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Abstract

In this work we study a system of an integral equation of Volterra type coupled to an original
renewal equation. This model arises in the context of cell motility [6]: the integral equation
describes the trajectory of a binding site which is connected via transiently remodelling linkages
to the substrate and which evolves driven by a given force. The renewal model accounts for the
remodelling process of linkages which attach and break with given probabilities.

In the present paper we analyze existence and uniqueness issues for the coupled system of
interest and provide a rigorous justification of the asymptotic limit of infinitesimally rapid turnover
of linkages.

The renewal model for the age distribution of linkages differs from more classical ones in that
it describes competition between population size and birth and because it admits a new and
specific Lyapunov functional. On the other side, using a comparison principle which applies to
non-convolution linear Volterra kernels and the peculiar transport properties of the linkages, one
establishes a convergence result when the turnover parameter ε tends to zero.

Abstract in french. Dans cet article, on étudie un système d’une équation intégrale de Volterra
couplée avec une équation de renouveau d’un type particulier. Ce modèle apparâıt dans le contexte
de la motilité cellulaire [6]: l’équation intégrale décrit la trajectoire d’un site d’adhésion connecté
au substrat par des liaisons protéiques éphémères et soumis à une force extérieure. Le processus
de remodelage des liaisons qui se déchirent ou se créent sur ce site avec une certaine probabilité
est décrit par un l’équation de renouveau.

Ici, on analyse les questions d’existence et d’unicité de ce système couplé et on donne une
justification rigoureuse de la limite instantanée du taux de renouvellement des liaisons (noté ε).

Le modèle de renouveau pour la distribution de l’age des liaisons diffère des modèles classiques
en ce qu’il décrit la compétition entre la taille totale de la population et le taux de naissance. Pour
tenir compte de cette dernière difficulté, on a exhibé une nouvelle fonctionnelle de Liapounov. Par
ailleurs, en utilisant un principe de comparaison propre aux équations de Volterra à noyau non-
convolutif, on établit un résultat de convergence losrque le paramètre ε tend vers zéro.

Keywords: friction coefficient, protein linkages, cell adhesion, renewal equation, effect of
chemical bonds, lyapunov functional, comparison principle, integral equation, Volterra kernel,
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1. Introduction

We consider the integral equation







1

ε

∫ ∞

0

(zε(t)− zε(t− εa)) ρε(a, t) da = f(t) , t ≥ 0 ,

zε(t) = zp(t) , t < 0 ,

(1)

Preprint submitted to Elsevier February 14, 2011



Figure 1: The position of the moving binding site at time t and time t − a1 with some of the respective linkages.

The scaling parameter is set to ε = 1.

where zε = zε(t) ∈ R represents the time dependent position of a linkage binding site and the
function f(t) ∈ Lip(R+,R) represents a given exterior force. The kernel ρε = ρε(a, t) is interpreted
as the density of existing linkages to the substrate with respect to the age a ≥ 0 and is defined by
the renewal model







ε∂tρε + ∂aρε + ζε(a, t)ρε = 0 , t > 0 , a > 0 ,

ρε(a = 0, t) = βε(t)

(

1−

∫ ∞

0

ρε(ã, t) dã

)

, t > 0 ,

ρε(a, t = 0) = ρI,ε(a) , a ≥ 0 ,

(2)

with the kinetic rate functions βε = βε(t) ∈ R+ and ζε = ζε(a, t) ∈ R+, both possibly depending
on the dimensionless parameter ε > 0 which represents the speed of linkage turnover. The two
submodels are finally complemented by their respective past and initial data zp ∈ Lip((−∞, 0])
and ρI ∈ L1(R+) ∩ L∞(R+).

The system (1-2) is a model describing the mechanical effect of a set of chemical linkages
dynamically remodelled in time. For instance the cross-linking proteins attaching to actin filaments
in the lamellipodia of living cells can be modelled in this way. The complete model was introduced
and developed in [6]. A reverse coupling between both submodels was established through the
possible dependence of βε, the on-rate and ζε, the off-rates on the geometrical configuration of the
mechanical structures where the binding sites are located. In the present study, however, we do
not take into account a functional dependence of these rates on the function zε.

