a ∈ Aη,t \B(a0, ω), provided that (14) holds :

(uε(a, t), u0(a, t)) ∈ (−∞, u)2 ∪ (u,∞)2.

Thus ζuε(a, t) = ψ′(uε(a, t)) and ζu0(a, t) = ψ′(u0(a, t)) and again

∀a ∈ Aη,t \B(a0, ω), |ζuε(a, t)− ζu0(a, t)| ≤ Lψ′η

which shows that
|I2(t)| ≤ Lψ′η‖%‖L1

a
(15)

So, if for instance ω = 2η/|γ|, combining (13) and (15), we have proved that :

|Rη(t)| ≤ Cη

|γ|
.

One shall remark firstly that η can be made arbitrarily small and that the latter bound is uniform
with respect to ε.

Setting again ẑε(t) := zε(t)− z0(t), we shall write the difference equation solved by ẑε :

∂tẑε +
∫
R+

(
ζuε(a,t) − ζu0(a,t)

)
%(a)da = 0.

We rewrite the last integral term on the left hand side as∫
R+

(
ζuε(a,t) − ζu0(a,t)

)
%(a)da =

∫
R+\Aη,t

ζuε(a,t) − ζu0(a,t)

uε(a, t)− u0(a, t) (uε(a, t)− u0(a, t))%(a)da

+
∫
Aη,t

ζuε(a,t) − ζu0(a,t)%(a)da
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that becomes :

∂tẑε +
∫
R+\Aη,t

ζuε(a,t) − ζu0(a,t)

uε(a, t)− u0(a, t) (uε(a, t)− u0(a, t))%(a)da = −Rη,

and we denote
kε(a, t) :=

ζuε(a,t) − ζu0(a,t)

uε(a, t)− u0(a, t)%(a)χR+\Aε,η,t(a). (16)

Since the subdifferential of ψ is monotone, kε is positive, moreover it is a function in L1(R+, (1 + a)2).
Indeed

0 ≤ kε(a, t) ≤ 2Lψ%(a)/η. (17)
Our problem can thus be rephrased as

∂tẑε +
∫
R+

kε(a, t) {uε(a, t)− u0(a, t)} da = −Rη, (18)

that becomes :

∂tẑε +
∫
R+

kε(a, t) {uε(a, t)− ũ0,ε(a, t)} da = −
∫
R+

kε(a, t)(ũ0,ε(a, t)− u0(a, t))da−Rη,

where

ũ0,ε(a, t) :=
{
z0(t)−z0(t−εa)

ε = γa if t ≥ εa
z0(t)−zp(0)

ε = γt
ε otherwise.

Thanks to this latter definition the first term in the right hand side above can be reduced to∫
R+

kε(a, t)(ũ0,ε(a, t)− u0(a, t))da = 1
ε

∫ ∞
t
ε

(
t

ε
− a
)
kε(a, t)da

Then we rewrite (18) as :

Tε[ẑε](t) = 1
ε

∫ +∞

t
ε

kε(a, t)
(
a− t

ε
+ ẑε(t− εa)

)
da−Rη, (19)

where Tε is defined as

Tε[ẑε](t) := ∂tẑε(t) + 1
ε

(∫
R+

kε(a, t)da
)
ẑε(t)−

1
ε

∫ t
ε

0
kε(a, t)ẑε(t− εa)da.

The first term in the right hand side of (19) can be estimated thanks to (17) :∣∣∣∣∣1ε
∫ +∞

t
ε

kε(a, t)ẑε(t− εa)da
∣∣∣∣∣ ≤ 4Lψ(1 + Lzp)

∥∥(1 + a)2%
∥∥
L1
a

η(1 + t
ε )

. (20)

At this step, we have proved that

Tε[ẑε](t) ≤ m(t) := C

(
η

|γ|
+ 1
η(1 + t/ε)

)
.
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An easy computation shows that

Tε [|ẑε|] (t) ≤ sgn(ẑε(t))Tε[ẑε](t) ≤ m(t)

and since
∫ t

0 m(s)ds is non-decreasing and non-negative, one has

Tε
[∫ t

0
m(τ)dτ

]
≥ m(t)

leading to the inequality :

Tε [|ẑε|] (t) ≤ Tε
[∫ t

0
m(τ)dτ

]
We are in the framework of [17, Generalized Gronwall Lemma 3.10, p. 298] and we write :

|ẑε(t)| ≤
∫ t

0
m(τ)dτ = C

(
ε ln |ε|
η

+ t
η

|γ|

)
.

