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Vuk Milišića, Philippe Soupletb

aUniv. Brest, CNRS UMR 6205 Laboratoire de Mathématiques de Bretagne Atlantique, 6, avenue Victor Le Gorgeu, 29200, Brest, France
bUniversité Sorbonne Paris Nord, LAGA, CNRS UMR 7539, 99, avenue Jean-Baptiste Clément, 93430, Villetaneuse, France

Abstract

(English) In this paper we consider a fourth order nonlinear parabolic delayed problem modelling a quasi-instantaneous turn-over
of linkages in the context of cell-motility. The model depends on a small parameter ε which represents a typical time scale of the
memory effect. We first prove global existence and uniqueness of solutions for ε fixed. This is achieved by combining suitable
fixed-point and energy arguments and by uncovering a nonlocal in time, conserved integral quantity. After giving a complete
classification of steady states in terms of elliptic functions, we next show that every solution converges to a steady state as t → ∞.
When ε → 0, we then establish convergence results on finite time intervals, showing that the solution tends in a suitable sense
towards the solution of a parabolic problem without delay. Moreover, we establish the convergence of energies as ε → 0, which
enables us to show that, for ε small enough, the ε-dependent problem inherits part of the large time asymptotics of the limiting
parabolic problem.

(Français) Dans cet article, nous considérons un problème parabolique avec retard, non linéaire et du quatrième ordre en espace,
modélisant le renouvellement quasi-instantané des liaisons élastiques dans le contexte de la motilité cellulaire. Le modèle dépend
d’un petit paramètre ε qui représente une échelle de temps typique de l’effet de mémoire. Nous commençons par prouver l’existence
globale et l’unicité des solutions pour ε fixé. Nous y parvenons en combinant des arguments de point fixe et d’énergie appropriés
et en exhibant une nouvelle quantité intégrale conservée mais non locale en temps. Après avoir donné une classification complète
des états stationnaires en termes de fonctions elliptiques, nous montrons que chaque solution converge vers un état stationnaire
lorsque t → ∞. Lorsque ε → 0, nous établissons alors des résultats de convergence pour des intervalles de temps finis, montrant
que la solution tend dans un sens approprié vers la solution d’un problème parabolique sans retard. De plus, nous établissons
la convergence des énergies quand ε tend vers 0, ce qui nous permet de montrer que, pour ε suffisamment petit, le problème
ε-dépendant hérite d’une partie de l’asymptotique en temps grand du problème parabolique limite.
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1. Introduction

This article is a contribution to the mathematical study of adhesion forces in the context of cell motility, in con-
tinuation to the project [17, 18, 19, 20]. Cell adhesion and migration play a crucial role in many biological phe-
nomena such as embryonic development, inflammatory responses, wound healing and tumor metastasis. The main
motivation comes from the seminal papers [26, 24], where the authors built a complex and realistic model of the
Lamellipodium. It is a cytoskeletal quasi-two-dimensional actin mesh, and the whole structure propels the cell on
the substrate. The model has the potential to include the effects of (de)polymerization, of the mechanical effects of
cross-linking, bundling, and motor proteins, of cell-substrate adhesion, as well as of the leading edge of the mem-
brane. As the (de)polymerisation and the edge of the membrane add even more mathematical complexity we simplify
the problem and consider the others mechanical effects except these. In this setting, the authors of [26, 24] consider
an axi-symmetric idealization of the network. It is represented by two families of inextensible filaments (clockwise
and anti-clockwise) interacting with each other. Thanks to these hypotheses, the problem reduces to a single equation
whose solution is the position z(s, t) ∈ R2 of a single filament evolving in time t ∈ R+ and with respect to a reference
configuration s ∈ (0, L). Using gradient flow techniques, the authors obtain a nonlinear equation:

z′′′′0︸︷︷︸
bending

− (λz′0)′︸︷︷︸
unextensibility

+ µADtz0︸ ︷︷ ︸
adhesion

+
((

arccos
(
|z0|
′) − φ0

)
(z′0)⊥

)′︸                             ︷︷                             ︸
twisting

+ Dtφz⊥0︸︷︷︸
stretching

= 0

|∂sz0| = 1,

(1.1)

where φ = arg z0 and z⊥0 = (−z0,2, z0,1)T and ′ denotes the space derivative (with respect to s). The Lagrange multiplier
λ(s, t) accounts for the inextensibility constraint and is an unknown of the problem. They complement this equation
with initial and natural boundary conditions that we omit for sake of conciseness. The adhesion and stretching friction
terms appearing in this force balance equation were obtained as formal limits of a microscopic description of adhesion
mechanisms. For instance the first friction term is obtained as the limit when ε, a small dimensionless parameter, goes
to zero in the expression:

1
ε

∫ ∞

0
(zε(s, t) − zε(s + εa, t − εa)) ϱ(s, a, t)da→ µ1(s, t) (∂t − ∂s) z0(s, t) =: µADtz.

Here a represents the age of a linkage established with the previous locations of the filament and the shift in the
reference configuration s + εa comes from the (de)polymerization of the filaments inside the lamellipodium. The
parameter ε represents at the same time a characteristic age of the linkages, and the inverse of their stiffness. The
elongation (z(s, t)−z(s+εa, t−εa))/ε, for a fixed a, is the linear elastic force exerted on z(s, t) by a linkage established
at z(s + εa, t − εa) (see also [25, 14] for an extension to the non-axi-symmetric case).

The type of system can be considered as a model for the motion of elastic, inextensible rods in a high friction
regime [25]. Currently the mathematical modelling of biopolymers and biopolymer networks is a field of high scien-
tific interest and elastic rod models have recently also been used for the modelling of the DNA [4, 5]. The primary
motivation for these studies is to obtain qualitative results of these models which have the potential to give insight into
the behaviour of the respective biological systems.

More than ten years ago, our initial goal was to give a rigorous justification of the limit when ε goes to zero in
the previous system leading to (1.1), but the nonlinear space-dependent feature in (1.1) made it out of reach at that
time. A first attempt to cope with the fully nonlinear space-dependent problem was performed in [16]. In this latter
article the first author considered delayed harmonic maps (z′′′′ is replaced by z′′ and the constraint |z′(s, t)| = 1 is
replaced by |z(s, t)| = 1 for a.e. s ∈ (0, L)) and showed rigorously the asymptotics with respect to ε. In that work a key
feature is compactness in time. When compared with the classical parabolic problem without delay [22], compactness
is far more difficult to obtain. Indeed, in the standard case, using minimizing movements [3], a variational principle
provides this estimate first, and convergence with respect to the discretisation step of the semi-discrete scheme in time
is then immediate. This provides in turn existence (and uniqueness) for the continuous problem (1.1) for instance (this
was exactly the method used in [24] when starting from classical minimizing movements à la De Giorgi [3]).

The present work is the first attempt in order to handle the fourth order case from [24], and this turns out to be quite
challenging mathematically. Because the geometric structure (related to the constraint) of the problem is different,
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results from [16] do not apply. Here we consider a penalization of the constraint |z′(s, t)| = 1 for a.e. t > 0 and all
s ∈ I. Namely we replace it by a non-convex potential Fδ(z′(s, t)) = δ−1(1 − z′2(s, t))2 in the variational principle.
When δ becomes small the solution zδ should in some sense converge to the solution of the constrained problem above
[22]. These hypotheses lead to study a delayed parabolic model of Allen-Cahn type (but of fourth order in space)
where the penalization term applies to z′, that we detail in the next subsection.

For the usual Allen-Cahn equation ut − ∆u = δ−1u(1 − u2) (second order in space, local in time and with double-
well potential nonlinearity acting on u itself), the long time and/or singular perturbation behaviors have been studied
in, e.g., the classical works [2, 6, 7, 8, 1]. As for the literature on linear and non-linear, nonlocal in time Volterra-
type equations, it is vast in finite dimension (cf. [12] and references included). However, when the space variable is
added as well as for instance elliptic operators [10, 11, 1, 21]) the time operators considered are often either fractional
derivatives or delay operators independent of these space variables. Exceptions are papers where the fractional order
depends on the space variable; see for instance [32, 33]. In the problem that we consider here, the density of link-
ages ϱ depends on the space variable as well, which for instance forbids any kind of space-time variable separation.
This assumption allows to take into account adhesion forces related for example to the properties of the substrate or
specific features of the proteins involved, whereas on the mathematical side it creates some more complications when
analyzing the equations. Moreover, the non-linearity that we consider concerns first order derivatives in space which
is original and to our knowledge poorly understood [23].

1.1. The model
We define I := (0, L), with L > 0, to be a segment of the real line. We now assume that the filament at time t is

described by the graph of a planar curve I ∋ s 7→ z(s, t) ∈ R. First consider the time dependent energy (depending on
the past positions of the filament), defined by

Ẽt(w) :=
1
2ε

∫
I

∫ ∞

0

(
w(s) − zε(s, t − εa)

)2
ϱ(s, a)dads +

∫
I
κ2(w(s))ds +

1
δ

∫
I

F̃(w′(s))ds. (1.2)

Here ε, δ, ℓ > 0 are parameters, the double well potential reads F̃(ξ) := (ξ2 − ℓ2)2,

κ(w) :=
w′′

(1 + |w′|2)3/2

is the curvature, ρ is a given kernel and zε(s, t) = zp(s, t) for s ∈ I and for negative times, with a given past data zp.
The F̃-term in (1.2) is a penalization taking into account the limited extensibility of the filament, whereas the κ-term
in (1.2) accounts for the bending energy. In this paper we shall actually consider the simplified case where κ(w) is
replaced by w′′. We will also assume δ = 1 and (with no loss of generality up to proper normalization) ℓ = 1. This
leads to the energy functional

Et(w) :=
1
2ε

∫
I

∫ ∞

0

(
w(s) − zε(s, t − εa)

)2
ϱ(s, a)dads +

1
2

∫
I
|w′′(s)|2ds +

∫
I

F(w′(s))ds. (1.3)

Here and throughout this paper, F denotes the double-well potential

F(ξ) := (ξ2 − 1)2, with F′(ξ) = 4ξ(ξ2 − 1).

Although this will to some extent simplify the treatment, this captures the essential mathematical features of the
problem under study, namely the conjunction of a fourth-order operator, a time delay operator and an Allen-Cahn
type nonlinearity acting on the space derivative. Here we will focus on the vanishing memory limit ε → 0, leaving
the inextensible limit δ→ 0 for future investigations (in [23] another penalty method on the constraint was performed
but with a classical time derivative instead of our non-local time operator, and the techniques there do not apply here).
As for the case (1.2), it presents lots of additional difficulties due to the fully nonlinear nature of the principal elliptic
part, and it is not at all clear at this point if our techniques would allow to carry out such a complete analysis as for
(1.3). In view of the novelty of problem (1.3) and of the already serious mathematical difficulties arising therein, we
have thus preferred to leave the case (1.2) for future study. Finally, the even more difficult case when the filament is
described by a curve which is not a graph seems completely out of reach for the moment.
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Given the energy in (1.3), we start from the formal variational minimization principle:

zε(t) := argmin
w∈H2(I)

Et(w), t > 0.

Define the delay operator Lε by

Lε[zε](s, t) =
1
ε

∫ ∞

0

(
zε(s, t) − zε(s, t − εa)

)
ϱ(s, a)da,

which can be seen as a time derivative with memory effect and compared to a fractional derivative of order greater or
equal to one. The above minimization procedure leads to the variational problem: find zε = zε(s, t), with zε(·, t) valued
in H2(I), solving 

∫
I
Lε[zε](t)vds +

∫
I

(
z′′ε (t)v′′ + F′(z′ε(t))v

′)ds = 0, ∀v ∈ H2(I), t > 0,

zε(t) = zp(t), t < 0.
(1.4)

Here and throughout the paper we omit the variable s when no risk of confusion arises. The strong form of the integral
equation in the latter problem reads:

Lε[zε] + z′′′′ε −
(
F′(z′ε)

)′
= 0, s ∈ I, t > 0, (1.5)

complemented by the corresponding natural boundary conditions:

z′′′ε − F′(z′ε) = z′′ε = 0, s ∈ ∂I, t > 0. (1.6)

1.2. Assumptions and notation
In our main results we will assume that the given kernel ρ satisfies

0 ≤ ρ(s, a) ∈ L∞a (0,∞; H2(I)) ∩ L1
a(0,∞; H2(I)), (1.7)

ρ ∈ W1,1
a (0,∞; L∞(I)), ∂aρ ≤ 0 a.e., (1.8)

0 < µmin ≤ µ(s) :=
∫
R
ρ(s, a)da, s ∈ I, (1.9)∫

I

∫ ∞

a=0
a3/2∥ρ(·, a)∥2da < ∞,

∫ ∞

0
a∥ρ(·, a)∥∞da < ∞. (1.10)

For some results, we will need the following mild coercivity assumption on the kernel:∫
I

∫ ∞

0
ρ2(s, a)|∂aρ(s, a)|−1dads < ∞. (1.11)

Note that assumption (1.10) is for instance satisfied if 0 ≤ ρ(s, a) ≤ K(1 + a)−m with some constants m > 5
2 , K > 0,

and that (1.11) then holds if in addition −∂aρ(s, a) ≥ c(1 + a)−4 with c > 0.
As for the past data, we will assume

zp ∈ W1,∞(−∞, 0; H2(I)). (1.12)

In connection with the kernel, we define the useful functions

φ(s, τ) =
∫ ∞

τ

ρ(s, a)da, µ1(s) =
∫ ∞

0
aρ(s, a)da =

∫ ∞

τ=0
φ(s, τ)dτ (1.13)

and, for given past data zp and all ε ≥ 0, we define the following constants

κε =

∫ ∞

τ=0

∫
I
zp(s,−ετ)φ(s, τ)dsdτ. (1.14)
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Throughout the paper, the L2(I) scalar product and the Lp(I) norm (1 ≤ p ≤ ∞) will be respectively denoted by (·, ·)
and ∥ · ∥p. The Sobolev-Slobodecki spaces (over (0,T ) or I, possibly fractional and vector valued) will be denoted
by Wk,p for k ∈ [0,∞), p ∈ [1,∞] and we will set Hk = Wk,2. Spaces like L2(I),Hk(I) will be often abbreviated by
L2,Hk. We will sometimes omit the subscript ε when no confusion may arise. Throughout this paper, C will denote a
generic positive constant depending only on ρ, L.

1.3. Steady states and limiting problem

First, in order to motivate our results and explain their significance, we need to introduce the stationary problem
associated with (1.5) and the limiting problem as ε → 0. The parameter ε in (1.5) represents a typical time scale of
the memory effect, which gradually “fades out” as ε becomes smaller. At a formal level, the limiting problem to (1.5)
as ε→ 0 is given by the following parabolic problem without delay:

b(s)∂tz0 + z′′′′0 −
(
F′(z′0)

)′
= 0, s ∈ I, t > 0,

z′′′0 − F′(z′0) = z′′0 = 0, s ∈ ∂I, t > 0,
z0(s, 0) = ϕ(s), s ∈ I,

(1.15)

where b = µ1 is the first moment of ρ, defined in (1.13), and ϕ = zp(·, 0). We note that (1.5) and (1.15) have the same
steady states, namely the solutions of the stationary problem Z′′′′ −

(
F′(Z′)

)′
= 0, s ∈ I,

F′(Z′) − Z′′′ = Z′′ = 0, s ∈ ∂I.
(1.16)

As a preliminary to the rest of our analysis, we first give the complete classification of these steady states (see Section 2
for precise definition and proof).

Proposition 1.1.

(i) Assume L ≤ π/2. Then, up to additive constants, problem (1.16) admits only the affine solutions Z0 ≡ 0 and
Z±1 ≡ ±x.

(ii) Assume L > π/2 and let m = ⌊2L/π⌋ ∈ N∗. Beside the affine solutions, up to additive constants, (1.16) admits
exactly 2m nonaffine solutions, namely Z2, · · · ,Zm+1, and their opposites Z−i = −Zi.

As for the, more classical, parabolic problem without delay (1.15), we have the following result (see Definition
A.1 and Remark A.1 for the precise notion of solution).

Proposition 1.2. Let b ∈ H2(I) with infI b > 0 and ϕ ∈ H2(I).
(i) Problem (1.15) has a unique, global solution

z0 ∈ Cb([0,∞); H2(I)) ∩ H1
loc([0,∞); L2(I)) ∩ L2

loc([0,∞); H4(I)). (1.17)

Moreover, for each p ∈ (2,∞), we have

sup
t≥1

(
∥z0∥W1,p(t,t+1;L2(I)) + ∥z0∥Lp(t,t+1;H4(I))

)
< ∞. (1.18)

(ii) There exists a stationary solution Z0, with (Z0, b) = (ϕ, b), such that

lim
t→∞
∥z0(t) − Z0∥H2(I) = 0. (1.19)

Although Proposition 1.2 may be known, we have been unable to find a suitable reference, especially in view of
the needed time regularity, in presence of nonlinear boundary conditions. We thus provide a proof inAppendix A,
based on maximal regularity estimates from [9] for inhomogeneous, linear higher order parabolic problems.
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1.4. Main results

The main goals of this work are to show that:
• For sufficiently small ε > 0, the time-nonlocal problem (1.5) is globally well posed and its solution converges to

one of the steady states as t → ∞.
•When ε→ 0, the solution zε of (1.5) converges in a certain sense to the solution z0 of problem (1.15).
• For sufficiently small ε > 0, problem (1.5) inherits part of the large time asymptotic properties of (1.15).
Although this may seem reasonable, this is by no means obvious, in view of the nonlocal nature of (1.5), and will

require rather involved arguments.