The integrin equation (1) models a force balance between the time-dependent exterior force
f(t) and elastic forces exerted by a population of linkages which connect the moving binding site
to binding sites on the substrate. The competing force contributions are visualized in figure 1 by
arrows.

Linkages are originally established between the moving binding site positioned at zε(t) and
the substrate at the very same position. As a consequence linkages with a given age a connect
the moving binding site to the substrate at position zε(t − εa) where the dimensionless scaling
parameter ε represents the ratio of the age scale in the ρε-model and the time scale in the zε-model,
i.e. small ε reflects rapid lifecycle of the linkage proteins.

The model (2) for the age distribution of linkages states that chemical bonds break, respectively
detach with a given rate ζε = ζε(a, t) ≥ 0. Moreover, creation of new chemical bonds with a given
rate βε = βε(t) ≥ 0 is proportional to the abundance of empty binding sites which itself is given
by the difference of the constant total number of binding sites, in this study scaled to 1, and the
number of occupied ones.

The renewal is visualized in figure 1. The grey arrows connecting the ball-shaped binding site
at position z(t− a1) to some of its past positions represent the set of existing linkages in the past.
When going from time t − a1 to time t, some of the connections break, some of them still exist
like the one connecting the point z(t− a2) on the substrate to the present position of the moving
binding site, and some linkages have been established in the meantime like the one connecting the
moving binding site to its actual position z(t).

In this sense we consider the above model to be a renewal equation, using intentionally the
same nomenclature as for similar and more classical renewal models (see for instance [7] and
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numerous references therein). In those models the generation of offspring is positively coupled
to the abundance of existing individuals and therefore one might call them self-renewal models.
However in (2) this dependence is inverse, i.e. the more chemical bonds exist, the smaller is the
pool of empty binding sites to generate new linkages. Below we detail what this implies for the
mathematical analysis.

In [5] the asymptotic scaling, which induces rapid turnover of the linkage proteins, was intro-
duced and the formal limit as ε → 0 was computed. In the framework of the present study it is
given by







µ1,0 ∂tz0 = f with µ1,0(t) :=

∫ ∞

0

aρ0(a, t) da , t > 0 ,

z0(t = 0) = zI := zp(0) ,

(3)

where the limit distribution ρ0 is explicitly given by

ρ0(a, t) =
1

1
β0(t)

+
∫∞

0 exp
(
−
∫ a

0 ζ0(ã, t) dã
)
da

exp

(

−

∫ a

0

ζ0(ã, t) dã

)

, (4)

being the solution of







∂aρ0 + ζ0(a, t)ρ0 = 0 , t > 0 , a > 0 ,

ρ0(t, a = 0) = β0(t)

(

1−

∫ ∞

0

ρ0(ã, t) dã

)

, t > 0 .
(5)

Combining (3) and (4) we are able to give an explicit expression for the viscosity constant µ1,0,
which represents the macroscopic friction effect, in terms of the microscopic rate constants. In the
special case where the limit off-rate does not depend on age, ζ0 = ζ0(t), the viscosity constant is
given by

µ1,0(t) =
1

ζ0(t)(1 + ζ0(t)/β(t))
. (6)

The macroscopic friction law (3) is similar to the Stokes Law. The biological setting we refer
to, the relative movement of actin-filaments with respect to crossing filaments and with respect to
the substrate, has conceptual parallels with the movement of solids on lubricated surfaces. In the
theory of lubrication as well, there exist friction laws depending on the speed of the motion [2].

The existence and uniqueness of continuous solutions to Volterra type integral equations like
(1) is a well known fact [1, 3] and even an explicit representation formula for the solution in terms
of a resolvent function can be given [8, 1]. In our analysis, however, we are confronted with the
difficulty that these classical results do not imply a priori estimates on the solution and do not
provide a control which is uniform with respect to ε, our scaling parameter. The renewal model
(2) on the other hand is different in nature from those treated in the existing theory. The inverse
relation between the population size and the birth term does not allow, again, to apply techniques
presented in [4, 7] as for instance the Generalized Relative Entropy Method. In this work we
therefore develop specific tools to tackle all these peculiarities.