Then, setting η =
√
ε ln |ε|, one obtains the error estimates (12) which ends the proof.

Theorem 4.3. Let zε solve the differential inclusion (4), with
i) the kernels %ε and %0 are such that :

• %ε ∈ L1 ∩ L∞(R+ × (0, T ))
• %0 ∈ L1(R+, (1 + a)2) ∩ L∞(R+) is constant in time.

with %ε − %∞ tending to zero in L1(R+ × (0, T )).
ii) the source term vε ∈W 1,∞(0, T ) and v0 ∈ R such that vε → v0 ∈ R∗ in L1(0, T ),
iii) ψ satisfies hypotheses of Theorem 4.2.
Then one obtains :

‖zε − z0‖C([0,T ]) ∼ oε(1)

Proof. As this is an minor extension of Theorem 4.2 we only point out the necessary extra arguments.
The difference ẑε satisfies now :

∂tẑε +
∫
R+

(ζuε − ζu0)ρ0(a)da =
∫
R+

ζuε(ρ0 − ρε)da+ vε(t)− v0

which following the same arguments as above becomes :

∂tẑε +
∫
R+

(uε(a, t)− u0(a, t))kε(a, t)da = −Rη +
∫
R+

ζuε(ρ0 − ρε)da+ vε(t)− v0

where kε is defined in (16). Since one obtains as above :

Tε[|ẑε|](t) ≤ m(t) := C

(
η

|γ|
+ 1
η(1 + t/ε) + Lψ

∫
R+

|ρε(a, t)− ρ0(a)|da+ |vε(t)− v0|

)
.

The same comparison principle as in Theorem 4.2, then provides the claim integrating m in time.
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Remark 4.1. If ψ is only Lipschitz and convex, then its derivative has at most a countable set of
points in R where it is discontinuous. Hypotheses above on ψ assume a finite number of isolated jumps
of ψ′ on the real line. To our knowledge it is not possible to extend the previous proof to this general
case. Nevertheless, for practical applications (cf, for instance, examples in [1] and Section 5) it seems
sufficient.

Here we present a new way to recover large time asymptotics thanks to the ε scaling above.
Theorem 4.4. Under Assumptions 2.1, and assuming that
1) v∞ ∈ R and v ∈W 1,∞(R+) are such that∫

R+

|v(t)− v∞| dt <∞ ,

2) %∞ ∈ L1(R+, (1 + a)) is such that∫
R+

∫
R+

|%(a, t)− %∞(a)| dadt <∞ ,

3) ψ satisfies the assumptions of Theorem 4.2.
Then, if the solution γ of (6) satisfies γ 6= 0 and if z solves

(v(t)− ż(t))(w−z(t)) +
∫
R+

ψ (z(t)− z(t− a)) %(a, t)da

≤
∫
R+

ψ (w − z(t− a)) %(a, t)da, ∀w ∈ R ,
(21)

it satisfies

lim
t→∞

∣∣∣∣z(t)t − γ
∣∣∣∣ = 0 . (22)

Proof. We consider the solution z of the problem (21) on the time interval (0, 1/ε), where ε > 0 is
an arbitrarily small parameter. We set zε(t̃) := εz(t̃/ε) and zε,p(t̃) := εzp(t̃/ε), then one has :

∂t̃zε(t̃) = ∂tz(t̃/ε),

uε(a, t̃) := zε(t̃)− zε(t̃− εa)
ε

= z(t̃/ε)− z(t̃/ε− a) =: u(a, t̃/ε)
(23)

So, if z solves (21), then zε solves (4). By Theorem 4.3, zε(t̃) converges to z0(t̃) := γt̃ in C([0, 1]). This
gives for instance that

lim
ε→0
|zε(1)− z0(1)| = 0.

One then returns to z thanks to the change of unknowns and setting t = 1/ε implies (22) which
completes the claim.