Theorem 1. Assume (1.7)–(1.10) and (1.12). There exists ε0 > 0 depending only on ρ, L and on ∥zp∥L∞(−∞,0;H2(I)) such
that, for all ε ∈ (0, ε0], the following holds:

(i) Problem (1.4) admits a unique global solution zε ∈ L∞(R; H2(I)).
(ii) The curve ε 7→ zε(t) is locally 1/4-Hölder continuous from (0, ε0] into H2(I), uniformly for t > 0 in bounded

intervals.

(iii) There exists a stationary solution Zε, with (Zε, µ1) = κε, such that,

zε(t)→ Zε in H2(I), as t → ∞. (1.20)

(iv) The set of ε such that Z′ε ≡ 1 (resp. −1) is relatively open in (0, ε0].

Theorem 2. Assume (1.7)–(1.10), (1.12), and let z0 be the solution of (1.15) with b = µ1 and ϕ = zp(s, 0).
(i) For every fixed T > 0, we have

lim
ε→0

zε = z0, (1.21)

where the convergence is strong in C([0,T ]; C1(Ī)), weak in H1(0,T ; L2(I)) and weak-∗ in L∞(0,T ; H2(I)). If in
addition (1.11) holds, then the convergence in (1.21) is strong in L2(0,T ; H2(I)).

(ii) Assume that (1.11) holds and that Z′0 ≡ 1 (resp. −1). Then there exists ε̄0 ∈ (0, ε0] such that, for all ε ∈ (0, ε̄0],
Z′ε ≡ 1 (resp. −1).

Remark 1.1. (i) By a simple energy argument (see Remark A.2(i) for details), the stable steady states of (1.15) are
exactly the nonconstant affine steady states (Z ≡ ±x + Const.). More precisely, if ϕ ∈ H2(I) and ∥ϕ′′∥2 + ∥ϕ′ ± 1∥∞ is
sufficiently small, then Z′0 ≡ ∓1. Theorem 2(ii) guarantees that under this assumption for ϕ = zp(0), we have Z′ε ≡ −1
(resp. 1) for ε > 0 small.

On the contrary, the result of Theorem 2(ii) is not expected to hold if Z′0 . ±1, since the steady state is then
unstable even for the limiting problem (cf. Remark A.2(ii)).

(ii) In Theorem 1, by zε ∈ L∞(R; H2(I)) being a solution we mean that the first (resp., second) part of (1.4) is
satisfied for a.e. t > 0 (resp., t < 0). Under the assumptions of Theorem 1, the solution actually enjoys the additional
regularity

zε ∈ L∞(0,∞; W4,∞(I)) ∩W1,∞(0,∞; H2(I)), (1.22)

so that the first part of (1.4) is satisfied for all t > 0 and zε is in fact a strong solution. Moreover, it satisfies the
uniform global bound

∥zε(t)∥H2(I) ≤ CR̄, t > 0, ε ∈ (0, ε0],

and the uniform, time derivative global integrability property∫ ∞

0

∫
I
|∂tzε|2dsdt ≤ CR̄, ε ∈ (0, ε0], (1.23)

where
R := 1 + ∥zp∥L∞(−∞,0;H2(I)), R̂ := ∥zp∥W1,∞(−∞,0;L∞(I)), R̄ = R4 + R̂2.
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Also we may take ε0 = c0R̄−4, with c0 = c0(ρ, L) > 0. See Propositions 4.1 and 6.1.

(iii) The solution zε is continuous in H2(I) for t > 0 and has a limit as t → 0+ (owing to (1.22)), but it generally
has a jump discontinuity at t = 0, unless a suitable compatibility condition is imposed on zp. A useful estimate of the
jump, of independent interest, is given in Proposition 5.3.

1.5. Organisation and main ideas of the proofs

In Section 2 we describe the steady states of the problem by means of ODE analysis, providing results that will be
used in Section 8 for the proof of the asymptotic behavior as t → ∞ (Theorem 1(iii)).

Local existence and uniqueness (Theorem 3 below), as well as time regularity (Proposition 4.1), rely on a Banach
fixed point. The proofs, given in Section 4, are based on fixed point arguments built on the resolution of a fourth-
order elliptic problem. It is to be noticed that this is not standard in the framework of partial differential evolution
equations where a parabolic problem is more often used. Here we fix-point not only the nonlinearity but also the past
of the solution, involved as a source term in the fixed-point operator. The fourth-order elliptic problem is analyzed
in Section 3, where we provide resolvent estimates in terms of ε that are required for the local existence-uniqueness.
This is done in the Hilbert setting and for classical solutions, giving by interpolation a general result in Lp spaces for
p ≥ 2 which is of interest per se (cf. Propositions 3.1 and 3.2).

The previous step guarantees a local time of existence for ε small enough. In order to extend this time, so as to
prove the global existence part of Theorem 1(i), we first show in Section 5 a stability result, namely the time derivative
global integrability property (1.23) (see Proposition 5.1(ii)). One of the main features of this estimate is the uniformity
with respect to t and to ε, which plays a key role in subsequent proofs. Its proof is much more involved than for (1.15).
Indeed, for smooth solutions of classical gradient flow models one has easily that:

d
dt

{∫ L

0
F(z0

′(t))ds +
1
2
∥z0
′′(t)∥22

}
= −

∫ L

0
b(s) |∂tz0(t)|2 ds, (1.24)

giving directly the result after integration in time. For delayed problems this does not hold and an alternative approach
has to be found. Thanks to the monotonicity condition (1.8), one first ensures the energy dissipation property

d
dt
Et(zε) =

1
2ε2

∫ L

0

∫ ∞

0

(
zε(t) − zε(t − εa)

)2
∂aϱ dads < 0, (1.25)

which guarantees the time integrability of the right hand side of (1.25) (see Proposition 5.1(i)). This latter term is then
used as a source term for a closed elliptic problem satisfied by ∂tzε (Lemma 5.5) and from this we deduce an L∞t L2

s
bound for z′ε and z′′ε (see Proposition 5.2).

Since our basic working space for local well-posedness is L∞t H2
s and our boundary conditions are of (nonlinear)

Neumann type, this is still unsufficient to conclude global existence and it remains to bound zε itself. This is achieved
in a second step in Section 6, where a uniform L∞ bound in time and space is derived (Proposition 6.1), based on a
new invariant ∫ L

0

∫ ∞

0
zε(s, t − εa)φ(s, a)dads = κε, (1.26)

where φ is defined in (1.13), which appears herein as a key quantity (its properties are derived in Lemma 6.2). While φ
is somehow reminiscent of the so-called left eigenvector in studies of hyperbolic equations from population dynamics
[27, Chap. 3], it is completely new in the present context. This invariant is to be related to (µ1, z0) to which it formally
reduces when ε goes to zero. As a matter of fact, we show, cf. Theorem 1(iii), that actually for ε > 0 fixed, zε(t)→ Zε
when t grows large and (Zε, µ1) =

∫ L
0

∫ ∞
0 zp(−εa)φ(s, a)dads. The same result holds as well when ε = 0 and is more

standard (cf. Proposition 1.2(ii)).
In Section 7, the (Hölder) continuity with respect to ε in Theorem 1(ii) is established (cf. Proposition 7.1) by

making use in particular of the above energy estimates.
Next, in Section 8, Theorem 1(iii), i.e. the convergence to a steady state as t → ∞ for fixed ε, is proved by

dynamical systems arguments (cf. Lemmas 8.1 and 8.2), based on the Liapunov functional given by the energy and
on the special structure of the set of equilibria. Namely, there is a finite number of equilibria up to additive constants

7
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(see Proposition 2.2) and, whereas the energy itself does not discriminate the additive constant, the stabilization to a
single value of the additive constant follows from the existence of the invariant in (1.26).

We next prove Theorem 2(i), i.e. the convergence of zε to the solution z0 of the parabolic problem (1.15) as
ε → 0. This is first established in a weak H2

s sense in Section 9, and then in the strong L2
t H2

s sense in Section 10,
under the additional coercivity assumption (1.11) on the kernel ρ. The proofs rely on interpolation and compactness
arguments which make use of the a priori estimates on ∂tzε mentioned above, plus some additional higher order a
priori estimates (Lemma 10.3). The strong convergence result is new as compared with [18, 20, 16], to which it applies
as well (see Remark 10.1). Moreover it allows to show Theorem 2(ii), namely the stability of the affine stationary
states Z′ = ±1. This relies on three main ingredients: (i) these stationary states are global minima of the mechanical
energy E0(Z) :=

∫ L
0 ( 1

2 |Z
′′|2 + F(Z′))ds; (ii) the convergence of the energy Eε(zε) to E0(z0) (as a consequence of the

above L2
t H2

s -convergence); (iii) the decrease of energies in time.
Finally, in the appendix, we provide a proof of the properties of the parabolic problem (1.15): existence-uniqueness-

regularity (Proposition 1.2(i)), energy balance (Proposition 10.1), and stabilization (Proposition 1.2(ii)).

2. Steady states

Before entering the analysis of the evolution problem (1.4), a basic and more elementary task is to describe the
steady states and to establish Proposition 1.1, which is needed in the proof of the convergence part of Theorem 1.

We say that Z is a (classical) solution of the stationary problem (1.16) if Z ∈ C4([0, 1]) and Z satisfies (1.16)
pointwise. It is not difficult to see that weak and classical solutions of (1.16) are equivalent notions. Indeed, if
Z ∈ H2(I) is a weak solution, it solves:(

Z′′, v′′
)
+ (F′(Z′), v′) = 0, ∀v ∈ H2(I)

then it solves (1.16) in the distributional sense. As Z′ ∈ C(I) and Z′′ ∈ L2(I), this implies that Z′′′′ ∈ L2(I) and
thus Z ∈ H4(I) ⊂ C3(I) thanks to Sobolev’s embeddings. Again using (1.16) provides Z′′′′ ∈ C1(I). The sufficient
condition is obvious.

To prove Proposition 1.1 (and give additional information on the solutions), we proceed as follows. Observe that
z is a solution of (1.16) if and only if w := z′ solves

w′′ = F′(w) = −4w(1 − w2) in (0, L), with w′(0) = w′(L) = 0. (2.1)

To study (2.1), for all a ∈ R, we consider the shooting problem

w′′ = F′(w) with w′(0) = 0 and w(0) = a. (2.2)

Problem (2.2) has a unique solution wa, defined on a maximal time interval [0, S ∗a) for some S ∗a ∈ (0,∞]. We clearly
have w0 = 0, w±1 = ±1 (constant solutions). Also by symmetry, we have w−a = −wa, so that it thus suffices to consider
a > 0, a , 1. This case is treated in the following proposition.

Proposition 2.1.

(i) If a > 1 then w′a > 0 on (0, S ∗a). Moreover, S ∗a < ∞ and lims→S ∗a w′a(s) = ∞.

(ii) For a ∈ (0, 1), we have S ∗a = ∞ and wa is given by an anti-periodic solution of w′′ = F′(w), for some half-period
Πa > 0 (which is in particular a periodic solution of period 2Πa) and is explicit:

wa(s) = a sn
( √

2(2 − a2)s + K(ka), ka

)
, ka =

a
√

2 − a2
, (2.3)

where sn denotes the sine amplitude elliptic function and K(k) the complete elliptic integral of the first kind.
The number K(k) is a quarter period associated to sn(·, k) and reads:

K(k) :=
∫ π

2

0

1√
1 − k2 sin2θ

dθ, k ∈ (0, 1).

8
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Moreover we have w′a < 0 on (0,Πa).

(iii) The half-period function (0, 1) ∋ a 7→ Πa is continuous monotone increasing with

lim
a→0+
Πa = π/2, lim

a→1
Πa = ∞ (2.4)

and reads: Πa := K(ka)/
√

2(2 − a2).

As a consequence we can describe the solutions of (2.1) and (1.16) as follows.

Proposition 2.2.

(i) Assume L ≤ π/2. Then problem (2.1) admits only the constant solutions 0 and ±1.

(ii) Assume L > π/2 and let m = ⌊2L/π⌋ ∈ N∗. Beside the constant solutions, (2.1) admits an even finite number
2m of solutions ±w1, · · · ,wm where, for each n ∈ {1, . . . ,m}, wn is the unique antiperiodic solution of (2.2) with
a > 0 such that Πa = L/n.

(iii) The solutions of (1.16) are given by z(s) =
∫ s

0 w(τ)dτ+c where w is any solution of (2.1) and c ∈ R is arbitrary.

Proof of Proposition 2.1. We shall denote w = wa for simplicity.
(i) If a > 1 then w cannot be a solution of (2.1). Indeed, we have w′′(0) > 0 and we easily deduce that w′′ and w′

remain > 0 for s > 0 as long as w exists. It follows that w′′ ≥ cw3 for all s ∈ (0, S ∗) with some c > 0, and a standard
argument then implies S ∗ < ∞ and lims→S ∗ w′(s) = ∞.

(ii) Multiplying (2.2) by w′(s) gives 1
2
(
w′a

)2 ′ = F(wa)′. We integrate with respect to s. This leads to:

1
2

(
w′a

)2 (s) − F(wa(s)) =
1
2

(
w′a

)2 (0) − F(wa(0)).

Now using the boundary conditions in (2.2) provides:

1
2

(
w′a(s)

)2
= F(wa(s)) − F(a),

which finally gives: (
w′a(s)

)2
= 2(1 − F(a)) − 4wa(s)2 + 2wa(s)4 =: Aw4

a + Bw2
a + c.

We compare this equation with sn(s, k) satisfying [28]:(
sn′(s, k)

)2
= α sn4(s, k) + β sn2(s, k) + γ, α := k2, β := −(1 + k2), γ = 1,

where k is a given parameter in (0, 1). We look for wa to be of the form:

w(s) = ξ sn(χ (s − s0), k),

where ξ, χ and k are constants to be found. This provides a system of 3 unknowns s.t.

2 =
χ2

ξ2 k2, 4 = χ2(1 + k2), 2(1 − F(a)) = ξ2χ2.

After some computations and accounting that k ∈ (0, 1), one obtains the following definition of the constants ξ, χ, k
solving the previous system:

ξa = a, χa =
√

2(2 − a2), ka =
a

√
2 − a2

.

We next ensure that the solution satisfies the boundary conditions (2.2) at the origin s = 0. All this leads to the explicit
form (2.3). It is a periodic solution of period 4K(ka)/

√
2(2 − a2).

9
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(iii) The complete elliptic integral of the first kind K(k) is a regular monotone increasing function of k ∈ (0, 1) s.t.
(cf. [28]), limk→0 K(k) = π

2 , and limk→1 = K(k) = +∞, so that Πa = 2 K(ka)
χa

and one has

lim
a→0
Πa =

π

2
, lim

a→1
Πa = +∞.

Moreover,

Π′a = −

∫ π
2

0

4a(cos2(t) − 2)dt(
4(1 − a2) + 2a2 cos2(t)

) 3
2

> 0, ∀a ∈ (0, 1),

which ends the proof.

Proof of Proposition 2.2. In view of assertion (i) of Proposition 2.1, if a > 1 then w cannot be a solution of (2.1).
In view of assertion (ii), for a ∈ (0, 1), the function wa is a solution of (2.1) (i.e., solves the boundary condition
w′(L) = 0) if and only if its antiperiod is a submultiple of L, that is, Πa = L/n for some integer n ≥ 1. This implies
that:

L ≥ Πa ≥
π

2
.

We exclude the case L = π/2 since then no non-trivial solution wa exists. Next, the problem: find (an)n∈{1,...,m} ∈ (0, 1)m

s.t.
L
n
= Πan

admits a unique solution iff L/n ∈ [π/2,∞) for all n ∈ {1, . . . ,m}, which is precisely the way m was chosen. This
procedure guarantees the construction of 2m distinct solutions of (2.1).

This along with the constant solutions describes the set of solutions of (2.1) and completes the proof of assertions
(i) and (ii). Assertion (iii) follows immediately by integration.

3. Resolvent operator

In order to first establish the local in time existence-uniqueness (by a suitable fixed point argument), problem
(1.5)-(1.6) will be rewritten under the form

(µ(s) + ε∂4
s)z = ε∂s(F′(∂sz)) +

∫ ∞

0
z(s, t − εa)ρ(s, a)da, 0 < t < T, s ∈ I,

∂2
sz(s, t) = ∂3

sz(s, t) − F′(∂sz(s, t)) = 0 0 < t < T, s ∈ ∂I,

z(t) = zp(t) t < 0.

(3.1)

To study (3.1), for given ε > 0, we will need resolvent estimates for the linear auxiliary problem:ku + εu′′′′ = ε f ′ + g, s ∈ I,

u′′ = 0, u′′′ = f , s ∈ ∂I.
(3.2)

Here k2 ≥ k1 > 0 and k = k(s) ∈ L∞(I) is a fixed function such that

0 < k1 ≤ k(s) ≤ k2, s ∈ I. (3.3)

In this section, K denotes a generic positive constant depending only on k1, k2, L. For given data ( f , g) in L2(I)×L2(I),
by a weak solution of (3.2) we understand a function u ∈ H2(I) which satisfies the variational identity∫

I
k(s)u(s)v(s)ds + ε

∫
I
u′′(s)v′′(s)ds = −ε

∫
I

f (s)v′(s)ds +
∫

I
g(s)v(s)ds, ∀v ∈ H2(I). (3.4)

We start with the basic existence-uniqueness result for (3.2).

Proposition 3.1. Assume (3.3) and let ε > 0, ( f , g) ∈ L2(I) × L2(I).
10
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(i) Problem (3.2) admits a unique weak solution.