The program of this study is then as follows. First, for fixed ε, we prove existence and
uniqueness results for the linkage age distribution model (2) in C(R+;L

1(R+)) ∩ L∞(R+ × R+).
In a second step we also give existence and uniqueness results for the integral equation (1). Then
we focus on the rigorous study of the asymptotic limit of the system as ε tends to zero and we
show in a two step manner that (ρε, zε) tends in a sense defined below to the solution (ρ0, z0) of
the formal limit system (3), (5).

Concerning the age distribution model (2) we establish that its homogeneous version admits
the Lyapunov functional

H[u] :=

∣
∣
∣
∣

∫ ∞

0

u(a) da

∣
∣
∣
∣
+

∫ ∞

0

|u(a)| da , (7)
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which satisfies for any non negative time t

d

dt
H[ρε(·, t)− ρ0(·, t)] ≤ −

1

ε
ζmin H[ρε(·, t)− ρ0(·, t)] . (8)

The Lyapunov functional does not only yield a result on the convergence in time but also on the
convergence as the scaling parameter ε tends to zero. The convergence result zε → z0 is then
established via a comparison principle satisfied by certain Volterra integral equations.

The framework of our analysis relies on the following hypotheses on the on- and off-rates.

Assumption 1.1. The dimensionless parameter ε > 0 is assumed to induce two families of
chemical rate functions that satisfy:

(i) For any T > 0 the function βε(t) is a uniform Lipschitz function in [0, T ] and ζε(a, t) is in
Lipt([0, T ];L

∞
a (R+)), i.e.

ζε ∈ L∞((0, T )× R+) and sup
a∈R+, t∈[0,T ]

|∂tζε(a, t)| ≤ C .

for a constant C > 0. Moreover we suppose that for a fixed positive age a0 ≥ 0 the off-rate
ζε(a+ t/ε, t) is monotonically increasing on [a0,∞).

(ii) For limit functions β0 ∈ L∞
t and ζ0 ∈ L∞

t L∞
a it holds that

‖ζε − ζ0‖L∞

t L∞

a
→ 0 and ‖βε − β0‖L∞

t
→ 0

as ε → 0.

(iii) We also assume that there are upper and lower bounds such that

0 < ζmin ≤ ζε(a, t) ≤ ζmax and 0 < βmin ≤ βε(t) ≤ βmax

for all ε > 0, a ≥ 0 and t > 0.

The initial data for the density model (2) satisfies some hypotheses that we sum up here:

Assumption 1.2. The initial condition ρI,ε ∈ L∞
a (R+) satisfies

• positivity
ρI,ε(a) ≥ 0 , a.e. in R+ ,

moreover, one has also that the total initial population satisfies

0 <

∫

R+

ρI,ε(a)da < 1 .

• boundedness of higher moments,

0 <

∫

R+

apρI,ε(a) da ≤ cp , for p = 1, 2 ,

where cp are positive constants depending only on p.

• there exists a constant denoted Amax > a0 s.t.

∫ ∞

a0

aρI,ε(a) da ≤ Amax

∫ ∞

a0

ρI,ε(a) da

uniformly in ε.

Concerning the integral equation (1) we assume
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Assumption 1.3. The time dependent rhs f = f(t) in (1) is a uniform Lipschitz function on
[0, T ] for any T > 0. The past condition zp belongs to Lip((−∞, 0]), the set of uniform Lipschitz
functions on R−.

We are then able to claim our main result:

Theorem 1.1. Let assumptions 1.1, 1.2 and 1.3 hold. For every fixed ε there exists a unique
solution of the coupled system (1-2), (zε, ρε) ∈ C0(R+)×(C0(R+;L

1(R+))∩L
∞(R2

+)). Let (z0, ρ0)
be the unique solution to the formal limit system (3-5), then for every T > 0 it holds that

‖zε − z0‖C0([0,T ]) + ‖ρε − ρ0‖C0(]0,T ];L1(R+)) → 0

as ε → 0.