5. An example from the literature

Here we consider the elastic response ψ(u) = |u|. In a first step assuming that the data (%, v) are
constant in time, we study the asymptotic limit (6) and solve it explicitly (cf section 5.1).

Then assuming a specific form of linkages’ distribution we do not account for any past positions at
time t = 0. We show, in this framework, that it is possible to solve explicitly (5) in section 5.2 and we
illustrate numerically this fact in the last part.
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5.1. Study of the limit equation (6)
Proposition 5.1. We suppose that the kernel % is non-negative and satisfies %(a, t) = %∞(a) ∈
L1(R+). Assume that γ(t) solves (5) then it is constant and

i) if γ > 0 then v∞ = γ + µ∞,

ii) if γ < 0 then v∞ = γ − µ∞,

iii) if γ = 0 then v∞ ∈ [−µ∞, µ∞],

iv) If v∞ ∈ [−µ∞, µ∞] then γ = 0

Proof. As in the proof of Theorem 4.2, if γ solves (5) with constant data, it is constant.
In the first case, if γ > 0, then choosing w < 0 implies that

w(v∞ − γ) + γ

∫
R+

a%∞da

≤ γ

(∫ ∞
−wγ

a%∞da−
∫ −wγ

0
a%∞da

)
+ w

(∫ ∞
−wγ

%∞da−
∫ −wγ

0
%∞da

)
.

Using Lebesgue’s Theorem and taking the limit when w goes to 0− gives that v∞ − µ∞ ≥ γ > 0. In a
same way, if γ < 0, expressing (5) for positive values of w and taking the limit when w → 0+ provides
that v + µ∞ ≤ γ < 0.

On the other hand if γ > 0 (resp. γ < 0) then choosing w > 0 (resp. w < 0) gives straightforwardly
that v∞ − µ∞ ≤ γ (resp. v∞ + µ∞ ≥ γ), which concludes the proof of i) and ii). Taking γ = 0 in (5)
provides that

v∞w ≤ µ∞|w|
which ends the third claim.

For the last part, if there exists two distinct non-zero solutions γi for i ∈ {1, 2}, if they have the
same sign, they are equal since then i) or ii) hold. If their signs are opposite then we end up with a
contradiction since then v∞ − µ∞ > 0 and v∞ + µ∞ < 0 at the same time. Remains the case when
one of the two solution only is zero (for instance γ1 = 0). In this case again we have a contradiction
since then v∞ /∈ [−µ∞;µ∞] (since γ2 6= 0) and v∞ ∈ [−µ∞;µ∞].

If v∞ ∈ (−µ∞, µ∞), then γ = 0 is a solution of (5) since

v∞w ≤ µ∞|w|, ∀w ∈ R

which is (5) for γ = 0. By uniqueness, it is the only one.

In fig. 4, we plot the solution γ of (5) in the case when %(a, t) = %∞(a) and v = v∞.

5.2. The exact solution of (4)
We assume here in (4) that the kernel is such that %(a, t) = %∞(a)χ{a<t}(a, t). Thus, we solve the

problem : find z ∈ Lip(R+) solving

(v∞ − ż(t))w +
∫ t

0
%∞(a)|u(a, t)|da ≤

∫ t

0
%∞(a)|u(a, t) + w|da, ∀t > 0, (24)

together with the initial condition z(0) = z0.
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Figure 4: The velocity-force diagram when ψ(u) = |u| and
∫
R+

%∞(a)da = 1

Theorem 5.1. Assume that %∞ is a positive monotone non-increasing function in L1(R+). We set
µ∞(t) =

∫ t
0 %∞(a)da that tends to µ∞ when t goes to infinity. Let’s assume moreover that v∞ ∈

[−µ∞, µ∞] then the only solution of (24) is

z(t) =
{
z0 +

∫ t
0 [v∞ − µ∞(τ)]+dτ, if v∞ ≥ 0,

z0 +
∫ t

0 [v∞ + µ∞(τ)]−dτ, if v∞ ≤ 0.
(25)

which tends as t grows large to z∞ = z(t1) where t1 is such that µ∞(t1) = v∞.