(ii) Assume in addition that f ∈ H1(I). Then a function u ∈ H2(I) is a weak solution if and only if it is a strong
solution i.e., u ∈ H4(I), u satisfies the equation for a.e. s ∈ I and the boundary conditions pointwise.

We shall denote by Aε : L2(I) × L2(I) → H2(I) the resolvent operator, defined by ( f , g) 7→ u. Note that, by
linearity, we may write

Aε( f , g) = A1,ε f + A2,εg, (3.5)

where
A1,ε : f ∈ L2(I) 7→ Aε( f , 0), A2,ε : g ∈ L2(I) 7→ Aε(0, g). (3.6)

The following proposition provides the required resolvent estimates.

Proposition 3.2. Assume (3.3) and let ε ∈ (0, 1).
(i) Let ( f , g) ∈ L2(I) × L2(I). Then u = Aε( f , g) satisfies

∥u( j)∥2 ≤ Kε− j/4(ε3/4∥ f ∥2 + ∥g∥2
)
, j ∈ {0, 1, 2}. (3.7)

(ii) Let q ∈ [2,∞] and ( f , g) ∈ W1,q(I) × Lq(I). Then, for any integer j ∈ [0, 4], we have

∥A1,ε f ∥W j,q ≤ Kε(3− j)/4
(
∥ f ∥q + ε1/4∥ f ′∥q

)
(3.8)

and
∥A2,εg∥W j,q ≤ Kε− j/4∥g∥q. (3.9)

(iii) Let K1 > 0 and assume that
k ∈ H2(I), ∥k∥H2(I) ≤ K1. (3.10)

Then A2,ε ∈ L(H2(I),H4(I)) and

∥A2,ε∥L(H2(I),H2+ j(I)) ≤ K̃ε− j/4, j ∈ {0, 1, 2}, (3.11)

where the constant K̃ depends only on k1, k2,K1, L.

Proof of Proposition 3.1. (i) This is an immediate consequence of Lax-Milgram’s Theorem.
(ii) The weak solution u satisfies the differential equation in (3.2) in the sense of distributions and, assuming

f ∈ H1(I), we have u′′′′ = ε−1(g+ ε f ′ − ku) ∈ L2(I), so that u ∈ H4(I) ⊂ C3(J). As one has enough regularity, starting
from the weak formulation and integrating by parts one shows that

[
(u′′′ − f )v − u′′v′

]1
0 =

∫
I

(
u′′′′ − f ′ + ε−1(ku − g)

)
v = 0 for all v ∈ H2(I).

It follows easily that u′′′ = f and u′′ = 0 on ∂I.
Conversely, if f ∈ H1(I) and u a strong solution, by multiplying by v ∈ H2(I) and integrating by parts, we easily

obtain (3.4).

Proof of Proposition 3.2. (i) Recall the following interpolation inequality (which is a consequence of [13, Theorem
7.37, p.198]): If |J| ≥ L0 > 0, there exists K = K(L0) > 0 such that, for all η > 0

∥u′∥L2(J) ≤ η∥u
′′∥L2(J) + K(1 + η−1)∥u∥L2(J). (3.12)

For δ1, δ2, η > 0 to be fixed, the choice v = u in (3.4) yields∫
I

(
ku2 + εu′′2

)
(s)ds ≤ δ1ε∥u′∥

2
L2 + δ

−1
1 ε∥ f ∥22 + δ2∥u∥22 + δ

−1
2 ∥g∥

2
2

≤ δ1εη∥u′′∥
2
L2 + (C0(1 + η−1)δ1ε + δ2)∥u∥2L2 + δ

−1
1 ε∥ f ∥22 + δ

−1
2 ∥g∥

2
2,

11
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with C0 = C0(k1, k2) > 0. Choosing δ1 = min( 1
2 ,

k1
6C0

)ε−1/2, η = (2δ1)−1 and δ2 =
k1
3 , we get

C0(1 + η−1)δ1ε ≤ C0(1 + 2δ1)
k1

6C0
ε1/2 ≤ 2C0ε

−1/2 k1

6C0
ε1/2 =

k1

3
,

so that
k1∥u∥2L2 + ε∥u′′∥

2
L2 ≤

ε

2
∥u′′∥2L2 +

2k1

3
∥u∥2L2 +

3
k1
∥g∥22 + 2ε3/2∥ f ∥22,

hence (3.7) for j ∈ {0, 2}. The case j = 1 follows from (3.12) with η = ε1/4.
(ii) First consider the case q = 2. For j ∈ {0, 1, 2}, (3.8) and (3.9) follow from assertion (i). For j = 4 it is then a

consequence of u′′′′ = ε−1(g − ku) + f ′. The result for j = 3 is then obtained by interpolating through (3.12).
We next consider the case q = ∞ and establish the L∞ estimate by means of a contradiction and rescaling argument.

Thus assume that (3.8) or (3.9) with j = 0 fails. Then there exist sequences εi ∈ (0, 1), ki, fi ∈ L∞(I), gi ∈ W1,∞(I)
such that, denoting by ui the corresponding solutions, we have

k1 ≤ ki(s) ≤ k2, ∥gi∥∞ + ε
3/4
i ∥ fi∥∞ + εi∥ f ′i ∥∞ = 1, Mi := ∥ui∥∞ → ∞.

Pick si ∈ I such that |ui(si)| = Mi and define the rescaled functions

vi(σ) = M−1
i ui(si + ε

1/4
i σ), σ ∈ Ji = [ai, bi] := [−ε−1/4

i si, ε
−1/4
i (L − si)].

Since ui is a strong solution by Proposition 3.1(ii), we have vi ∈ W4,∞(Ji) and vi satisfies k̃ivi + v′′′′i = ε3/4
i f̃ ′i + g̃i, a.e. σ ∈ Ji,

v′′i = 0, v′′′i = ε
3/4
i f̃i, σ ∈ ∂Ji,

(3.13)

with k̃i(σ) = ki(si + ε
1/4
i σ), f̃i(σ) = M−1

i fi(si + ε
1/4
i σ) and g̃i(σ) := M−1

i gi(si + ε
1/4
i σ). Then ∥vi∥L∞(Ji) = |vi(0)| = 1 and

ε3/4
i ∥ f̃

′
i ∥L∞(Ji) + ε

3/4
i ∥ f̃i∥L∞(Ji) + ∥g̃i∥L∞(Ji)

= M−1
i

(
εi∥ f ′i ∥L∞(I) + ε

3/4
i ∥ fi∥L∞(I) + ∥gi∥L∞(I)

)
≤ M−1

i .
(3.14)

In particular, ∥v′′′′i ∥L∞(Ji) ≤ c. Here and in the rest of the proof, c denotes a generic positive constant independent of i.
We deduce

∥vi∥W4,∞(Ji) ≤ c (3.15)

by interpolation (note that |Ji| ≥ L due to εi < 1). Let α < β be such that [α, β] ⊂ Ji. Multiplying the differential
equation (3.13) with vi and integrating by parts, we obtain∫ β

α

k̃iv2
i + (v′′i )2 =

[
v′iv
′′
i − viv′′′i

]β
α +

∫ β

α

(ε3/4
i f̃ ′i + g̃i)vidσ. (3.16)

• First consider the case when ai and bi are bounded. Applying (3.16) with α = ai and β = bi and using (3.14),
(3.15), along with the boundary conditions in (3.13), yields

1 = ∥vi∥L∞(Ji) ≤ c
∫ bi

ai

v2
i + (v′′i )2 ≤ cε3/4

i

∣∣∣[ f̃ivi
]bi
ai

∣∣∣ + c
∫ bi

ai

(ε3/4
i f̃ ′i + g̃i)2

≤ cε3/4
i ∥ f̃ivi∥L∞(Ji) + (bi − ai)

(
ε3/4

i ∥ f̃
′
i ∥L∞(Ji) + ∥g̃i∥L∞(Ji)

)2
→ 0, i→ ∞,

a contradiction.
• Next assume that ai → −∞ along a subsequence and that bi ≥ 0 is bounded. Owing to (3.15), by passing to a

further subsequence, we may assume that there exists w ∈ W4,∞((−∞, 0]) such that vi → w in W3,∞
loc ((−∞, 0]), hence

12
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in particular
w(0) = 1. (3.17)

Fix any α ∈ (−∞, 0). Applying (3.16) with β = bi and using the boundary conditions in (3.13) at σ = bi and (3.14),
(3.15), we get, for i ≥ i0(α) large enough,∫ 0

α

v2
i + (v′′i )2 ≤

∫ bi

α

v2
i + (v′′i )2 ≤ c

∣∣∣(v′iv′′i − viv′′′i )(α)
∣∣∣ + cε3/4

i

∣∣∣( f̃ivi)(bi)
∣∣∣ + c

∫ bi

α

(ε3/4
i f̃ ′i + g̃i)2

≤ c
(
|vi(α)| + |v′′i (α)|

)
+ cM−1

i + cM−2
i (bi − α).

By Fatou’s lemma, it follows that∫ 0

α

w2 + (w′′)2 ≤ c
(
|w(α)| + |w′′(α)|

)
≤ c for all α ∈ (−∞, 0). (3.18)

Consequently, w ∈ H2((−∞, 0]), hence there exists a sequence α j → −∞ such that η j := |w(α j)| + |w′′(α j)| → 0.
Going back to (3.18) with α = a j, we deduce that

∫ 0
α j

w2 ≤ cη j, hence w ≡ 0 on (−∞, 0] upon letting j→ ∞. But this
contradicts (3.17).
• The cases when bi → ∞ along a subsequence, with ai either bounded or unbounded, are treated similarly.
We conclude that (3.8) and (3.9) are true for j = 0 and q = ∞.
Now, using u′′′′ = ε−1(−ku + g + ε f ′) a.e. in I (cf. Proposition 3.1(ii)), we deduce that

∥u′′′′∥∞ ≤ Kε−1
(
∥g∥∞ + ε3/4∥ f ∥∞ + ε∥ f ′∥∞

)
i.e., (3.8), (3.9) for j = 4. The case j ∈ {1, 2, 3} and q = ∞ then follows by interpolation.

Finally, the case q ∈ (2,∞) follows by interpolating between the cases q = 2 and q = ∞.
(iii) Let g ∈ H2 and set u = A2,εg. Since εu′′′′ = g − ku ∈ H2, we have u ∈ H6. Differentiating twice, we see that

w = u′′ satisfies εw′′′′ = g′′ − k′′u − 2k′u′ − ku′′, i.e.

kw + εw′′′′ = ĝ := g′′ − k′′u − 2k′u′.

Moreover, w = w′ = 0 on ∂I. Multiplying with w and integrating by parts, we obtain∫ L

0
(k1w2 + εw′′2)ds ≤

∫ L

0
(kw2 + εw′′2)ds =

[
w′w′′ − ww′′′

]L
0 +

∫ L

0
ĝwds ≤

k1

2

∫ L

0
w2ds +

1
2k1

∫ L

0
ĝ2ds.

This combined with ∥u∥2 ≤ K∥g∥2 (cf. assertion (i)) yields

∥u∥22 + ∥u
′′∥22 + ε∥u

′′′′∥22 ≤ K∥ĝ∥22 ≤ K∥k∥2H2∥g∥2H2 .

This implies (3.11) for j ∈ {0, 2} and the case j = 1 follows by interpolation.

4. Local existence-uniqueness

For given τ ≥ 0, we define our working space

Xτ = L∞(−∞, τ; H2(I))

with norm
∥z∥Xτ = sup

t∈(−∞,τ)
∥z(t)∥H2(I), τ ≥ 0.

13
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Fix ε ∈ (0, 1) and τ > 0. A (weak) solution of (1.4) on (0, τ) is a function z ∈ Xτ such that
∫

I
Lε[z](t)vds +

∫
I

(
z′′(t)v′′ + F′(z′(t))v′

)
ds = 0, ∀v ∈ H2(I), a.e. t ∈ (0, τ),

z(t) = zp(t), a.e. t < 0
(4.1)

(here we omit the variable s and the subscript ε without risk of confusion).
Let the operators A1,ε, A2,ε be defined by Proposition 3.1 with k(s) = µ(s). If z ∈ Xτ is a solution of (4.1) on (0, τ),

then it satisfies

z(t) =


A1,εF′(z′(t)) + A2,ε

∫ ∞

0
z(t − εa)ρ(·, a)da, a.e. t ∈ (0, τ),

zp(t), a.e. t < 0.
(4.2)

Conversely, for a given function z ∈ Xτ, we have F′(z′(t)) ∈ L∞(I) and
∫ ∞

0 z(t − εa)ρ(·, a)da ∈ L∞(I) for a.e. t ∈ (0, τ),
and (4.2) implies (4.1).

The following theorem is our basic local existence-uniqueness result, which in turn defines a suitable notion of
maximal solution.

Theorem 3. Assume (1.7), (1.9) and zp ∈ X0. There exist constants ci > 0, with c2 < 1, depending only on ρ, L, such
that the following properties are true for all ε ∈ (0, ε1], where

ε1 := c2R−8
0 and R0 := 1 + c1∥zp∥X0 . (4.3)

(i) For T = c3ε, problem (4.2) admits a (unique) solution z ∈ XT such that

∥z∥XT ≤ R0.

(ii) For any τ > 0, problem (4.2) admits at most one solution z ∈ Xτ such that

∥z∥Xτ ≤ c4ε
−1/8. (4.4)

(iii) Let z be the local solution given by assertion (i) and set

T ∗ = sup
{
τ > 0; z extends to a solution satisfying (4.4)

}
.

If T ∗ is finite, then
∥z∥XT∗ ≥ c5ε

−1/8. (4.5)

Remark 4.1. (i) Note that, in a standard blow-up alternative, one would normally have∞ in the right hand side of
(4.5). The current definition reflects the lack of parabolicity of the problem (caused by the delay operator, with
memory effect of time scale ε, which confers to problem (4.1) some elliptic features).

(ii) The solution z is generally discontinuous at t = 0, unless a suitable compatibility condition is imposed on zp. An
upper estimate of the jump in terms of ε is given in Proposition 5.3.

In the rest of the paper, by the solution z = zε of (3.1), we will mean the maximal solution defined in Theorem 3(iii).
Our next result provides, under additional assumptions on the past data, further time regularity of the solution for

t > 0, which will be required in order to derive the key energy estimates in Section 5.

Proposition 4.1. Assume (1.7), (1.9), (1.12) and (4.3). Then

zε ∈ W1,∞
loc ([0,T ∗); H2(I)) (4.6)

and we moreover have
∥∂tzε(t)∥H2(I) ≤ C(Ntε

−1 + R2) exp
{
Cε−1t

}
, a.e. t ∈ (0,T ∗), (4.7)

with Nt = ∥zε∥Xt and R2 := ∥zp∥W1,∞(−∞,0;H2(I)).
14
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The proof of Theorem 3 will be carried out by a fixed point argument on problem (4.2).

Proof of Theorem 3. We first note that, owing to (1.7), (1.9), assumptions (3.3), (3.10) of Proposition 3.2 with k(s) =
µ(s) are satisfied.

(i) For T > 0, R ≥ 1 + ∥zp∥X0 to be determined below, we set

BT,R =
{
z ∈ XT , ∥z∥XT ≤ R and z(t) = zp for a.e. t < 0

}
,

and consider the fixed point operator T : BT,R → XT defined by

[T (z)](t) =


A1,εF′(z′(t)) + A2,ε

∫ ∞

0
z(t − εa)ρ(·, a)da, a.e. t ∈ (0,T ),

zp(t), a.e. t < 0.
(4.8)

Note that BT,R, being a closed subset of the Banach space XT , is a complete metric space. Recalling (1.7), we set

M1 = 1 + ∥ρ∥L∞a (0,∞;H2(I)) + ∥ρ∥L1
a(0,∞;H2(I)). (4.9)

In what follows we shall respectively denote by ∥ · ∥∞ and ∥ · ∥H2 the norms in L∞(I) and H2(I), and keep the variable
s ∈ I implicit. Let z ∈ BT,R. Using F′(z′) = 4z′(1 − z′2), estimates (3.7), (3.11), the Sobolev inequality ∥v∥W1,∞(I) ≤

C∥v∥H2(I) and the fact that ∥ f g∥H2 ≤ C∥ f ∥H2∥g∥H2 , we obtain, for a.e. t ∈ (0,T ),

∥T (z)(t)∥H2 ≤ C∥A1,εF′(z′(t))∥H2 +
∥∥∥∥A2,ε

∫ t/ε

0
z(t − εa)ρ(a)da

∥∥∥∥
H2
+

∥∥∥∥A2,ε

∫ ∞

t/ε
zp(t − εa)ρ(a)da

∥∥∥∥
H2

≤ Cε1/4∥F′(z′(t))∥L2 +C
∥∥∥∥ ∫ t/ε

0
z(t − εa)ρ(a)da

∥∥∥∥
H2
+C

∥∥∥∥ ∫ ∞

t/ε
zp(t − εa)ρ(a)da

∥∥∥∥
H2

≤ Cε1/4(1 + ∥z′(t)∥2∞)∥z′(t)∥∞ +CM1ε
−1T sup

σ∈(0,t)
∥z(σ)∥H2 +CM1 sup

σ<0
∥zp(σ)∥H2 .