2. Existence and uniqueness

Theorem 2.1. Let assumptions 1.1 and 1.2 hold, then for every fixed ε there exists a unique
solution ρε ∈ C0(R+;L

1(R+)) ∩ L∞(R2
+) of the problem (2). It satisfies (2) in the sense of

characteristics, namely

ρε(a, t) =







βε(t− εa)
(

1−
∫

R+
ρε(ã, t− εa) dã

)

exp
(
−
∫ a

0
ζε(ã, t− ε(a− ã)) dã

)
, a < t/ε ,

ρI,ε(a− t/ε) exp
(

− 1
ε

∫ t

0 ζε((t̃− t)/ε+ a, t̃) dt̃
)

, a ≥ t/ε .

(9)

Proof. The existence proof relies on the Banach-Picard fixed point theorem in C0([0, T ];L1(R+)).
Indeed for a given function m ∈ C0([0, T ];L1(R+)) we define n := T (m) as

n(a, t) :=







βε(t− εa)
(

1−
∫

R+
m(ã, t− εa) dã

)

exp
(
−
∫ a

0
ζε(ã, t− ε(a− ã)) dã

)
, a < t/ε ,

ρI,ε(a− t/ε) exp
(

− 1
ε

∫ t

0 ζε((t̃− t)/ε+ a, t̃) dt̃
)

, a ≥ t/ε .

For regular data n would solve






ε∂tn+ ∂an+ ζεn = 0 , a > 0, t ∈ (0, T ] ,

n(a = 0, t) = βε(t)

(

1−

∫

R+

m(ã, t) dã

)

, t > 0 ,

n(a, t = 0) = ρI,ε(a) , a ≥ 0 .

hypotheses on ρI,ε, βε and ζε imply that T is indeed an endomorphism of C0([0, T ];L1(R+)). It
is also a contraction for a time T small enough since it holds that

‖n2 − n1‖C0([0,T ];L1(R+)) ≤
βmaxT

ε
‖m2 −m1‖C0([0,T ];L1(R+)) ,

where ni := T (mi) for i = 1, 2. Thus there exists a unique fixed point in C0([0, T ];L1(R+)) by
the Banach-Picard fixed point theorem if T0 < ε/βmax. As this timespan is fixed the result can
be extended to [T0, 2T0], [2T0, 3T0] etc., giving existence and uniqueness in C0(R+, L

1(R+)) of ρε
such that ρε = T (ρε), which is exactly (9).

Lemma 2.1. Let ρε be the unique solution of problem (2) according to Theorem 2.1, then it
satisfies a weak formulation of this problem, namely

∫

R+

∫ T

0

ρε(a, t) (ε∂tϕ+ ∂aϕ+ ζεϕ) dt da− ε

∫

R+

ρε(a, t)ϕ(a, t = T ) da +

+

∫ T

0

ρε(a = 0, t)ϕ(0, t) dt+ ε

∫

R+

ρI,ε(a)ϕ(a, t = 0) da = 0 , (10)

for every T > 0 and every test function ϕ ∈ C∞(R2
+) ∩ L∞(R2

+).
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Proof. Suppose that ρε satisfies (9). We set

J :=

∫

R+

∫ T

0

ρε(a, t) (ε∂tϕ+ ∂aϕ) dt da .

Performing the change of variables x = (a− t/ε)/2, y = (εa+ t)/2, one transforms R+× (0, T ) into
Ω = {(x, y)} = Ω1∪Ω2 where Ω1 :=]−T/(2ε), 0[ × ]−εx, εx+T/2[ and Ω2 :=]0;∞[ × ]εx, εx+T/2[.
Setting ϕ̃(x, y) := ϕ(a, t) one has then that

ε∂tϕ+ ∂aϕ = ε∂yϕ̃ ,

and

J =

∫

Ω1

ρεε∂yϕ̃ dy dx +

∫

Ω2

ρεε∂yϕ̃ dy dx =: I1 + I2 .