Proof. We assume hereafter that µ∞ > v∞ ≥ 0, since the opposite case works the same. A simple
computation gives that

|v∞ − ż| ≤
∫ t

0
%∞(a)da =: µ∞(t),

which shows that 0 < v∞ − µ∞(t) ≤ ż(t) on [0, t1), where t1 is the time for which µ∞(t1) = v∞.
In this case setting u(a, t) :=

∫ t
t−a ż(τ)dτ , shows that u(a, t) ≥ 0, for (a, t) ∈ {(a, t) ∈ [0, t1]2 such

that a ≤ t} =: Γ(t1). For t fixed one has that u(a, t) is increasing with respect to a ∈ [0, t] and
absolutely continuous. Thus there exists a(w) ∈ [0, t] such that u(a, t) ≤ w for all a ∈ [0, a0(w)] and
u(a, t) ≥ w for a ∈ [a0(w), t], this gives

(v∞ − ż(t),−w) ≤ w
(∫ a0(w)

0
%∞(a)da−

∫ t

a0(w)
%∞(a)da

)
− 2

∫ a0(w)

0
%∞(a)u(a, t)da,

for all w ∈ [0, u(t, t)], then passing to the limit wrt w → 0 gives thanks to the integrability of
%∞(a)u(a, t) close to a = 0, and since a0(w) → 0 when w → 0, that : ż(t) ≤ v∞ − µ∞(t). So
on [0, t1],

ż(t) = v∞ − µ∞(t) (26)

Thus u(a, t) =
∫ t
t−a v∞ − µ∞(τ)dτ for every (a, t) ∈ Γ(t1).
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Figure 5: When we assume that ż(t) < 0 on (t1, t1 + δ)

We assume that on (t1, t1 + δ), with δ a small positive parameter, ż is negative definite. We fix
t ∈ (t1, t1 + δ). As z is monotone increasing on (0, t1), there exists τ1 such that for all τ ≤ τ1,
z(τ) ≤ z(t), while for τ ∈ (τ1, t), z(τ) ≥ z(t). We set η > 0 a small parameter such that t − η
still belongs to (t1, t1 + δ), there exists τ2 depending on η such that z(τ) is in (z(t − η), z(t1)) for
τ ∈ (τ2, t− η), while z(t− η) > z(τ) for τ in (0, τ2) ∪ (t− η, t) (see fig. 5).

One recovers from (24), that

(v∞ − ż(t))(z(t− η)− z(t))

+
∫ τ1

0
(z(t)− z(τ))%∞(t− τ)dτ +

∫ t

τ1

(z(τ)− z(t))%∞(t− τ)dτ︸ ︷︷ ︸
I1

≤
∫ t

0
|(z(t− η)− z(τ)|%∞(t− τ)dτ︸ ︷︷ ︸

I2

.

We analyze the terms I1 and I2 :

I1 = z(t)
(∫ τ1

0
−
∫ t

τ1

)
%∞(t− τ)dτ +

(∫ t

τ1

−
∫ τ1

0

)
z(τ)%∞(t− τ)dτ,

while
I2 = z(t− η)

(∫ t

t−η
+
∫ τ2

0
−
∫ t−η

τ2

)
%∞(t− τ)dτ

−
(∫ t

t−η
+
∫ τ2

0
−
∫ t−η

τ2

)
z(τ)%∞(t− τ)dτ.

This leads to write :

(v∞ − ż(t))(z(t− η)− z(t)) + (z(t)− z(t− η))
{(∫ τ1

0
−
∫ t

τ1

)
%∞(t− τ)dτ

}
+ 2

(∫ τ2

τ1

+
∫ t

t−η

)
(z(τ)− z(t− η))%∞(t− τ)dτ ≤ 0.
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Factorizing the difference z(t− η)− z(t) and dividing by η leads to write :

(v∞ − ż(t)−µ∞(t) + 2µ∞(t− τ1)) (z(t− η)− z(t))
η

+ 2
η

(∫ τ2

τ1

+
∫ t

t−η

)
(z(τ)− z(t− η))%∞(t− τ)dτ︸ ︷︷ ︸

I3

≤ 0

As z(τ) is monotone either on (τ1, τ2) or on (t− η, t), the latter term can be estimated as

|I3| ≤
∣∣∣∣z(t− η)− z(t)

η

∣∣∣∣ (∫ τ2

τ1

+
∫ t

t−η
%∞(t− τ)dτ

)
≤ C‖ż‖L∞(R+)oη(1)

since τ2 tends to τ1 as η tends to zero. One concludes making η tend to zero that

(v∞ − ż(t)− µ∞(t) + 2µ∞(t− τ1))(−ż(t)) ≤ 0

which we divide by −ż(t), since it is a positive definite quantity by hypothesis. This leads to

v∞ −
∫ t

t−τ1

%∞(a)da︸ ︷︷ ︸
I4(t)

+µ∞(t− τ1) ≤ ż.