It follows that
∥T (z)∥XT ≤ C0

(
ε1/4R3 + M1ε

−1TR + M1∥zp∥X0

)
, (4.10)

where C0 = C0(ρ, L) ≥ 1 (note that, for a.e. t < 0, we have ∥z(t)∥H2 = ∥zp(t)∥H2 ≤ C0M1∥zp∥X0 since C0,M1 ≥ 1).
Similarly, for all z1, z2 ∈ BT,R, using also

|X3 − Y3| ≤ 2(X2 + Y2)|X − Y |, X,Y ∈ R, (4.11)

we get
∥T (z1)(t) − T (z2)(t)∥H2

≤ C
∥∥∥A1,ε

(
F′(z′1(t)) − F′(z′2(t))

)∥∥∥
H2 +

∥∥∥∥A2,ε

∫ t/ε

0
[z1(t − εa) − z2(t − εa)]ρ(a)da

∥∥∥∥
H2

≤ Cε1/4
∥∥∥F′(z′1(t)) − F′(z′2(t))

∥∥∥
L2 +

∥∥∥∥A2,ε

∫ t/ε

0
[z1(t − εa) − z2(t − εa)]ρ(a)da

∥∥∥∥
H2

≤ Cε1/4(1 + ∥z′1(t)∥∞ + ∥z′2(t)∥∞
)2
∥(z′1 − z′2)(t)∥∞ +C

∥∥∥∥ ∫ t/ε

0
[z1(t − εa) − z2(t − εa)]ρ(a)da

∥∥∥∥
H2

≤ Cε1/4R2∥(z′1 − z′2)(t)∥∞ +CM1ε
−1T sup

σ∈(0,t)
∥(z1 − z2)(σ)∥H2 .

It follows (taking C0 = C0(ρ, L) larger if necessary) that

∥T (z1) − T (z2)∥XT ≤ C0
(
ε1/4R2 + M1ε

−1T
)
∥z1 − z2∥XT . (4.12)

15
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Now set
c1 := 2C0M1 c2 := 4−8C−4

0 , c3 = (4C0M1)−1, c4 := (4C0)−1/2 (4.13)

and
R0 := 1 + c1∥zp∥X0 .

For ε ∈ (0, 1], choose T := c3ε and any R such that

R0 ≤ R ≤ c4ε
−1/8, (4.14)

we have
C0

{
ε1/4R2 + M1ε

−1T
}
≤ 1/2 (4.15)

and
C0

(
ε1/4R3 + M1ε

−1TR + M1∥zp∥X0

)
− R ≤

{
C0

(
ε1/4R2 + M1ε

−1T
)
− 1

2
}
R ≤ 0. (4.16)

It follows from (4.15)-(4.16) that
T is a contraction mapping on BT,R. (4.17)

Consequently, (4.2) admits a unique fixed point in BT,R. Assuming ε ∈ (0, ε1] with ε1 := c2R−8
0 and making the

particular choice R = R0 in (4.14), this proves assertion (i).
(ii) Let τ > 0 and let z1, z2 ∈ Xτ be solutions satisfying (4.4). Let

τ0 = sup
{
t ∈ [0, τ); z1 = z2 a.e. on (−∞, t)

}
.

By (4.17) we know that τ0 > 0. Assume for contradiction that τ0 < τ. Since ∥zi∥Xτ ≤ R := c4ε
−1/8 and z1 = z2 for

t < τ0, the argument leading to (4.12), with t/ε replaced by (t − τ0)/ε implies

∥z1 − z2∥Xt ≤ C0
{
R2ε1/4 + M1ε

−1(t − τ0)
}
∥z1 − z2∥Xt , τ0 < t < τ.

Since C0R2ε1/4 ≤ 1/4 (cf. (4.13) and (4.14)), we deduce that z1(t) = z2(t) for t ≥ τ0 close to τ0: a contradiction.
(iii) By the definition of T ∗, for each integer j > T ∗−1, there exists a solution z j ∈ XT ∗− j−1 satisfying (4.4) with

τ = T ∗ − j−1. By the uniqueness statement in assertion (ii), we have z j = z j+1 for t ≤ T ∗ − j−1. The desired solution is
thus obtained by setting z := z j for t < T ∗ − j−1 and j > T ∗−1.

Next assume for contradiction that T ∗ < ∞ and ∥z∥XT∗ ≤ c5ε
−1/8, where c5 = c4/2c1. Since ε ≤ ε1 ≤ c2 = (c4/2)8,

we have ε1/8 ≤ c4/2 = c1c5. It follows that

R1 := 1 + c1∥z∥XT∗ ≤ 1 + c1c5ε
−1/8 ≤ 2c1c5ε

−1/8 = c4ε
−1/8.

Set ẑp(t) = z(t + T ∗) for a.e. t < 0. We may thus apply the above fixed point argument with z̃p ∈ X0 instead of zp and
R = R1 instead of R = R0 in (4.14). This provides a time T > 0 and a function ẑ ∈ XT such that ẑ = ẑp for a.e. t < 0
and

ẑ(t) = A1,εF′(ẑ′(t)) + A2,ε

∫ ∞

0
ẑ(t − εa)ρ(s, a)da, a.e. t ∈ (0,T ).

Letting z̃(t) := ẑ(t − T ∗) for a.e. t < T ∗ + T , it follows that z̃ satisfies z̃(t) = z(t) for a.e. t < T ∗ and

z̃(t) = A1,εF′(z̃′(t)) + A2,ε

∫ ∞

0
z̃(t − εa)ρ(s, a)da, a.e. t ∈ (0,T ∗ + T ),

along with (4.4): a contradiction.

Proof of Proposition 4.1. We must show that, more precisely, there exists a representative z̃ of z (i.e. z̃(t) = z(t) a.e.)
such that, for each T ∈ (0,T ∗), z̃ is Lipschitz continuous from [0,T ] to H2(I) and satisfies the estimate in (4.7). Fixing
a representative z and T ∈ (0,T ∗), it suffices to show that there exists Σ ⊂ (0,T ) with |(0,T ) \ Σ| = 0, such that

∥z(t2) − z(t1)∥H2 ≤ C(NTε
−1 + R2)|t2 − t1| exp

{
Cε−1T

}
, for all t1, t2 ∈ Σ (4.18)
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(since one then easily sees that z̃(t) := limΣ∋t′→t z(t′) exists in H2 for all t ∈ [0,T ], coincides with z on Σ, and has the
desired properties).

To this end, we first note that, by (4.2), there exists Σ ⊂ (0,T ) with |(0,T ) \ Σ| = 0, such that

z(t) = A1,εF′(z′(t)) + A2,ε

∫ ∞

0
z(t − εa)ρ(s, a)da for all t ∈ J. (4.19)

Fix t1, t2 ∈ Σ with t1 < t2 and set h := t2 − t1 and N := ∥z∥XT . Using (4.19), (3.7), (3.11), (4.11) with X = z′(s, t),
Y = z′(s, t − h), the Sobolev inequality ∥v∥W1,∞(I) ≤ C∥v∥H2(I) and the fact that ∥ f g∥H2 ≤ C∥ f ∥H2∥g∥H2 , we deduce that,
for all t ∈ Σ ∩ (h + J),∥∥∥z(t) − z(t − h)

∥∥∥
H2 ≤ 4

∥∥∥∥A1,ε

{
[z′(1 − z′2)](t) − [z′(1 − z′2)](t − h)

}∥∥∥∥
H2
+

∥∥∥∥A2,ε

∫ ∞

0
[z(t − εa) − z(t − h − εa)]ρ(a)da

∥∥∥∥
H2

≤ Cε1/4(1 + N2)∥z′(t) − z′(t − h)∥2 +C
∫ ∞

0

∥∥∥∥[z(t − εa) − z(t − h − εa)]ρ(a)
∥∥∥∥

H2
da

≤ C1ε
1/4(1 + N2)∥z(t) − z(t − h)∥H2 +C1

∫ ∞

0

∥∥∥∥[z(t − εa) − z(t − h − εa)]
∥∥∥∥

H2
∥ρ(a)∥H2 da,

with C1 = C1(ρ, L) > 0. On the other hand, setting δh(t) = ∥z(t)− z(t− h)∥H2 , we note that, for each t ∈ (0,T ), we have

δh(t − εa) = ∥zp(t − εa) − zp(t − εa − h)∥H2 ≤ R2h, for a.e. a > t/ε. (4.20)

Moreover, up to replacing C0 in (4.10), (4.12) by max(C0, C1), we may assume that

C1ε
1/4(1 + N2) ≤ C1ε

1/4
1 +C1c2

4 = 4−2C1C−1
0 R−2

0 +C1(4C0)−1 ≤ 1
2 .

Using (4.9) and (4.20), we then obtain, for all t ∈ Σ ∩ (h + Σ),

(2C1)−1δh(t) ≤
∫ ∞

0

∥∥∥∥[z(t − εa) − z(t − h − εa)]
∥∥∥∥

H2
∥ρ(a)∥H2 da

=

∫ (t−h)/ε

0
δh(t − εa)∥ρ(a)∥H2 da +

∫ t/ε

(t−h)/ε
δh(t − εa)∥ρ(a)∥H2 da +

∫ ∞

t/ε
δh(t − εa)∥ρ(a)∥H2 da

= ε−1
∫ t

h
δh(τ)∥ρ(ε−1(t − τ))∥H2 dτ +

∫ t/ε

(t−h)/ε
δh(t − εa)∥ρ(a)∥H2 da +

∫ ∞

t/ε
δh(t − εa)∥ρ(a)∥H2 da

≤ M1

(
ε−1

∫ t

h
δh(τ)dτ + 2Nε−1h + R2h

)
,

hence

δh(t) ≤ C(Nε−1 + R2)h +Cε−1
∫ t

h
δh(τ)dτ =: G(t), for all t ∈ J ∩ (h + J). (4.21)

Now observing that |(h,T ) \ (Σ ∩ (h + J))| = 0, it follows that the (absolutely continuous) function G satisfies(
exp

{
−Cε−1t

}
G(t)

)′
≤ 0 for a.e. t ∈ (h,T ), hence G(t) ≤ G(h) exp

{
Cε−1(t − h)

}
for all t ∈ (h,T ). Going back to

(4.21) and noting that t2 ∈ Σ ∩ (h + Σ) owing to t1, t2 ∈ Σ, we obtain

∥z(t2) − z(t1)∥H2 = δh(t2) ≤ G(t2) ≤ G(h) exp
{
Cε−1T

}
= C(Nε−1 + R2)|t2 − t1| exp

{
Cε−1T

}
,

hence (4.18). The proposition follows.
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5. Energy estimates

Let z = zε be the solution given by Theorem 3, of existence time T ∗ε , and denote

uε(s, t, a) := zε(s, t) − zε(s, t − εa), 0 < t < T ∗ε , a > 0. (5.1)

We define the energy:

Eε(t) :=
1
2ε

∫
I

∫ ∞

0
u2
ε(s, a, t)ρ(s, a)dads +

1
2

∫
I
(z′′ε (t))2ds +

∫
I

F(z′ε(t))ds. (5.2)

In the following two propositions, we obtain the monotonicity and dissipation property of the energy and, as a con-
sequence, derive some key estimates. Special care is given to the dependence with respect to ε, which will turn out
important in the proof of our main results.

Proposition 5.1. Assume (1.7), (1.8), (1.9), (1.12). Let ε ∈ (0, ε1) where ε1 is given by Theorem 3.
(i) We have Eε ∈ W1,∞

loc ([0,T ∗ε )) and

E′ε(t) =
1

2ε2

∫
I

∫ ∞

0
u2
ε(s, a, t)∂aρ(s, a)dads ≤ 0, a.e. t ∈ (0,T ∗ε ). (5.3)

(ii) For all 0 < t0 < t < T ∗ε , we have∫ t

t0

∫
I

∫ ∞

0
u2
ε(s, a, τ)|∂aρ(s, a)|dadsdτ ≤ 2ε2Eε(t0), (5.4)

∫ t

t0

{
∥∂tzε(τ)∥2L2(I) + ε∥∂tz′′ε (τ)∥2L2(I)

}
dτ ≤ CEε(t0), (5.5)∫ t

t0

{
ε1/4∥∂tzε(τ)∥2L∞(I) + ε

3/4∥∂tz′ε(τ)∥2L∞(I)
}
dτ ≤ CEε(t0). (5.6)

In the next proposition we make the following assumption (which is a consequence of the second part of (1.10)):∫ ∞

0
a∥ρ(·, a)∥2da < ∞. (5.7)

Proposition 5.2. Assume (1.7), (1.8), (1.9), (1.12), (5.7), let

R := 1 + ∥zp∥X0 , R̂ := ∥zp∥W1,∞(−∞,0;L∞(I)), R̄ := R4 + R̂2

and let ε ∈ (0, ε1) where ε is given by Theorem 3. Then

Eε(t) ≤ CR̄, 0 < t < T ∗ε , (5.8)

and
∥z′ε(·, t)∥L∞(I) ≤ CR̄1/3, ∥z′′ε (·, t)∥L2(I) ≤ CR̄1/2, 0 < t < T ∗ε . (5.9)

In the process of proving Proposition 5.2, we obtain an estimate for the discontinuity of zε at t = 0, of independent
interest.

Proposition 5.3. Under the assumptions of Proposition 5.2, there exists

zε(0+) := lim
t→0+

zε(t) in the strong H2(I) sense (5.10)

and we have
∥zε(0+) − zp(0)∥2 ≤ C(R + R̂)ε1/2. (5.11)
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In view of the proofs of these three propositions, we prepare the following two lemmas.

Lemma 5.4. Let ℓ be a positive integer, v ∈ H2(I) and set

G(t) :=
∫

I

∫ ∞

0
uℓε(s, t, a)ρ(s, a)v(s)dads. (5.12)

We have G ∈ W1,∞
loc ([0,T ∗ε )) and, for a.e. t ∈ (0,T ∗ε ),

G′(t) = ℓ
∫

I

∫ ∞

0
∂tzε(s, t)uℓ−1

ε (s, t, a)ρ(s, a)v(s)dads +
1
ε

∫
I

∫ ∞

0
uℓε(s, t, a)∂aρ(s, a)v(s)dads. (5.13)

Lemma 5.5. For a.e. t ∈ (0,T ∗ε ) and all v ∈ H2(I), the time derivative ∂tz satisfies∫
I
µ(s)∂tzε(s, t)v(s)ds + ε

∫
I

(
∂tz′′ε v′′ + F′′(z′ε)∂tz′εv

′)(s, t)ds +
1
ε

∫
I

∫ ∞

0
uε(s, t, a)v(s)∂aρ(s, a)dads = 0. (5.14)

Remark 5.1. Setting w(s) := ∂tz(s, t) and assuming that the quantity Ξ := 1
ε

∫ ∞
0 uε(s, t, a)∂aρ(s, a)da is known,

Lemma 5.5 means that w is a weak solution of the (closed) elliptic equation

µw + ε
(
w′′′′ − (F′′(z′ε)w

′)′
)
= −Ξ, s ∈ I,

along with the natural boundary conditions.

Proof of Lemma 5.4. Setting ũ(s, t, b) = z(s, t) − z(s, b) and changing variables by b = t − εa, we first rewrite G(t) =
ε−1

∫
I

∫ t
−∞

ũℓ(s, t, b)ρ(s, t−b
ε

)v(s)dbds. It follows that, for all t, h with t, t + h ∈ (0,T ∗ε ),

ε(G(t + h) −G(t)) =
∫

I

∫ t

−∞

(
ũℓ(s, t + h, b) − ũℓ(s, t, b)

)
ρ(s, t+h−b

ε
)vdbds

+

∫
I

∫ t

−∞

ũℓ(s, t, b)
(
ρ(s, t+h−b

ε
) − ρ(s, t−b

ε
)
)
vdbds +

∫
I

∫ h

0
ũℓ(s, t + h, t + τ)ρ(s, h−τ

ε
)vdτds.

Using assumption (1.8) and the fact that z ∈ L∞((−∞,T0)×I)∩W1,∞(0,T0; L∞(I)) for any T0 < T ∗ (cf. Proposition 4.1),
we deduce that G ∈ W1,∞

loc ([0,T ∗)) and, taking into account that ũ(·, t, t) = 0, we obtain

G′(t) = ε−1
∫

I

∫ t

−∞

∂tũℓ(s, t, b)ρ(s, t−b
ε

)vdbds + ε−2
∫

I

∫ t

−∞

ũℓ(s, t, b)∂aρ(s, t−b
ε

)vdbds,

for a.e. t ∈ (0,T ∗). The result follows by going back to the variable a.

Proof of Lemma 5.5. Fix v ∈ H2(I) and let G be given by (5.12) with ℓ = 1. Since z ∈ W1,∞
loc ([0,T ∗); H2(I)) by

Proposition 4.1, we may differentiate (1.4) in time which, after using (5.13), gives

−ε
d
dt

∫
I

(
z′′v′′ + F′(z′)v′

)
ds = G′(t) =

∫
I

∫ ∞

0
∂tzρvdads + ε−1

∫
I

∫ ∞

0
u∂aρvdads,

hence (5.14).

Proof of Proposition 5.1. (i) Set E1(t) = 1
2

∫
I |z
′′|2ds +

∫
I F(z′)ds. Since z ∈ W1,∞

loc ([0,T ∗); H2(I)), we have E1 ∈

W1,∞
loc ([0,T ∗)) and, using zt(·, t) as test-function in the weak formulation (1.4), we get, for a.e. t ∈ (0,T ∗),

E′1(t) =
∫

I
z′′∂tz′′ds +

∫
i
F′(z′)∂tz′ds = −

1
ε

∫
I

∫ ∞

0
u∂tzρdads. (5.15)
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Let now G be given by (5.12) with ℓ = 2 and v ≡ 1. Since Eε(t) = E1(t)+ 1
2εG(t), we obtain (5.3) by combining (5.13)

and (5.15).
(ii) Property (5.4) readily follows from (5.3). Set

S(s, t) :=
∫ ∞

0
u2(s, t, a)|∂aρ(s, a)|da.