We treat each term separately because they correspond to the two cases of Duhamel’s formula.

I1 =

∫ 0

− T
2ε

∫ εx+T/2

−εx

ρε(0,−εx) g(x, y) ε∂yϕ̃(x, y) dy dx .

The function g(x, y) := exp
(

−
∫ x+y

ε

0 ζε(ã, ε(ã− 2x)) dã
)

is in H1
y (]−εx, εx+T/2[) since ζε ∈ L∞

a,t

and it holds that ϕ̃ is C∞ ⊂ H1
y . Hence the integration by parts is well defined,

I1 =

∫ 0

− T
2ε

ρε(0,−εx)

{

ε [g(x, y)ϕ̃]
y=εx+T/2
y=−εx −

∫ εx+T/2

0

ζε

(

x+
y

ε
, y − εx

)

g(x, y)ϕ̃(x, y) dy

}

dx

= ε

∫ 0

− T
2ε

ρε(0,−εx) {ϕ̃(x, εx+ T/2)g(x, εx+ T/2)− ϕ̃(x,−εx)} dx−

∫

Ω1

ζερεϕ̃ dy dx

=

∫ T
ε

0

ρε(a, t)ϕ(a, t)da−

∫ T

0

ρε(0, t)ϕ(0, t)dt−

∫ T

0

∫ T
ε

0

ζε(a, t)ρε(a, t)ϕ(a, t) da dt ,

and similarly one gets the complementary result for I2, which ends the proof.

In the following two Lemmas we prove bounds on the moments of ρε which we denote by

µp,ε(t) :=

∫

R+

apρε(a, t) da , where p = 1, 2 .

Lemma 2.2. Let assumptions 1.1 and 1.2 hold, then the unique solution ρε ∈ C0(R+;L
1(R+)) ∩

L∞(R2
+) of the problem (2) from Theorem 2.1 satisfies

ρε(a, t) ≥ 0 a.e. in R
2
+ and

µ0,min ≤ µ0,ε(t) < 1 , ∀t ∈ R+ where µ0,min := min

(

µ0,ε(0),
βmin

βmin + ζmax

)

. (11)

Proof. First, we show that µ0,ε(t) < 1 and ρε ≥ 0 for all times. We start with initial data which
satisfies both properties, hence µ0,ε(0) = ‖ρε(., t = 0)‖L1

a
< 1. Due to the continuity of ‖ρε‖L1

a
it

holds that µ0,ε(t) ≤ ‖ρε(., t)‖L1
a
< 1 at least on a time intervall [0, T ] small enough. On that time

interval it also holds that ρε ≥ 0 for all a ≥ 0, since due to (9) its value is obtained by transport
either from the the nonnegative initial data ρI,ε or from the positive boundary.

Assume that µ0,ε(T ) = 1. We use that ρε satisfies the weak formulation (10). Choose ϕ(a, t) =
ϕ(t) ≥ 0 to obtain

∫ T

0

[

−µ0,εε∂tϕ+ ϕ(t)

∫ ∞

0

ζερε da− ϕ(t)ρε(0, t)

]

dt+ ε (µ0,ε(T )ϕ(T )− µ0,ε(0)ϕ(0)) = 0 . (12)

6



This implies

ε {−ϕ(T )(1− µ0,ε(T )) + ϕ(0)(1 − µ0,ε(0))} ≤

∫ T

0

(−ε∂tϕ+ ϕ(t)βε(t)) (1− µ0,ε(t)) dt

≤

∫ T

0

(−ε∂tϕ+ ϕ(t)βmax) (1 − µ0,ε(t)) dt .

Set ϕ = exp(tβmax/ε) to obtain that

(1− µ0,ε(T )) ≥ exp(−Tβmax/ε)(1− µ0,ε(0)) > 0

contradicting the assumption µ0,ε(T ) = 1. Duhamel’s principle formulated in (9) then directly
implies

0 ≤ ρε(a, t) ≤ max(βmax, ‖ρI,ε‖∞) , a.e. (a, t) ∈ (R+)
2 .