Then, assuming that %∞ is a monotone non-increasing function, shows that I5(t) :=
∫ t
t−τ1

%∞(a)da is
decreasing as well, thus

I4(t) = v∞ − I5(t) ≥ v∞ − I5(τ1) = v∞ − µ∞(τ1) ≥ 0

the latter estimate being true since τ1 < t1, which finally gives that

µ∞(t− τ1) ≤ ż.

The latter quantity is strictly positive since t > t1 > τ1, this leads to a contradiction. Indeed, because
µ∞(t1) = v∞ and limt→∞ µ∞(t) = µ∞ > v∞, there exists an open set M ⊂ (t1,∞) of positive
measure on which %∞(a) > 0 for a.e. a ∈ M . Since %∞(a) is decreasing there exist a0 ∈ M such that
supM %∞ ≥ %∞(a0) > 0. Take δ < a0 − t1 which implies that t ∈ (t1, a0) then

µ∞(t− τ1) :=
∫ t−τ1

0
%∞(a)da ≥ %∞(a0)

∫ t−τ1

0
da = (t− τ1)%∞(a0) > 0.

Thus ż cannot be negative definite.
We assume now that for t ∈ (t1, t1 +δ), ż(t) > 0. We fix t as above. Again using (24), one obtains :

(v∞ − ż(t)) (z(t1)− z(t)) +
∫ t

0
(z(t)− z(t− a))%∞(a)da ≤

∫ t

0
(z(t1)− z(t− a))%∞(a)da

which transforms into :
(v∞ − ż(t)− µ∞(t))(z(t1)− z(t)) ≤ 0
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which leads to
ż ≤ v∞ − µ∞(t) < 0

which again is a contradiction. Thus ż must be zero on a positive neighborhood of t1.
Since both arguments extend to any interval I ∈ (t1,∞) the claim is proved when v∞ ∈ (−µ∞, µ∞).

For the particular case when v∞ = ±µ∞, the time t1 such that µ∞(t) = ±v∞ is infinite. Thus (26)
remains true on R+ if v∞ = µ∞ and ż(t) = v∞ + µ∞(t) if v∞ = −µ∞. This can be rewritten as

z(t) = z0 + sgn(v∞)
∫ t

0

∫ ∞
τ

%∞(a)dadτ

= z0 + sgn(v∞)
{∫ t

0
a%∞(a)da+ t

∫ ∞
t

%∞(a)da
}
.

Corollary 5.1. Under the same hypotheses as above, but if v∞ /∈ [−µ∞, µ∞], then

z(t) = z0 +
∫ t

0
(v∞ − sgn(v∞)µ∞(τ)) dτ = z0 + γt+ sgn(v∞)

∫ t

0

∫ ∞
τ

%∞(a)dadτ

5.3. A numerical illustration
We discretize the previous problem using minimizing movements scheme [18]. We denote Rj :=

exp(−j∆a), for j ∈ N, and we approximate the functional I[w, t] :=
∫ t

0 |w−z(t−a)|%∞(a)da by setting

In[w] := ∆a
n−1∑
j=0
|w − Zn−1−j |Rj ,

and the total energy minimized for each time step n reads :

En(w) := (w − Zn−1)2

2∆t + In[w]− v∞w (27)

it is a convex functional with respect to w and there exists a unique minimum for each step n. So at
each time step tn = n∆t, we define Zn as

Zn = argmin
w∈R

En(w),

One can compare z computed by this minimization scheme with the theoretical formula (25) above.
We plot in fig. 6 the result of this computation, where v∞ is set to v∞ = 0.1 in the plastic regime cf
fig 6a, and v∞ = 1.5 in the kinematic regime (cf fig. 6b) with µ∞ =

∫
R+

exp(−a)da = 1.
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