Note that, by Cauchy-Schwarz and (1.8),(∫ ∞

0
u(s, t, a)|∂aρ(s, a)|da

)2
≤ S(s, t)

∫ ∞

0
|∂aρ|da ≤ CS(s, t).

For any λ > 0, applying (5.14) with v = ∂tz(·, t) and using the fact that F′′ ≥ −4, we deduce that, for a.e. t ∈ (0,T ∗),∫
I

(
µ|∂tz|2 + ε|∂tz′′|2

)
ds = −ε

∫
I

F′′(z′)|∂tz′|2 − ε−1
∫

I
∂tz

(∫ ∞

0
u∂aρda

)
ds

≤ 4ε
∫

I
|∂tz′|2ds + λ

∫
I
|∂tz|2ds +Cλ−1ε−2

∫
I
S(s, t)ds.

Next using
∫

I |∂tz′|2 ≤ 1
8

∫
I |∂tz′′|2 +C2

∫
I |∂tz|2 with C2 = C2(L) > 0 (cf. (3.12)), it follows that

(µmin − λ − 4C2ε)
∫

I
|∂tz|2ds +

ε

2

∫
I
|∂tz′′|2ds ≤ Cλ−1ε−2

∫
I

∫ ∞

0
u2|∂aρ|dads.

Up to replacing C0 in (4.10), (4.12) by max(C0, (C2/µmin)1/4), we may assume that ε ≤ ε1 ≤ 4−8C−4
0 ≤ µmin/(8C2).

Choosing λ = µmin/4, we get

A(t) :=
∫

I
|∂tz|2ds + ε

∫
I
|∂tz′′|2ds ≤ Cε−2

∫
I

∫ ∞

0
u2|∂aρ|dads. (5.16)

Integrating this in time and using (5.4) yields (5.5).
Let us finally check (5.6). By (3.12) with η = ε1/2, we have

∥∂tz′∥2L2 ≤ ε
1/2∥∂tz′′∥2L2 +Cε−1/2∥∂tz∥2L2 ≤ Cε−1/2A(t). (5.17)

Using the Sobolev inequality
∥v∥L∞ ≤ η∥v′∥L2 +C(1 + η−1)∥v∥L2 , v ∈ H1(I), (5.18)

with η = ε1/4, we deduce from (5.17) that

∥∂tz′∥2L∞ ≤ η∥∂tz′′∥2L2 +Cη−1ε−1/2A(t) ≤ Cε−3/4A(t) (5.19)

and
∥∂tz∥2L∞ ≤ η∥∂tz′∥2L2 +Cη−1∥∂tz∥2L2 ≤ C

(
ηε−1/2A(t) + η−1∥∂tz∥2L2

)
≤ Cε−1/4A(t),

and (5.6) follows from (5.5).

We next prove Proposition 5.3 as a consequence of Proposition 5.1.

Proof of Proposition 5.3. Property (5.10) follows from z ∈ W1,∞
loc ([0,T ∗); H2(I)) (cf. Proposition 4.1).

We next prove (5.11). By Theorem 3(i), since 0 < ε ≤ ε1 = c2R−8, we have T ∗ ≥ Tε := c3ε and

∥zε(t)∥H2 ≤ CR, −∞ < t ≤ Tε. (5.20)
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Let now t ∈ (0,Tε). For all s ∈ I, we write

µ(s)(z(s, t) − zp(s, 0)) = ε
(
−z′′′′ + ∂s(F′(z′))

)
+

∫ ∞

0
(z(s, t − εa) − zp(s, 0))ρ(s, a)da. (5.21)

To estimate the first term on the right hand side, we use (3.1), (3.8) with j = 4, (3.11) with j = 2, the fact that
∥ f g∥H2 ≤ C∥ f ∥H2∥g∥H2 , and (5.20) to get

∥z(t)∥H4 ≤ ∥A1,εF′(z′(t))∥H4 +
∥∥∥∥A2,ε

∫ ∞

0
z(t − εa)ρ(a)da

∥∥∥∥
H4

≤ Cε−1/4∥F′(z′(t))∥L2 +C∥F′′(z′(t))z′′(t)∥L2 +Cε−1/2
∥∥∥∥ ∫ ∞

0
z(t − εa)ρ(a)da

∥∥∥∥
H2

≤ C(1 + ∥z′(t)∥2∞)(ε−1/4∥z′(t)∥∞ + ∥z′′(t)∥2) +CM1ε
−1/2 sup

σ<t
∥z(σ)∥H2

≤ CR3ε−1/4 +CM1Rε−1/2 ≤ CRε−1/2,

hence ∥∥∥−z′′′′(t) + (F′(z′(t))′
∥∥∥

2 ≤ CRε−1/2 +CR3 ≤ CRε−1/2. (5.22)

On the other hand, by dominated convergence, (1.12) and (5.7), we have

lim
t→0+

∫ ∞

0
∥z(t − εa) − zp(0)∥∞∥ρ(·, a)∥2da =

∫ ∞

0
∥zp(−εa) − zp(0)∥∞∥ρ(·, a)∥2da ≤ R̂ε

∫ ∞

0
a∥ρ(·, a)∥2da = CR̂ε.

Combining this with (5.21) and (5.22), it follows that

µmin lim sup
t→0+

∥(z(t) − zp(0)∥2 ≤ CRε1/2 +CR̂ε,

hence (5.11).

We finally prove Proposition 5.2 as a consequence of Proposition 5.3.

Proof of Proposition 5.2. By dominated convergence, (1.12) and (5.10), we have

lim
t→0+

∫
I

∫ ∞

0
u2
ε(s, a, t)ρ(s, a)dads =

∫
I

∫ ∞

0
|z(s, 0+) − zp(s,−εa)|2ρ(s, a)dads.

Moreover, for each a > 0, we have∫
I
|z(s, 0+) − zp(s,−εa)|2ds ≤ 2

∫
I
|z(s, 0+) − zp(s, 0)|2ds + 2

∫
I
|zp(s, 0) − zp(s,−εa)|2ds

≤ C(R + R̂)2ε +CR̂2 min(1, ε2a2) ≤ C(R + R̂)2ε(1 + a).

Therefore

lim
t→0+

∫
I

∫ ∞

0
u2
ε(s, a, t)ρ(s, a)dads ≤ C(R + R̂)2ε

∫
I

∫ ∞

0
(1 + a)ρ(s, a)dads ≲ C(R + R̂)2ε.

This, along with (5.20) and the definition of Eε guarantees that limt→0+ Eε(t) ≤ CR̄ and (5.8) follows from the
monotonicity (5.3). Property (5.9) then follows from (5.8) using the inequality ∥v∥3∞ ≤ C(∥v3∥1 + ∥(v3)′∥1) ≤
C(1 + ∥v∥44 + ∥v

′∥22).
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6. Uniform L∞ bounds and global existence (proof of Theorem 1(i))

To prove global existence we cannot solely rely on the energy estimates from the previous section, since they
give bounds up to T ∗ for z′ε (and z′′ε ) but not for zε itself. The latter are provided by the following proposition, which
immediately implies Theorem 1(i).

Proposition 6.1. Assume (1.7)–(1.10), (1.12), and let ε1, R̄ be respectively given by Theorem 3 and Proposition 5.2.
There exists c0 > 0 depending only on ρ, L such that, for each ε ∈ (0, ε0] with ε0 = c0R̄−4 ≤ ε1, we have

∥zε(t)∥L∞(I) ≤ CR̄1/2, −∞ < t < T ∗ε . (6.1)

As a consequence, we have
T ∗ε = ∞,

∥zε(t)∥H2(I) ≤ CR̄1/2, t ∈ R (6.2)∫ ∞

0

{
∥∂tzε(τ)∥2L2(I) + ε∥∂tz′′ε (τ)∥2L2(I)

}
dτ ≤ CR̄ (6.3)

and ∫ ∞

0

{
ε1/4∥∂tzε(τ)∥2L∞(I) + ε

3/4∥∂tz′ε(τ)∥2L∞(I)
}
dτ ≤ CR̄. (6.4)

Furthermore, for each ε ∈ (0, ε0], we have
sup
t>0
∥zε(t)∥W4,∞(I) < ∞. (6.5)

The key to the uniform estimate (6.1) of zε is the existence of a conserved quantity, given by the following past
time average of z:

Θε(t) =
∫ ∞

τ=0

∫
I
zε(s, t − ετ)φ(s, τ)dsdτ, where φ(s, τ) =

∫ ∞

τ

ρ(s, a)da, (6.6)

for t ∈ (0,T ∗). The function Θε will be used in connection with the scalar product (z(t), µ1), which turns out to
correspond with Θε(t) without time shift. The following lemma provides the crucial properties of Θε. We recall that
the constants κε are defined in (1.14).

Lemma 6.2. Let the assumptions of Proposition 6.1 be in force.

(i) The function Θε(t) is constant, namely

Θε(t) = κε, t ∈ (0,T ∗ε ), (6.7)

(ii) We have
sup

t∈(0,T ∗ε )

∣∣∣(zε(t), µ1) − κε
∣∣∣ ≤ C(R̄ε)1/2. (6.8)

Proof. (i) Integrating the equation in space (i.e., taking v = 1 as test-function in (1.4)), we obtain∫
I

∫ ∞

0
(z(s, t) − z(s, t − εa))ρ(s, a)dads = 0, 0 < t < T ∗ε . (6.9)

Fix any 0 < t < t′ < T ∗ε and set ℓ = ε−1(t′ − t). We denote z(t) · φ(τ) =
∫

I z(s, t)φ(s, τ)ds for conciseness. Putting
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τ = y + ℓ in the definition of Θ(t′), and denoting y+ = max(y, 0), we obtain

Θ(t′)−Θ(t) =
∫ ∞

−ℓ

z(t − εy) · φ(y + ℓ)dy −
∫ ∞

0
z(t − ετ) · φ(τ)dτ

=

∫ ∞

−ℓ

z(t − εy) ·
(
φ(y + ℓ) − φ(y+)

)
dy +

∫ 0

−ℓ

z(t − εy) · φ(0)dy

=

∫ 0

−ℓ

∫ ∞

0
z(t − εy) · ρ(a)dady −

∫ ∞

−ℓ

∫ y+ℓ

y+
z(t − εy) · ρ(a)dady ≡ I1 − I2.

Noting that I2 =
∫ ∞

0

∫ a
a−ℓ z(t − εy) · ρ(a)dyda =

∫ 0
−ℓ

∫ ∞
0 z(t − εy − εa) · ρ(a)dady by Fubini, and putting σ = t − εy, it

follows that

Θ(t′) − Θ(t) =
∫ 0

−ℓ

∫ ∞

0

(
z(t − εy) − z(t − εy − εa)

)
· ρ(a)dady = ε−1

∫ t′

t

(∫ ∞

0
(z(σ) − z(σ − εa)) · ρ(a)da

)
dσ,

hence Θ(t′) = Θ(t) in view of (6.9).
On the other hand, for each s ∈ I, τ > 0, we have z(s, t′ − ετ)→ zp(s,−ετ) as t′ → 0+, owing to (1.12). Moreover,

for t′ ∈ (0,Tε), we have |z(s, t′ − ετ)|ρ(s, a) ≤
(
supτ∈(−∞,Tε) ∥z(τ)∥∞

)
ρ(s, a) ∈ L1(I × (0,∞)). Property (6.7) follows by

dominated convergence.
(ii) By (6.3) we have

∥∥∥z(t) − z(t0)
∥∥∥

2 ≤

∫ t

t0
∥zt(σ)∥2dσ ≤ (t − t0)1/2

(∫ t

t0
∥zt(σ)∥22dσ

)1/2
≤ C(t − t0)1/2R̄1/2, 0 < t0 < t < T ∗ε . (6.10)

Next, for −∞ < t0 < 0 < t < T ∗ε , we may write∥∥∥z(t) − z(t0)
∥∥∥

2 ≤ ∥z(t) − z(0+)∥2 + ∥z(0+) − zp(0)∥2 + ∥zp(0) − zp(t0)∥2 ≤ CR̄1/2t1/2 +C(R + R̂)ε1/2 +CR̂ min(1, |t0|),

owing to (6.10), (5.11) and (1.12). Using min(1, |t0|) ≤ |t0|1/2, we obtain∥∥∥z(t) − z(t0)
∥∥∥

2 ≤ CR̄1/2((t − t0)1/2 + ε1/2), −∞ < t0 < 0 < t < T ∗ε . (6.11)

Now, by the definition of φ, µ1, the first part of assumption (1.10) and (6.7), we have∫ ∞

0

(
1 + τ1/2)∥φ(·, τ)∥2dτ ≤

∫ ∞

0

∫ ∞

τ

(
1 + τ1/2)∥ρ(·, a)∥2dadτ ≤ C

∫ ∞

0

(
1 + a3/2)∥ρ(·, a)∥2da < ∞ (6.12)

and

(z(t), µ1) − κε =
∫ ∞

0

∫
I

(
z(s, t) − z(s, t − ετ)

)
φ(s, τ)dsdτ, 0 < t < T ∗ε .

Using (6.10)-(6.12), we obtain∣∣∣(z(t), µ1) − κε
∣∣∣ ≤ ∫ ∞

0
∥z(t) − z(t − ετ)∥2∥φ(·, τ)∥2dτ ≤ C(R̄ε)1/2

∫ ∞

0

(
1 + τ1/2)∥φ(·, τ)∥2dτ, 0 < t < T ∗ε , (6.13)

hence (6.8).

Proof of Proposition 6.1. We claim that

min
s∈(0,L)

|z(s, t)| ≤ CR +C(R̄ε)1/2, 0 < t < T ∗ε . (6.14)

If z(s, t) = 0 for some s ∈ (0, L), then there is nothing to prove. We may thus assume that z(s, t) , 0 for all s ∈ (0, L).
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By continuity we may assume z(·, t) > 0 in (0, L) (the case z < 0 is similar). Setting

L1 :=
∫

I
µ1(s)ds =

∫
I

∫ ∞

τ=0
φ(s, τ)dτ =

∫
I

∫ ∞

a=0
aρ(s, a)dads > 0,

and using (6.8), we obtain

L1 min
s∈(0,L)

z(s, t) ≤
∫

I
z(s, t)µ1(s)ds ≤ |κε| +C(R̄ε)1/2,

hence (6.14).
It follows from (5.9) and (6.14) that

∥z(t)∥∞ ≤ CR +CR̄1/3 +C(R̄ε)1/2 ≤ C3R̄1/2, 0 < t < T ∗ε ,

for some C3 = C3(ρ, L) > 0. This proves (6.1), hence (6.2) owing to estimates (5.9) in Proposition 5.2.
Now, we may choose c0 > 0 depending only on ρ, L such that ε0 := c0R̄−4 ≤ ε1 and c5ε

−1/8
0 > C3R̄1/2. As a direct

consequence of Theorem 3(iii), we deduce that T ∗ε = ∞. Properties (6.3), (6.4) then follow from (5.5)-(5.8).
Finally, using (5.9), (6.1) and the differential equation (1.5), we get

sup
t>0
∥zε(t)∥H4(I) < ∞,

hence in particular supt>0 ∥zε(t)∥W2,∞(I) < ∞. Going back to (1.5) we obtain (6.5).

7. Hölder continuity with respect to ε (proof of Theorem 1(ii))

It is a direct consequence of:

Proposition 7.1. Assume (1.7)–(1.10), (1.12), and let ε0 be given by Proposition 6.1. We have

∥(zε − zε̄)(t)∥H2 ≤ Cε̄−1/4R̄(ε̄ − ε)1/4 exp
{
ε̄−1∥ρ∥∞t

}
. 0 < ε < ε̄ < ε0, (7.1)

Proof of Proposition 7.1. Step 1. First estimate of the difference. Let 0 < ε < ε̄ < ε0 and t > 0. We claim that

ε̄

∫
I
(z′′ε − z′′ε̄ )2(t)ds +

∫
I
(zε − zε̄)2(t)ds ≤ CR̄2(ε̄ − ε) +C

∫
I

∫ ∞

0
(zε − zε̄)2(t − ε̄a)ρ(s, a)dads

+C
∫

I

∫ ∞

0
(zε(t − εa) − zε(t − ε̄a))2ρ(s, a)dads.

(7.2)

To this end, subtracting the equation (1.4) for zε and for zε̄ and choosing v = (zε − zε̄)(t), we obtain (omitting the
variable s without risk of confusion)

ε̄

∫
I
(z′′ε − z′′ε̄ )2(t)ds +

∫
I
µ(zε − zε̄)2(t)ds = ε̄

∫
I
(F′(z′ε) − F′(z′ε̄))(t)(zε − zε̄)′(t)ds

+ (ε̄ − ε)
{∫

I
z′′ε (t)(zε − zε̄)′′(t)ds −

∫
I
(F′(z′ε(t)))(zε − zε̄)′(t)

}
ds

+

∫
I

∫ ∞

0
(zε − zε̄)(t − ε̄a)ρ(s, a)(zε − zε̄)(t)dads +

∫
I

∫ ∞

0
(zε(t − εa) − zε(t − ε̄a))ρ(s, a)(zε − zε̄)(t)dads.