In order to obtain a lower bound we set µ̃(t) := µ0,ε(t)− µ0,min with µ0,min as defined in (11).
According to the same definition, we start with an initial datum which satisfies µ0,ε(0) := µI,ε ≥

µ0,min. The formal computation yields ε∂tµ̃ ≥ − βε

µ0,min
µ̃ which we can confirm in the same way as

the upper bound: observe that µ̃ ≥ 0 on a small interval [0, T ] due to the continuity of µ0,ε. As
above we assume that µ̃(T ) = 0 and obtain

ε ((µ0,ε(T )− µ0,min)ϕ(T )− (µ0,ε(0)− µ0,min)ϕ(0)) =

=

∫ T

0

[

(µ0,ε − µ0,min)ε∂tϕ− ϕ(t)

∫ ∞

0

ζερε da+ ϕ(t)(βε(1− µ0,ε))

]

dt ≥

≥

∫ T

0

[(µ0,ε − µ0,min)ε∂tϕ− ϕ(t)ζmaxµ0,ε + ϕ(t)(βmin(1− µ0,ε))] dt =

=

∫ T

0

[(µ0,ε − µ0,min)(ε∂tϕ− ϕ(t)(ζmax + βmin)) + ϕ(t)(βmin − µ0,min(βmin + ζmax))] dt ≥ 0 .

By choosing ϕ = exp(t(ζmax + βmin)/ε) and using the definition of µ0,min, we conclude that

(µ0,ε(T )− µ0,min) ≥ exp(−T (ζmax + βmin)/ε)(µ0,ε(0)− µ0,min) > 0 ,

which contradicts the assumption µ0,ε(T ) = µ0,min and thus finishes the proof of the lower bound
in (11).

In a more straightforward manner one gets for higher moments as well

Lemma 2.3. Let assumption 1.2 hold, then

µp,min < µp,ε(t) ≤ k for p = 1, 2 , where µp,min := min

(

µp,ε(0),
µp−1,min

ζmax

)

,

and the generic constant k is independent of both time and ε.

Proof. The proof is made by induction. The case of the zeroth order moment is already treated
as µ0,ε which is uniformely bounded by 1. We set qε,k(a, t) = akρε(a, t) for k = 1, 2 and assume
that the property is true for k − 1. It holds that







ε∂tqε,k + ∂aqε,k + ζεqε,k − pqε,k−1 = 0 , a > 0 , t > 0 ,

qε,k(a = 0, t) = 0 , t > 0 ,

qε,k(a, t = 0) = akρI,ε(a) , a ≥ 0 .

After integration in age one obtains

ε
d

dt

∫

R+

qε,k(a, t) da ≤ −

∫

R+

ζminqε,k(a, t) da+ p

∫

R+

qε,k−1 da ,
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which by Gronwall’s inequality implies

∫

R+

qε,k(a, t) da ≤ e−
ζmint

ε

∫

R+

akρI,ε(a) da+ k sup
s∈[0,t]

∫

R+

qε,k−1(a, s) da .

Now take the supremum with respect to T on both sides. The fact that the property is true for
k − 1 ends the proof.

For the lower bound we proceed as in the case of Lemma 2.2, so we just give the formal sketch
of the proof: for any constant c one has

ε∂t(µp,ε − c) ≥ −ζmax(µp,ε − c)− ζmaxc+ µp−1,ε(t) ≥ −ζmax(µp,ε − c)− ζmaxc+ µp−1,min .

Two situations occur:

• either µp,ε(0) > µp−1,min/ζmax. We set c := µp−1,min/ζmax. One gets after integration in
time

µp,ε(t)−
µp−1,min

ζmax
≥ e−

ζmaxt
ε

(

µp,ε(0)−
µp−1,min

ζmax

)

> 0 .

• or µp,ε(0) ≤ µp−1,min/ζmax. In this case setting c = µp,ε(0) gives, after integration in time,

µp,ε(t)− µp,ε(0) ≥
1

ε

∫ t

0

e−
(t−s)ζmax

ε ds(−ζmaxµp,ε(0) + µp−1,min) ≥ 0 ,

which ends the proof.

Lemma 2.4. Consider the expectation value of a given density ρε with respect to the tail a > t/ε,

Aε[ρε](t) :=

∫∞

0 a ρε(
t
ε + a, t) da

∫∞

0 ρε(
t
ε + a, t) da

, (13)

then under assumptions 1.1 and 1.2, one has

Aε[ρε](t) ≤ Amax a.e. t > 0.

uniformly wrt ε.

Proof. Observe that d
dtρε(

t
ε + a, t) = − 1

εζε(t/ε+ a, t)ρε(
t
ε + a, t) and that

d

dt
Aε[ρε](t) = Aε[ρε](t)

(

−

∫ ∞

0

q1,ε,t(a)
1

ε
ζε(t, t/ε+ a) da+

∫ ∞

0

q0,ε,t(a)
1

ε
ζε(t, t/ε+ a) da

)

,

where

q1,ε,t(a) :=
a ρε(

t
ε + a, t)

∫∞

0 aρε(
t
ε + a, t) da

and q0,ε,t(a) :=
ρε(

t
ε + a, t)

∫∞

0 ρε(
t
ε + a, t) da

.

Let Qi,ε,t :=
∫ a

0
qi,ε,t(ã) dã and define the transformation Tε,t(a) := Q−1

1,ε,t(Q0,ε,t(a)) which allows
to rewrite the above identity as

d

dt
Aε[ρε](t) = Aε[ρε](t)

(

−

∫ ∞

0

q0,ε,t(a)
1

ε
(ζε(t/ε+ Tε,t(a), t)− ζε(t/ε+ a, t)) da

)

. (14)

Finally observe that Tε,t(a) ≥ a since the inequality Q0,ε,t(a) ≥ Q1,ε,t(a) is equivalent to

∫ 1

0
a ρε(

t
ε + a, t) da

∫∞

1
a ρε(

t
ε + a, t) da

≤

∫ 1

0
ρε(

t
ε + a, t) da

∫∞

1
ρε(

t
ε + a, t) da

, (15)
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which can be easily verified. If ζε were monotonically increasing with respect to a, then the right
hand side of (14) would be negative. In the weaker case defined in the assumptions of the present
Lemma, where ζε is only monotone on [a0,∞), define

ρ̄ε(a, t) =

{

ρε(a, t) a > t
ε + a0

0 otherwise,

to exclude the area where the decay rate is not monotonically increasing. For fixed t > 0 either it
holds that ρ̄ ≡ 0, which directly implies that Aε[ρε](t) ≤ a0 ≤ Amax, or in the opposite case we
use that

∫∞

a0
ρI,ε(a, t) da > 0 and obtain

Aε[ρε](t) ≤ Aε[ρ̄ε](t) ≤ Aε[ρ̄ε,I ] ≤ Amax,

where the first inequality can be reduced to (15), while the second one is due to an analogous
application of (14). The integral in the numerator is bounded because the first moment of the
initial datum ρI,ε is bounded.

We give existence and uniqueness results for (1).

Theorem 2.2. Let ρε ∈ C0(R+;L
1(R+)) ∩ L∞(R2

+) be given and let assumption 1.3 hold, then
there exists for every fixed ε > 0 a unique function zε ∈ C0(R+) solving (1).

Proof. Setting kε(ã, t) :=
1

µ(t)
1
ερε(

t−ã
ε , t) we write (1) as

zε(t)−

∫ t

0

zε(ã)kε(ã, t) dã = f̃ε , with f̃ε(t) := ε
1

µ0,ε(t)
f(t) +

∫ ∞

t

zp(ã)kε(ã, t) dã

for all t ≥ 0. Using the results of Theorem 2.1 we obtain that according to section 9.5 in [1] (Def.
5.2 and Thm. 5.4) the kernel kε of the integral equation is of bounded continuous type, which,
together with the continuity of f̃ε(t), implies the existence of unique solution zε ∈ C0(R+).