(7.3)

To estimate the first term on the right hand side of (7.3), we use (5.9), (6.2) and the Sobolev embedding to write∣∣∣F′(z′ε) − F′(z′ε̄)
∣∣∣ ≤ 4

{∣∣∣z′ε − z′ε̄
∣∣∣ + ∣∣∣(z′ε)3 − (z′ε̄)

3
∣∣∣} ≤ CR̄

∣∣∣z′ε − z′ε̄
∣∣∣ .
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Next, using (3.12), one writes as above:∣∣∣∣∣∫
I
(F′(z′ε) − F′(z′ε̄))(z

′
ε − z′ε̄)ds

∣∣∣∣∣ ≤ CR̄
∫

I

∣∣∣z′ε(s, t) − z′ε̄(s, t)
∣∣∣2 ds ≤ C4R̄

{
δ∥z′′ε (t) − z′′ε̄ (t)∥22 + (1 + δ−1)∥zε(t) − zε̄(t)∥22

}
with C4 = C4(ρ, L) > 0. Choosing δ = (2C4R̄)−1, using R̄2ε̄ ≤ c0R̄−2 ≤ c0 and taking c0 = c0(ρ, L) > 0 smaller in
Proposition 6.1 if necessary, we obtain

ε̄

∣∣∣∣∣∫
I
(F′(z′ε(t)) − F′(z′ε̄(t)))(zε − zε̄)′(t)ds

∣∣∣∣∣ ≤ CR̄2ε̄

∫
I
(zε − zε̄)2(t)ds +

ε̄

2

∫
I
(z′′ε − z′′ε̄ )2(t)ds

≤
µmin

2

∫
I
(zε − zε̄)2(t)ds +

ε̄

2

∫
I
(z′′ε − z′′ε̄ )2(t)ds.

Next using (6.2), we can estimate the third term on the right hand side of (7.3) by

(ε̄ − ε)
∫

I

∣∣∣z′′ε (t)(zε − zε̄)′′(t)
∣∣∣ds +

∫
I

∣∣∣F′(z′ε(t))(z′ε − z′ε̄)(t)
∣∣∣ds ≤ CR̄2(ε̄ − ε).

Estimating the remaining two terms by Young’s inequality, we get (7.2).
Step 2. Control of the time shift term in the right hand side of (7.2). We claim that∫

I

∫ ∞

0

∣∣∣zε(t − εa) − zε(t − ε̄a)
∣∣∣2ρ(s, a)dads ≤ CR̄

(
ε̄(ε̄ − ε)

)1/2
. (7.4)

To this end, recalling that zε(τ) = zε̄(τ) = zp for τ < 0, we split the left hand side of (7.4) as∫
I

∫ ∞

0

∣∣∣zε(t − εa) − zε(t − ε̄a)
∣∣∣2ρ(s, a)dads =

∫
I

∫ t/ε̄

0

∣∣∣zε(t − εa) − zε(t − ε̄a)
∣∣∣2ρ(s, a)dads

+

∫
I

∫ t/ε

t/ε̄

∣∣∣zε(t − εa) − zε(t − ε̄a)
∣∣∣2ρ(s, a)dads.

By (6.10), we have ∫
I

∫ t/ε̄

0

∣∣∣zε(t − εa) − zε(t − ε̄a)
∣∣∣2ρ(s, a)dads ≤ C(ε̄ − ε)R̄

∫
I

∫ ∞

0
aρ(s, a)dads. (7.5)

On the other hand, by (6.11), we have∫
I

∣∣∣zε(t − εa) − zε(t − ε̄a)
∣∣∣2ds ≤ CR̄

(
(ε̄ − ε)a + ε

)
, t/ε̄ < a < t/ε.

Since, using the second part of assumption (1.10),∫ t/ε

t/ε̄
∥ρ(·, a)∥∞da ≤ C min

{
ε̄

t

∫ ∞

0
a∥ρ(·, a)∥∞da,

t(ε̄ − ε)
εε̄

∥ρ∥∞

}
≤ C min

{
ε̄

t
,

t(ε̄ − ε)
εε̄

}
≤ C

( ε̄ − ε
ε

)1/2
,

it follows that∫
I

∫ t/ε

t/ε̄

∣∣∣zε(t − εa) − zε(t − ε̄a)
∣∣∣2ρ(s, a)dads ≤

∫ t/ε

t/ε̄
CR̄

(
(ε̄ − ε)a + ε

)
∥ρ(·, a)∥∞da

≤ CR̄(ε̄ − ε)
∫ ∞

0
a∥ρ(·, a)∥∞da +CR̄ε

∫ t/ε

t/ε̄
∥ρ(·, a)∥∞da ≤ CR̄(ε̄ − ε) +CR̄ε

( ε̄ − ε
ε

)1/2
≤ CR̄

(
ε̄(ε̄ − ε)

)1/2
.

Claim (7.4) follows by adding this with (7.5).
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Step 3. Conclusion. Letting δ = CR̄2(ε̄(ε̄ − ε)
)1/2,

Λε̄,ε(t) = ε̄
∫

I
(z′′ε − z′′ε̄ )2(t)ds +

∫
I
(zε − zε̄)2(t)ds,

combining (7.2), (7.4), and using that zε(τ) = zε̄(τ) = zp for τ < 0, we obtain

Λε̄,ε(t) ≤ δ +C
∫ t/ε̄

0
Λε̄,ε(t − ε̄a)∥ρ∥∞da ≤ δ +Cε̄−1

∫ t

0
Λε̄,ε(τ)∥ρ∥∞dτ. (7.6)

It follows from Gronwall’s lemma that Λε̄,ε(t) ≤ δ exp
{
ε̄−1∥ρ∥∞t

}
, hence (7.1).

8. Proof of convergence as t → ∞ (Theorem 1(iii))

We denote by S the set of steady states, i.e. solutions of (1.16). The ω-limit set of zε is defined by

ω(zε) :=
{
Z ∈ H2(I); ∃tn → ∞, lim

n
∥zε(tn) − Z∥H2(I) = 0

}
. (8.1)

Also, recalling (1.13), we define
SK :=

{
Z ∈ S; (Z, µ1) = K

}
, K ∈ R.

For fixed ε ∈ (0, ε0], the convergence as t → ∞ will be a direct consequence of the following quasiconvergence
property, along with the structure of steady states.

Lemma 8.1. Let the assumptions of Theorem 1 be in force and let ε ∈ (0, ε0].
(i) The set ω(zε) is a nonempty compact connected subset of H2(I).
(ii) We have ω(zε) ⊂ Sκε .

Whereas the proof of Lemma 8.1(i) is standard, the proof of assertion (ii) relies on two ingredients: the decay of
the delay term Lε[zε] as t → ∞ and the good properties of the inner product of zε(t) with µ1.

Lemma 8.2. Let the assumptions of Theorem 1 be in force.

(i) Let p ∈ [1,∞). The function Lε[zε] satisfies the decay property

lim
t→∞
∥Lε[zε](·, t)∥Lp(I) = 0, for each ε ∈ (0, ε0]. (8.2)

(ii) We have the convergence
lim
t→∞

(zε(t), µ1) = κε, for each ε ∈ (0, ε0]. (8.3)

Proof. (i) We have∫
I
|Lεz(s, t)|ds ≤

∫ ∞

a=0

∫
I

Hε(t, s, a)dsda, where Hε(t, s, a) := ε−1|z(s, t) − z(s, t − εa)|ρ(s, a).

For each fixed (s, a) ∈ I × (0,∞), inequality (6.4) guarantees that, for all ε ∈ (0, ε0] and t > εa,

Hε(t, s, a) ≤
√

a
ε
ρ(s, a)

(∫ t

t−εa
∥zt(τ)∥2∞dτ

)1/2
≤ CR̄1/2ε−5/8 √aρ(s, a). (8.4)

Moreover, the first inequality in (8.4) implies limt→∞ Hε(t, s, a) = 0 for each fixed ε, s, a. Since
√

aρ(s, a) ∈
L1(I × (0,∞)), by dominated convergence, we obtain (8.2) for p = 1. Since, on the other hand, ∥Lεz(·, t)∥∞ ≤
CR̄1/2ε−1∥ρ∥L1(I×(0,∞)) by (6.1), we deduce (8.2) for all finite p by interpolation.
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(ii) Fix ε ∈ (0, ε0]. Recalling (6.13) we have∣∣∣(z(t), µ1) − κε
∣∣∣ ≤ ∫ ∞

0
∥z(t) − z(t − ετ)∥2∥φ(·, τ)∥2dτ

and, for each fixed τ > 0, (6.4) guarantees that

∥z(t) − z(t − ετ)∥2 ≤
√
ετ

(∫ t

t−ετ
∥zt(σ)∥22dσ

)1/2
→ 0, as → ∞.

On the other hand, we have ∥z(t) − z(t − ετ)∥2∥φ(·, τ)∥2 ≤ CR̄∥φ(·, τ)∥2 ∈ L1
τ(0,∞), owing to (6.1) and (6.12). Property

(8.3) then follows by dominated convergence.

Proof of Lemma 8.1. (i) It is easy to verify that

ω(zε) = ∩
n∈N∗

Kn, where Kn = {zε(t); t ≥ n}.

On the other hand, it follows from (6.5) that each Kn is compact (for the H2(I) topology). Moreover, since z ∈
C((0,∞); H2(I)) as a consequence of (4.6), Kn hence Kn is connected. We conclude that ω(zε) is a nonempty compact
connected set, as the intersection of a nonincreasing sequence of such sets.

(ii) Let ε ∈ (0, ε0]. For any v ∈ H2(I) and t > 0, we have∣∣∣∣∫
I

(
z′′ε (s, t)v′′(s) + F′(z′ε(s, t))v′(s)

)
ds

∣∣∣∣ = ∣∣∣∣∫
I
Lεzε(s, t)v(s)ds

∣∣∣∣ ≤ ∥Lεzε(·, t)∥L2(I)∥v∥L2(I). (8.5)

Let Z ∈ ω(zε). There exists a sequence tn → ∞ such that limn ∥zε(tn) − Z∥H2(I) = 0. Passing to the limit in (8.5) for
t = tn with help of (8.2) with p = 2, it follows that∫

I

(
Z′′(s)v′′(s) + F′(Z′(s))v′(s)

)
ds = 0.

Consequently, Z ∈ S. Taking κε given by Lemma 8.2, property (8.3) then guarantees that (Z, µ1) = κε, hence Z ∈
Sκε .

Proof of Theorem 1(iii). The set ω(zε) is nonempty and connected by Lemma 8.1 (i). On the other hand, it is finite
since ω(zε) ⊂ Sκε by Lemma 8.1(ii) and Sκε is finite by Proposition 2.2. The set ω(zε) is thus a singleton, which proves
the theorem.

9. Convergence when ε goes to 0 (proof of first part of Theorem 2(i))

The result will be a consequence of the following two lemmas.

Lemma 9.1. Assume (1.7)–(1.10), (1.12) and pick any sequence ε j → 0+.
(i) There exists a subsequence ε′j and

z̃0 ∈ L∞([0,∞); H2(I)) ∩ Cν
loc([0,∞); C1(I)) ∩ H1

loc([0,∞); L2(I)) (9.1)

for all ν ∈ (0, 1/8), such that, lim j zε′j = z̃0 where, for each T > 0, the convergence is strong in C([0,T ]; C1(I), weak
in H1((0,T ); L2(I)), and weak-* in L∞(0,T ; H2(I)).

(ii) The function z̃0 is a global solution of (1.15) (cf. Definition A.1) with b = µ1 and z̃(0) = zp(0).

Proof. (i) As a consequence of estimates (6.2), (6.3), similar to [24, Lemma 5, p.976], we see that {zε} is bounded in
L∞([0,∞); H2(I)) ∩ H1

loc([0,∞); L2(I)) hence, by interpolation, it is bounded in Wθ,2/θ
loc ([0,∞); H2(1−θ)(I)) ↪→ C(θ−η)/2

loc
([0,∞); C1(I)) for all θ ∈ (0, 1/4) and η > 0. The conclusion then follows from standard compactness properties.
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(ii) Let ε := ε′j be as in assertion (i) and fix ψ ∈ C1([0,T ]; H2(I)). Taking v = ψ(·, t) in (1.4) and integrating in
time, we obtain

Dε(ρ, zε, ψ) +
∫ T

0

∫
I

(
z′′ε ψ

′′ + F′(z′ε)ψ
′)dsdt = 0, (9.2)

where

Dε(ρ, zε, ψ) :=
1
ε

∫
I

∫ T

0

∫ ∞

0
ρ(s, a) (zε(s, t) − zε(s, t − εa)) daψ(s, t)dtds.

With the decomposition

Dε(ρ, zε, ψ) =
1
ε

∫
I

∫ T

0

∫ ∞

T−t
ε

ρ(s, a)zε(s, t)ψ(s, t)dadtds −
1
ε

∫
I

∫ T

0

∫ T−t
ε

0
zε(s, t)(ψ(s, t + εa) − ψ(s, t)) ρ(s, a)dadtds

−
1
ε

∫
I

∫ T

0

∫ ∞

t
ε

ρ(s, a)zp(s, t − εa)ψ(s, t)dadtds =: D1
ε −D

2
ε −D

3
ε,

we use an argument similar to [16, Propositions A.1 and A.2. pp.41-42]. Namely, using the change of variables
(t, a) = (T − εh, a) (resp., (t, a) = (ε(a − τ), a)), the convergence zε → z̃0 in L∞(I × (0,T )), the regularity of ψ and
assumptions (1.10), (1.12), it follows by dominated convergence that

D1
ε =

∫
I

∫ T/ε

0

∫ ∞

h
ρ(s, a)(zεψ)(s,T − εh)dadhds

−−−−→
j→∞

∫
I

∫ ∫
{0<h<a<∞}

ρ(s, a)(z̃0ψ)(s,T )dadhds =
∫

I
(z̃0ψ)(s,T )µ1(s)ds,

D3
ε =

∫
I

∫ ∞

0

∫ a

0
ρ(s, a)zp(s,−ετ)ψ(s, ε(a − τ))dτdads

−−−−→
j→∞

∫
I

∫ ∫
{0<τ<a<∞}

ρ(s, a)(zpψ)(s, 0)dτdads =
∫

I
(zpψ)(s, 0)µ1(s)ds,

D2
ε −−−−→j→∞

∫
I

∫ T

0

∫ ∞

0
z0(s, t)∂tψ(s, t)aρ(s, a)dadtds =

∫ T

0

∫
I
z̃0∂tψµ1dsdt.

Therefore,

Dε(ρ, zε, ψ) −−−−→
j→∞

∫
I
z̃0(T )ψ(T )µ1ds −

∫ T

0

∫
I
z̃0∂tψµ1dsdt −

∫
I
zp(0)ψ(0)µ1ds

=

∫ T

0

∫
I
∂t z̃0ψµ1dsdt +

∫
I
(z̃0 − zp)(0)ψ(0)µ1ds,

where the integration by parts in time is allowed since z̃0 ∈ H1(0,T ; L2(I)). On the other hand, thanks to the weak and
strong convergence properties in assertion (i), we may pass to the limit in the integral term in (9.2), and we get∫ T

0

∫
I
∂t z̃0ψµ1dsdt +

∫
I
(z̃0 − zp)(0)ψ(0)µ1ds +

∫ T

0

∫
I

(
z̃0
′′ψ′′ + F′(z̃0

′)ψ′
)
dsdt = 0.

By density, this remains true for all ψ ∈ L2(0,T ); H2(I)). Now, for any θ ∈ H2(I), by choosing ψn(s, t) = (1 − nt)+θ(s)
and letting n→ ∞, it follows that

∫
I(z̃0−zp)(0)θµ1ds = 0, hence z̃0(0) = zp(0) and z̃0 is a global solution of (1.15).

Lemma 9.2. Under the assumptions of Proposition 1.2, problem (1.15) has at most one solution in the class X :=
L∞loc([0,∞); H2(I)) ∩ H1

loc([0,∞); L2(I)).

Proof. Let z̃0, z̄0 ∈ X be two solutions (cf. Definition A.1). Then, for each T > 0, subtracting the equations, using
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|F′(z̃′0) − F′(z̄′0)| ≤ C(T )|w′| and taking ψ = w := z̃0 − z̄0, we see that w satisfies∫ t

0

∫
I
b(s)w∂twdsdτ ≤ C(T )

∫ t

0

∫
I
(w′)2dsdτ −

∫ t

0

∫
I
(w′′)2dsdτ, 0 < t < T.

Using the interpolation inequality (3.12) and w(0) = 0, we obtain, for all t ∈ (0,T ),∫
I
b(s)w2(t)ds = 2

∫ t

0

∫
I
b(s)w∂twdsdτ ≤ C1(T )

∫ t

0

∫
I
w2dsdτ ≤ C2(T )

∫ t

0

∫
I
b(s)w2dsdτ.

By Gronwall’s Lemma, we deduce that w ≡ 0.

Proof of first part of Theorem 2(i). Let z̃0, in the class (9.1), be any cluster point of the family {zε, ε ∈ (0, ε0]} for the
notion of convergence in Lemma 9.1. By that lemma, there exists at least one, and z̃0 is a global solution of (1.15)
with b = µ1.

On the other hand, by (1.9), setting a0 = (2∥ρ∥∞)−1µmin, we get

µ1(s) =
∫ ∞

0
aρ(s, a)da ≥ a0

∫ ∞

a0

ρ(s, a)da ≥ a0
(
µmin − a0∥ρ∥∞

)
≥

µ2
min

4∥ρ∥∞
> 0, s ∈ I.

It follows from Lemma 9.2 that (1.15) with b = µ1 has at most one global weak solution, hence the cluster point is
unique, which implies the desired convergence as ε→ 0.

10. Proof of Theorem 1(iv) and end of proof of Theorem 2: strong H2 convergence and stablity of affine steady
states with respect to ε

The energy associated with the solution z0 of (1.15) is given by

E0(t) :=
1
2

∫
I
(z′′0 (t))2ds +

∫
I

F(z′0(t))ds.

We shall use the following properties (see Appendix A for the proof).

Proposition 10.1. Let the assumptions of Proposition 1.2 be in force.
(i) For all t2 > t1 ≥ 0, we have

E0(t2) − E0(t1) = −
∫ t2

t1

∫
I
b(∂tz0)2dsdt ≤ 0.

In particular, E0 ∈ W1,p
loc ([0,∞)) for all p ∈ (1,∞) and

E′0(t) = −
∫

I
b(∂tz0)2ds, a.e. t > 0.

(ii) For all t > 0, we have (z0(t), b) = K0 := (ϕ, b).

Our next result, which requires the additional coercivity assumption (1.11) on the kernel, yields the strong L2
t (H2

s )
convergence statement in Theorem 2(i). It also provides the energy convergence property which will be the key to the
proof of Theorem 2(ii). We recall that Eε and uε are defined in (5.1)-(5.2).

Proposition 10.2. Assume (1.7)–(1.12). Then, for all T > 0, we have

lim
ε→0

zε = z0 strongly in L2(0,T ; H2(I)) (10.1)

and
lim
ε→0

Eε(t) = E0(t), uniformly for t > 0 bounded. (10.2)
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Moreover, one has

lim
ε→0

E′ε(t) ≡ lim
ε→0

1
2ε2

∫
I

∫ ∞

0
u2
ε(s, a, t)∂aϱ(s, a)dads = −

∫
I
µ1(s) |∂tz0(s, t)|2 ds ≡ E′0(t), (10.3)

the convergence taking place weakly inM(0,T ), i.e. in the space of finite Radon measures on (0,T ).

Remark 10.1. (i) The equality in (10.3) can be explained heuristically as follows: when ε→ 0, one has formally that

1
2ε2

∫ ∞

0
∂aρ(s, a)u2

ε(s, a, t)da→
1
2

∫ ∞

0
∂aρ(s, a)u2

0(s, a, t)da, where u0(s, a, t) := a∂tz0(s, t).

Then the identity ∂a(a2ρ) = 2aρ + a2∂aρ, because the integral of the left hand side vanishes, implies that µ1(s) ≡∫ ∞
0 aρ(s, a)da = − 1

2

∫ ∞
0 ∂aρ(s, a)a2da, giving the desired limit.

(ii) With some additional work, it can be shown that the same result holds in the finite dimensional case [18], as
well as for the linear delayed heat equation [20] and also in the case of delayed harmonic maps [16].

The proof is based on the following two lemmas. The first one is a higher order a priori estimate, uniform for
ε > 0:

Lemma 10.3. Assume (1.7)–(1.12). Then, for each T > 0, we have

sup
ε∈(0,ε0]

∥zε∥L2(0,T ;H3(I)) < ∞ (10.4)

and
sup

ε∈(0,ε0]
∥zε∥H1/6(0,T ;H5/2(I)) < ∞. (10.5)

In particular, the family {zε, ε ∈ (0, ε0]} is precompact in L2(0,T ; H2(I)).

Our second lemma shows that the first term in the energy Eε vanishes as ε→ 0.

Lemma 10.4. Assume (1.7)–(1.10), (1.12) and let

Gε(t) := ε−1
∫

I

∫ ∞

0
u2
ε(t, s, a)ρ(s, a)dads.

Then we have ∫ T+1

T
Gε(t)dt ≤ CR̄

(
η(ε) +

√
ε
(
1 + T−1/2)), for all T > 0, (10.6)

where η(ε) :=
∫ ∞

1/
√
ε

a∥ρ(·, a)∥∞da→ 0, as ε→ 0.

Proof of Lemma 10.3. Recalling (1.22), multiplying (1.5) with −z′′, integrating by parts, using (5.9) and the Sobolev
inequality ∥z′′∥∞ ≤ C(∥z′′∥2 + ∥z′′′∥2), we get, for all t > 0,

∥z′′′∥22 = −
∫

I
(F′(z′))′z′′ +

∫
I
(Lεz)z′′ ≤ C

∫
I
(1 + (z′)2)(z′′)2 + ∥Lεz∥1∥z′′∥∞

≤ CR̄5/3 +C∥Lεz∥1(∥z′′′∥2 + R̄1/2) ≤ CR̄5/3 +
1
2
∥z′′′∥22 +CR̄ +C∥Lεz∥21,

hence
∥z′′′∥22 ≤ CR̄5/3 +C∥Lεz∥21. (10.7)
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On the other hand, by Cauchy-Schwarz, we have

∥Lεz∥21 ≤ ε
−2

(∫
I

∫ ∞

0
u(s, t, a)ρ(s, a)dads

)2

= ε−2
(∫

I

∫ ∞

0

(
u(s, t, a)|ρa(s, a)|1/2)ρ(s, a)|ρa(s, a)|−1/2dads

)2

≤ ε−2
∫

I

∫ ∞

0
u2(t, s, a)|ρa(s, a)|dads

∫
I

∫ ∞

0
ρ2(s, a)|ρa(s, a)|−1dads

(where we defined ρ(s, a)|ρa(s, a)|−1/2 := 0 if ρ(s, a) = ρa(s, a) = 0). Consequently, by (1.11), (5.4) and (5.8),∫ T

0
∥Lεz∥21dt ≤ ε−2

∫ T

0

∫
I

∫ ∞

0
u2(t, s, a)|ρa(s, a)|dads ≤ CR̄.

From this, (5.9) and (10.7), we deduce (10.4). Since, on the other hand, for each T > 0, (6.2) implies

sup
ε∈(0,ε0]

∥zε∥H1(0,T ;L2(I)) < ∞,

it follows by interpolation with (10.4) that supε∈(0,ε0] ∥zε∥H1−ν(0,T ;H3ν(I)) < ∞ for each ν ∈ (0, 1), hence (10.5).

Proof of Lemma 10.4. We have

Gε(t) ≤ε−1
∫

I

∫ t/ε

0

(∫ t

t−εa
|zt(s, σ)|dσ

)2

ρ(s, a)dads + ε−1
∫

I

∫ ∞

t/ε
u2(t, s, a)ρ(s, a)dads ≡ G(1)

ε (t) +G(2)
ε (t).

To estimate G(1)
ε (t), we write

G(1)
ε (t) ≤

∫
I

∫ t/ε

0

(∫ t

t−εa
|zt(s, σ)|2dσ

)
aρ(s, a)dads ≤

∫ t/ε

0

∫ t

t−εa
∥zt(σ)∥22a∥ρ(·, a)∥∞dσda

≤

∫ t

0
∥zt(σ)∥22

(∫ t/ε

(t−σ)/ε
a∥ρ(·, a)∥∞da

)
dσ

≤

∫ (t−
√
ε)+

0
∥zt(σ)∥22

(∫ ∞

1/
√
ε

a∥ρ(·, a)∥∞da
)

dσ +C
∫ t

(t−
√
ε)+
∥zt(σ)∥22dσ,

(10.8)

where we used the second part of (1.10) in the last inequality. To handle the last integral, we compute∫ T+1

T

∫ t

(t−
√
ε)+
∥zt(σ)∥22dσdt ≤

∫ T+1

0
∥zt(σ)∥22

(∫ σ+
√
ε

σ

dt
)
dσ ≤

√
ε

∫ T+1

0
∥zt(σ)∥22dσ.

Going back to (10.8) and using (6.3), we get∫ T+1

T
G(1)
ε (t)dt ≤ C

(
η(ε) +

√
ε
) ∫ T+1

0
∥zt(σ)∥22dσ ≤ C

(
η(ε) +

√
ε
)
R̄. (10.9)

To estimate G(2)
ε (t), we use (6.1) and the first part of (1.10) to write

G(2)
ε (t) ≤ CR̄ε−1

∫
I

∫ ∞

t/ε
ρ(s, a)dads ≤ CR̄ε1/2t−3/2

∫
I

∫ ∞

t/ε
a3/2ρ(s, a)dads ≤ CR̄ε1/2t−3/2.

Integrating the latter for t ∈ (T,T + 1) and combining with (10.9), we get (10.6).

Proof of Proposition 10.2. By Lemma 10.3, for any sequence ε j → 0+, there exists a subsequence converging in
L2

loc([0,∞); H2(I)) to some z̃, and we moreover have z̃ ∈ H1
loc([0,∞); L2(I)) owing to Lemma 9.1(i). By the proof of

Lemma 9.1(ii), z̃ is a weak solution of (1.15), hence z̃ = z0 by Lemma 9.2. This shows (10.1).
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Next write
Eε(t) = Êε(t) +

1
2

Gε(t), with Êε(t) :=
1
2

∫
I
(z′′ε (t))2ds +

∫
I

F(z′ε(t))ds.

By (10.1) and Lemma 10.4, for any t2 > t1 > 0 we have

lim
ε→0

∫ t2

t1
Eε(σ)dσ = lim

ε→0

∫ t2

t1
Êε(σ)dσ +

1
2

lim
ε→0

∫ t2

t1
Gε(σ)dσ =

∫ t2

t1
E0(σ)dσ.

By the time monotonicity of E0 and Eε, dividing by t2 − t1, it follows that

lim inf
ε→0

Eε(t1) ≥ E0(t2), lim sup
ε→0

Eε(t2) ≤ E0(t1). (10.10)

On the other hand, by (1.17), we have E0 ∈ C([0,∞)). For fixed t > 0, taking t1 = t (resp., t2 = t) and letting t2 → t+

(resp., t1 → t−) in the first (resp., second) inequality of (10.10), we obtain

lim inf
ε→0

Eε(t) ≥ E0(t) ≥ lim sup
ε→0

Eε(t),

hence (10.2) (the convergence being uniform for bounded t, owing to the monotonicity of t 7→ Eε(t) and Dini’s
theorem).

Finally, by (5.3) and (5.4), we have E′ε ∈ L1(0,T ) and supε∈(0,ε0) ∥E
′
ε∥L1(0,T ) < ∞. For any sequence εi → 0, some

subsequence of E′εi
thus converges weakly in the sense of measures to some limit µ. On the other hand, we know from

(10.2) that Eε converges to E0 inD′((0,T )) as ε→ 0. By uniqueness of limits µ = E′0 and (10.3) follows.

Proof of Theorem 2(ii). First note that, since S is finite up to additive constants, we have

η1 = min
{
Ẽ(W); W ∈ S, |W ′| . 1

}
> 0, where Ẽ(W) =

1
2

∫
I
(W ′′)2ds +

∫
I

F(W ′)ds. (10.11)

Also, since the imbedding H2(I) ⊂ C1(I) is compact, we have

η2 = inf
{
Ẽ(W); W ∈ H2(I), W ′(0) = 0

}
> 0. (10.12)

Set η0 = min(η1, η2).
Assume that Z′0 ≡ 1 (the case Z′0 ≡ −1 is similar). Since limt→∞ E0(t) = Ẽ(Z0) = 0 and limt→∞ ∥z′0(t) − 1∥∞ = 0,

there exists t0 > 0 such that E0(t0) < η0/2 and z′0(0, t0) > 1/2. By the convergence property (10.2) of the energy and
the fact that zε → z0 in C([0, t0]; C1([0, L])) (cf. Lemma 9.1), there exists ε̄0 ∈ (0, ε0) such that, for all ε ∈ (0, ε̄0),
Eε(t0) ≤ η0/2 and z′ε(0, t0) ≥ 1/2. In particular,

Ẽ(Zε) ≤ Eε(Zε) ≤ Eε(t0) ≤ η0/2 < η1,

hence Z′ε ≡ ±1. Moreover, for any ε ∈ (0, ε̄0], the case Z′ε ≡ −1 cannot occur, since otherwise, by the continuity of
t 7→ zε(t) in C1(Ī) (cf. Proposition 4.1), there would exist t1 > t0 such that z′ε(0, t1) = 0, hence

η2 ≤ Ẽ(zε(t1)) ≤ Eε(t1) ≤ Eε(t0) ≤ η0/2 :

a contradiction. We have thus shown that, for all ε ∈ (0, ε̄0], Z′ε ≡ 1. The proof is complete.

Proof of Theorem 1(iv). The argument is completely similar to that in the proof of Theorem 2(ii), but easier (and
without requiring assumption (1.11)), since we can just rely on the continuity property in Theorem 1(ii) instead of
Proposition 10.2). We therefore skip the details.
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Appendix A. Proof of Propositions 1.2 and 10.1

Consider the linear inhomogeneous problem

b∂tu + u′′′′ = f ′ in QT , with u′′ = u′′′ − f = 0 on ∂I, u(0) = u0, (A.1)

where T > 0, QT = (0,T ) × I, f ∈ L2(0,T ; H1) and u0 ∈ L2.

Definition A.1. (i) A solution of (A.1) on (0,T ) is a function u such that
u ∈ H1(0,T ; L2) ∩ L2(0,T ; H2), u(0) = u0,∫ T

0

∫
I

(
b(s)∂tuψ + u′′ψ′′ + fψ′

)
dsdt = 0, ∀ψ ∈ L2(0,T ; H2(I)).

(A.2)

Observe that the initial condition in (A.2) makes sense owing to H1(0,T ; L2) ⊂ C([0,T ]; L2).
(ii) A solution z0 of (1.15) on (0,T ) is a solution of (A.1) with f = F′(z′0) and u0 = ϕ (note that z0 ∈ L2(0,T ; H2)

implies F′(z′0) ∈ L2(0,T ; H1)).

Remark A.1. (i) The definition (A.1) of (weak) solution is actually equivalent to that of u being a strong solution, i.e.
u ∈ H1(0,T ; L2) ∩ L2(0,T ; H4), u(0) = u0,

b∂tu + u′′′′ − f ′ = 0 in L2(I) for a.e. t ∈ (0,T ),
u′′ = u′′′ − f = 0 on ∂I for a.e. t ∈ (0,T ).

(A.3)

Indeed, (A.2) implies u′′′′ = f ′ − b∂tu in the distributional sense in (0,T ) × I, hence u ∈ L2(0,T ; H4), and the other
two conditions in (A.3) are satisfied owing to the identity∫ T

0

∫
I

(
u′′′′ − f ′

)
ψ =

∫ T

0

∫
I

(
u′′ψ′′ + fψ′

)
+

∫ T

0
[(u′′′ − f )ψ − u′′ψ′]L

0 , ψ ∈ L2(0,T ; H2).

Also, the converse implication readily follows from this identity.

(ii) Equation (A.1) has a most one solution (just subtract the equations for u1 and u2 and take ψ = u1 − u2).

We shall use the following linear result for (A.1). In what follows, for 1 < p < ∞, we denote

Xp,T := W1,p(0,T ; L2) ∩ Lp(0,T ; H4), Xp,T,loc := W1,p
loc ((0,T ]; L2) ∩ Lp

loc((0,T ]; H4)

and B : L2(0,T ; H1)→ L2(0,T ;R2) is the trace operator (namely, (B f )(t) = { f (t, 0), f (t, L)} for a.e. t ∈ (0,T )).

Lemma A.1. Let T > 0, p > 2, u0 ∈ H2, f ∈ Lp(0,T ; H1) and assume that B f ∈ Wθ,p(0,T ;R2) with θ > 1/8. Then
there exists a strong solution u ∈ C([0,T ]; H2) ∩ X2,T ∩ Xp,T,loc of (A.1) such that u(0) = u0. Moreover, for each
η ∈ (0,T ), we have the estimate

∥∂tu∥Lp(η,T ;L2) + ∥u′′′′∥Lp(η,T ;L2) ≤ C(η,T )
(
∥ f ′∥Lp(0,T ;L2) + ∥B f ∥Wθ,p(0,T ;R2) + ∥u∥Lp(0,T ;L2)

)
. (A.4)

Proof. Set a = 1/b ∈ H2(I). We approximate the initial data by a sequence of smooth functions u0,n ∈ C∞(Ī) such
that limn→∞ ∥u0,n − u0∥H2 = 0 and consider the problem

∂tun + au′′′′n = a f ′, with u′′n = u′′′n − f = 0 on ∂I and un(0) = u0,n. (A.5)

We claim that, by [9, Theorem 2.3], (A.5) admits a (unique) solution un ∈ Xp,T . Indeed we check the applicability of
that theorem with m = q = 2 and κ j =

7−2 j
8 for j = 2, 3. Since f ′ ∈ Lp(0,T ; L2) and since no compatibility conditions

for the initial and boundary data are required owing to κ j ≤ 1/q, the result applies provided the boundary trace B f
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satisfies B f ∈ Fκ
p,2(0,T ;R2) with κ = κ3 = 1/8, where Fκ

p,q denotes the Triebel-Lizorkin space. To this end it suffices
to use the fact that

Wθ,p(0,T ;R2) = Fθ
p,p(0,T ;R2) ⊂ Fκ

p,2(0,T ;R2), θ > κ > 0, 1 < p < ∞

(see [30, Chapter 2] and, e.g., [29, section 1] for the first part and [15, Theorem 1.2] for the second part. These are
stated there in the whole Euclidean space, but the case of a smooth domain – here just the interval (0,T ) – follows by
a standard extension property; see [31, Chapter 2]).

Now, by interpolation, we have un ∈ W1/2,p(0,T ; H2) ⊂ C([0,T ]; H2). We claim that

max
t∈[0,T ]

∥(un − uk)(t)∥H2 +

∫ T

0

∫
I
|∂t(un − uk)|2dsdt ≤ C∥u0,n − u0,k∥H2 . (A.6)

Indeed, set w = un − uk, which is the solution of ∂tw + aw′′′′ = 0 with w′′ = w′′′ = 0 on ∂I and w(0) = u0,n − u0,k. For
0 < t < T and 0 < h < min(t,T − t), applying (A.2) with u(t) = w(t + h) + w(t), f = 0 and ψ = h−1(w(τ + h) − w(τ)),
we obtain

h−1
∫ t+h

t

∫
I
(w′′)2 − h−1

∫ h

0

∫
I
(w′′)2 = h−1

∫ t

0

∫
I
(w′′(τ + h))2 − (w′′(τ))2

=

∫ t

0

∫
I
(w(τ + h) + w(τ))′′

(w(τ + h) − w(τ))′′

h
= −

∫ t

0

∫
I
b(w(τ + h) + w(τ))t

w(τ + h) − w(τ)
h

.

Letting h→ 0 and using un ∈ C([0,T ]; H2) ∩ H1(0,T ; L2), we obtain∫
I
(w′′)2(t) +

∫ t

0

∫
I
b|∂tw(t)|2 =

∫
I
(w′′)2(0).

Since also
∫

I w2(t) ≤ 2
∫

I w2(0) + 2T
∫ T

0

∫
I |∂tw|2, we deduce (A.6).

It follows from (A.6) that (un) is a Cauchy sequence, hence converges, in C([0,T ]; H2) ∩H1(0,T ; L2). Passing to
the limit in the integral identity (A.2) for un, we obtain a solution u of (A.1) in that class. Now let φ ∈ C1([0,T ]), with
φ = 0 on [0, η/2] and φ = 1 on [η,T ]. The function v := uφ satisfies ∂tv + av′′′′ = g = a f ′φ + u∂tφ with v′′ = 0,
v′′′ = f̃ ≡ fφ on ∂I and v(0) = 0. Since u ∈ C([0,T ]; H2) ⊂ L∞(QT ), hence g ∈ Lp(0,T ; L2), and B f̃ ∈ Wθ,p(0,T ;R2),
it follows from [9, Theorem 2.3] and uniqueness of solutions (cf. Remark A.1(ii)) that v ∈ Xp,T , hence u ∈ Xp,T,loc,
with

∥∂tv∥Lp(0,T ;L2) + ∥v
′′′′∥Lp(0,T ;L2) ≤ C(T )

(
∥g∥Lp(0,T ;L2) + ∥B f̃ ∥Wθ,p(0,T ;R2)

)
,

which yields (A.4).

We now turn to the proof of Proposition 1.2(i). Although one might directly apply a fixed point argument on
problem (1.15), it will be convenient to prove existence by taking advantage of the convergence result in Lemma 9.1
for problem (1.4), applied to a suitably defined kernel ρ and past data zp. We stress that we did not use Proposition 1.2
in the proof of Lemma 9.1, so there is no circular reasoning.

Proof of Proposition 1.2(i). We define

ρ(s, a) = e−ab(s) and zp(s, t) = ϕ(s) for all t ∈ (−∞, 0]. (A.7)

Then ρ, zp satisfy all the assumptions of Lemma 9.1 and µ1(s) =
∫ ∞

0 ae−ab(s)da = b(s). It follows that there exists a
global solution

z0 ∈ C([0,T ]; C1(I)) ∩ L∞(0,∞; H2(I)), (A.8)

with
z0 ∈ H1(0,T ; L2(I)) ∩ L2(0,T ; H4(I)), 0 < T < ∞, (A.9)
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of 
b(s)∂tz0 + z′′′′0 =

(
F′(z′0)

)′
, in Q∞,

z′′′0 = 0, z′′′0 = F′(z′0), s ∈ ∂I, t > 0,
z0(s, 0) = ϕ(s), s ∈ I,

obtained as limit as ε→ 0 of solutions zε of problems (1.4).
The uniqueness part of Proposition 1.2(i) is a consequence of Lemma 9.2.
We next prove the additional regularity properties of the solution. Let T > 0, fix any p ∈ (2,∞) and set f :=

F′(z′0). By (A.8), interpolation and Sobolev embedding, we have z0 ∈ H1−ν(0,T ; H4ν) for all ν ∈ (0, 1), hence
f ∈ L∞(0,∞; H1), as well as B f ∈ Hk(0,T ;R2) for all k ∈ (0, 5/8), with supt≥1 ∥B f ∥Hk(t,t+1;R2) < ∞. Therefore, by
Sobolev embedding, there exists θp > 1/8 such that B f ∈ Wθp,p(0,T ;R2), with moreover

sup
t≥1
∥B f ∥Wθp ,p(t,t+1;R2) < ∞. (A.10)

By Lemma A.1, there exists a solution u ∈ C([0,T ]; H2) ∩ X2,T ∩ Xp,T,loc of (A.1). By uniqueness of solutions
(cf. Remark A.1(ii)), we deduce that u = z0. Moreover, owing to estimate (A.4) in Lemma A.1 and the fact that
z0 ∈ L∞(0,∞; H2(I)), we deduce (1.18).

We next give the proof of the energy identity for problem (1.15). Although, at a formal level, the identity would
readily follow by multiplying by ∂tz0 and integrating by parts, more care is needed in view of the available regularity
of z0.

Proof of Proposition 10.1. (i) Let t2 > t1 ≥ 0 and 0 < h < t2 − t1. We write

2h−1
∫ t2+h

t2
E0(t)dt − 2h−1

∫ t1+h

t1
E0(t)dt = h−1

∫ t2+h

t2

∫
I
((z′′0 )2 + 2F(z′0)) − h−1

∫ t1+h

t1

∫
I
((z′′0 )2 + 2F(z′0))

= h−1
∫ t2

t1

∫
I

[
(z′′0 (τ + h))2 + 2F(z′0(τ + h))

]
−

[
(z′′0 (τ))2 + 2F(z′0(τ))

]
=

∫ t2

t1

∫
I
(z0(τ + h) + z0(τ))′′

(z0(τ + h) − z0(τ))′′

h
+ 2

F(z′0(τ + h)) − F(z′0(τ))
h

.

On the other hand, by the weak formulation of (1.15) (cf. Definition A.1), for all ψ ∈ L∞(t1, t2; H2(I)), we have∫ t2

t1

∫
I
(z0(τ + h) + z0(τ))′′ ψ′′ +

(
F′(z′0(τ + h)) + F′(z′0(τ))

)
ψ′ + b (∂tz0(τ + h) + ∂tz0(τ))ψ = 0.

Taking ψ = h−1(z0(τ + h) − z0(τ)), we get

2h−1
∫ t2+h

t2
E0(t)dt − 2h−1

∫ t1+h

t1
E0(t)dt = −

∫ t2

t1

∫
I
b
(
∂tz0(τ + h) + ∂tz0(τ)

) z0(τ + h) − z0(τ)
h

+

∫ t2

t1

∫ [
2

F(z′0(τ + h)) − F(z′0(τ))
z′0(τ + h) − z′0(τ)

− F′(z′0(τ + h)) − F′(z′0(τ))
] z′0(τ + h) − z′0(τ)

h
≡ J1 + J2.

Since z0 ∈ H1(0,T ; L2), we have limh→0 J1 = −2
∫ t2

t1

∫
I b(∂tz0)2dsdt. On the other hand, letting M := supQT

|z′0| < ∞
and using that ∣∣∣∣F(X) − F(Y)

X − Y
− F′(X)

∣∣∣∣ ≤ c|X − Y |, |X|, |Y | ≤ M,

for some constant c = c(M, F) > 0, we get

|J2| ≤ 2c
∫ t2

t1

∫
I

|z′0(τ + h) − z′′0 (τ)|2

h
≤ 2cT

(
sup

τ∈(t1,T )
h−1/2∥z′0(τ + h) − z′0(τ)∥L2

)2
.
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Now, by (A.9) and interpolation, we have z ∈ W3/4,p
loc (0,T ; H1) for all p ∈ (2,∞), hence z′ ∈ Cα

loc(0,T ; L2) for all
α ∈ (0, 3/4), so that limh→0 J2 = 0. Using that z0 ∈ C([0,T ]; H2), hence E0 ∈ C([0,T ]), the assertion follows.

(ii) This follows immediately by integrating the equation in space.

We shall finally prove Proposition 1.2(ii). The ω-limit set ω(z0) is defined by (8.1) with ε = 0 and we set

S̃K := {Z ∈ S; (Z, b) = K}, K ∈ R,

where, as before, S is the set of steady states, i.e. solutions of (1.16). We use the following properties of ω(z0).

Proposition A.2. Let the assumptions of Proposition 1.2 be in force.
(i) The set ω(z0) is a nonempty compact connected subset of H2(I).
(ii) We have ω(z0) ⊂ S̃K0 , where K0 := (ϕ, b).

Proof. (i) This follows from the same argument as Lemma 8.1(i).
(ii) By Proposition 10.1(i), we have ∫ ∞

0

∫
I
b(s)|∂tz0|

2dsdt ≤ E0(0) < ∞. (A.11)

Let Z ∈ ω(z0). There exists a sequence tn → ∞ such that z0(tn) → Z in H2(I). Set zn(s, t) = z0(s, tn + t) and
Q = (0, 1) × I and identify Z(s, t) = Z(s). By (A.11) we have

sup
t∈(0,1)

∥zn(·, t) − zn(·, 0)∥2L2(I)) ≤

∫ ∫
Q
|∂tzn|

2dsdt ≤ C
∫ ∞

tn

∫
I
b(s)|∂tz0|

2dsdt → 0

as n→ ∞. Consequently, limn→∞ ∥zn−Z∥L∞(0,1;L2(I)) = 0. Since, on the other hand, (10.5) guarantees that the sequence
zn is compact in L∞(0, 1; H2(I)), we deduce that limn→∞ ∥zn − Z∥L∞(0,1;H2(I)) = 0. We may thus pass to the limit in the
weak formulation of (1.15) to obtain, for any v ∈ H2(I),∣∣∣∣∫

I

(
Z′′v′′ + F′(Z′)v′

)
ds

∣∣∣∣ = ∣∣∣∣∫ ∫
Q

(
Z′′v′′ + F′(Z′)v′

)
dsdt

∣∣∣∣ = lim
n

∣∣∣∣∫ ∫
Q

(
z′′n v′′ + F′(z′n)v′

)
dsdt

∣∣∣∣
= lim

n

∣∣∣∣∫ ∫
Q

b∂tznvdsdt
∣∣∣∣ ≤ lim

n

(∫ ∫
Q

b(s)|∂tzn|
2dsdt

)1/2

∥v∥L2(I) = 0.

Consequently, Z ∈ S, hence Z ∈ SK0 in view of Proposition 10.1(ii).

Proof of Proposition 1.2(ii). Based on Proposition A.2, this follows from the same argument as Theorem 1(iii).

RemarkA.2. (i) Let us justify the statement in Remark 1.1(i) about the stability of the steady states W ′ = ±1. If ϕ ∈ H2

and ∥ϕ′′∥2+∥ϕ′−1∥∞ is sufficiently small (the case with ϕ′+1 is similar), then ϕ′(0) > 0 and Ẽ(ϕ) < η0 := min(η1, η2),
where Ẽ, η1, η2 are defined in (10.11), (10.12). On the other hand, by Proposition 1.2(ii), the solution z0(t) of (1.15)
converges in H2 to a steady state Z0. Therefore, Ẽ(Z0) = limt→∞ E0(t) ≤ Ẽ(ϕ) < η1, hence Z′0 ≡ 1 or −1. Assume for
contradiction that Z′0 = −1. Then limt→∞ z′(0, t) = −1 and, since z0 ∈ C([0,∞); C1(Ī)), there would exist t0 > 0 such
that z′0(0, t0) = 0, hence η2 ≤ E0(t0) ≤ Ẽ(ϕ) < η1: a contradiction.

(ii) As mentioned in Remark 1.1(i), if W is a steady state such that W ′ . ±1, then W is unstable. More precisely
there exist initial data ϕ arbitrarily close to W in H2 such that z0 converges to a steady-state Z0 such that Z′0 . W ′.

Indeed, since Ẽ(W) > 0, we may choose a sequence ϕn ∈ H2 such that limn→∞ ∥ϕn − W∥H2 = 0 and 0 <
Ẽ(ϕn) < Ẽ(W). Let z0,n be the corresponding solution of (1.15) and E0,n(t) the corresponding energy function. By
Proposition 1.2(ii), z0,n(t) converges in H2 to a steady state Z0,n. Therefore, Ẽ(Z0,n) = limt→∞ E0,n(t) ≤ Ẽ(ϕn) < Ẽ(W),
hence Z′0,n . W ′.

Declarations of interest: none.
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[20] V. Milišić and D. Oelz. Space dependent adhesion forces mediated by transient elastic linkages: New convergence and global existence
results. Journal of Differential Equations, 265(12):6049–6082, 2018. ISSN 0022-0396. doi: https://doi.org/10.1016/j.jde.2018.07.007. URL
https://www.sciencedirect.com/science/article/pii/S0022039618303711.

[21] A. T. Nguyen, T. Caraballo, and N. H. Tuan. On the initial value problem for a class of nonlinear biharmonic equation with time-fractional
derivative. Proc. R. Soc. Edinb., Sect. A, Math., 152(4):989–1031, 2022. ISSN 0308-2105. doi: 10.1017/prm.2021.44.

[22] D. Oelz. On the curve straightening flow of inextensible, open, planar curves. Se⃗MA J., 54:5–24, 2011. ISSN 2254-3902. doi: 10.1007/
BF03322585.

[23] D. Oelz. Convergence of the penalty method applied to a constrained curve straightening flow. Commun. Math. Sci., 12(4):601–621, 2014.
ISSN 1539-6746. doi: 10.4310/CMS.2014.v12.n4.a1.

[24] D. Oelz and C. Schmeiser. Derivation of a model for symmetric lamellipodia with instantaneous cross-link turnover. Archive for Rational
Mechanics and Analysis, 198(3):963–980, 2010. doi: 10.1007/s00205-010-0304-z.

[25] D. Oelz and C. Schmeiser. How do cells move? Mathematical modeling of cytoskeleton dynamics and cell migration. In Cell mechanics.
From single scale-based models to multiscale modeling, pages 133–157. Boca Raton, FL: CRC Press, 2010. ISBN 978-1-4200-9454-1;
978-1-4200-9455-8.

[26] D. Oelz, C. Schmeiser, and V. Small. Modelling of the actin-cytoskeleton in symmetric lamellipodial fragments. Cell Adhesion and Migration,
2:117–126, 2008.

[27] B. Perthame. Transport equations in biology. Front. Math. Basel: Birkhäuser, 2007. ISBN 3-7643-7841-7.
[28] W. A. Schwalm. Lectures on selected topics in mathematical physics: elliptic functions and elliptic integrals. IOP Concise Phys. San

Rafael, CA: Morgan & Claypool Publishers; London: IOP Publishing, 2015. ISBN 978-1-68174-166-6; 978-1-68174-230-4. doi: 10.1088/
978-1-6817-4230-4.

[29] W. Sickel. Conditions on composition operators which map a space of Triebel-Lizorkin type in a Sobolev space. The case 1 < s < n/p. II.
Forum Math., 10(2):199–231, 1998. ISSN 0933-7741. doi: 10.1515/form.10.2.199.

37

https://link.springer.com/article/10.1007/s00028-019-00482-z
https://link.springer.com/article/10.1007/s00028-019-00482-z
http://dx.doi.org/10.1016/j.jtbi.2015.06.044
http://dx.doi.org/10.1137/130947052
http://dx.doi.org/10.4310/CMS.2016.v14.n5.a7
http://dx.doi.org/10.4310/CMS.2016.v14.n5.a7
https://www.sciencedirect.com/science/article/pii/S0022039618303711


V. Milisic and P. Souplet / 00 (2024) 1–38 38

[30] H. Triebel. Theory of function spaces. Mod. Birkhäuser Class. Basel: Birkhäuser, reprint of the 1983 original edition, 2010. ISBN 978-3-
0346-0415-4; 978-3-0346-0416-1. doi: 10.1007/978-3-0346-0416-1.

[31] H. Triebel. The structure of functions. Mod. Birkhäuser Class. Basel: Birkhäuser, reprint of the 2001 hardback ed. edition, 2013. ISBN
978-3-0348-0568-1; 978-3-0348-0569-8. doi: 10.1007/978-3-0348-0569-8.

[32] K. van Bockstal, A. S. Hendy, and M. A. Zaky. Space-dependent variable-order time-fractional wave equation: existence and uniqueness
of its weak solution. Quaest. Math., 46(8):1695–1715, 2023. ISSN 1607-3606. doi: 10.2989/16073606.2022.2110959. URL https:
//doi.org/10.2989/16073606.2022.2110959.

[33] X. Zheng and H. Wang. A time-fractional diffusion equation with space-time dependent hidden-memory variable order: analysis and approx-
imation. BIT, 61(4):1453–1481, 2021. ISSN 0006-3835. doi: 10.1007/s10543-021-00861-4.

38

https://doi.org/10.2989/16073606.2022.2110959
https://doi.org/10.2989/16073606.2022.2110959

	Introduction
	The model
	Assumptions and notation
	Steady states and limiting problem
	Main results
	Organisation and main ideas of the proofs

	Steady states
	Resolvent operator
	Local existence-uniqueness
	Energy estimates
	Uniform L bounds and global existence (proof of Theorem 1(i))
	Hölder continuity with respect to  (proof of Theorem 1(ii))
	Proof of convergence as t (Theorem 1(iii))
	Convergence when  goes to 0 (proof of first part of Theorem 2(i))
	Proof of Theorem 1(iv) and end of proof of Theorem 2: strong H2 convergence and stablity of affine steady states with respect to 
	Proof of Propositions 1.2 and 10.1