3. Convergence

Consider the difference ρ̂ε := ρε − ρ0. A formal computation using (2) and (5) implies that it
satisfies 





ε∂tρ̂ε + ∂aρ̂ε + ζε(a, t)ρ̂ε = Rε , a > 0 , t > 0 ,

ρ̂ε(a = 0, t) = −βε(t)

∫ ∞

0

ρ̂ε(ã, t) dã+Mε , t > 0 ,

ρ̂ε(a, t = 0) = ρε,I(a)− ρ0(a, 0) , a ≥ 0 ,

(16)

with Rε := −ε∂tρ0 − ρ0(ζε − ζ0) and Mε := (βε − β0)
(
1−

∫∞

0 ρ0 da
)
. Like for its counterpart ρε,

we find that ρ̂ε satisfies the above system (16) in the sense of integration along characteristics.
Namely combining the system (9) with (4) we obtain:

Corollary 3.1. The function ρ̂ε satisfies the following integrated version of (16),

ρ̂ε(a, t) =







(
−βε(t− εa)

∫∞

0 ρ̂ε(ã, (t− εa)) dã+Mε(t− εa)
)
exp

(
−
∫ a

0 ζε(ã, t− ε(a− ã)) dã
)

+
∫ a

0
Rε(t− ε(a− ā)) exp

(
−
∫ a

ā
ζε(ã, t− ε(a− ã)) dã

)
dā a < t/ε ,

(ρε,I((a− t/ε))− ρ0((a− t/ε), 0)) exp
(

− 1
ε

∫ t

0 ζε((t̃− t)/ε+ a, t̃) dt̃
)

+ 1
ε

∫ t

0
Rε(t̄) exp

(

− 1
ε

∫ t

t̄
ζε((t̃− t)/ε+ a, t̃) dt̃

)

dt̄ , a ≥ t/ε .

(17)
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Finally we formally multiply (16) by sign(ρ̂ε) to obtain






ε∂t|ρ̂ε|+ ∂a|ρ̂ε|+ ζε(a, t)|ρ̂ε| = Rε sign(ρ̂ε) , a > 0 , t > 0 ,

|ρ̂ε(a = 0, t)| =

∣
∣
∣
∣
−βε(t)

∫ ∞

0

ρ̂ε(ã, t) dã+Mε

∣
∣
∣
∣
, t > 0 ,

|ρ̂ε(a, t = 0)| = |ρε,I(a)− ρ0(a, 0)| , a ≥ 0 ,

(18)

which we also re-interpret using the method of characteristics:

Lemma 3.1. |ρ̂ε| satisfies the system (18) in the same way as ρ̂ε fulfils (16) in the sense of (17)

Proof. We reparametrise (17) like in the proof of Lemma 2.1 by ρ̃(x, y) = ρ̂(a, t) and obtain
ε∂yρ̃ε+ζερ̃ε = Rε in the domain Ω1∪Ω2 parametrized by the variables (x, y). Solving this equation
in the y variable and thanks to the assumptions it is easy to show that ρ̃ε is indeed continuous with
respect to y for every fixed x. Thus one can write in the weak sense that ∂y|ρ̃ε| = sign(ρ̃ε)∂y ρ̃ε for
every fixed x. Thus ε∂y|ρ̃ε| + ζε|ρ̃ε| = sign(ρ̃ε)Rε holds a.e. with respect to y for every fixed x.
We then integrate and transform back to obtain the system which is the analogon to (17). Using
Lemma 2.1 one concludes then that |ρ̂ε| solves (18) in the weak sense.

Taking advantage of both systems (16) and (18) we find that

Lemma 3.2. Let ζmin > 0 the lower bound to ζε(a, t) according to assumptions 1.1 and let ρ̂ε be
the solution to (16), then it holds that

d

dt
H[ρ̂ε] ≤ −

1

ε
ζminH[ρ̂ε] +

2

ε

(
‖Rε‖L1

a(R)
+ |Mε|

)
. (19)

in a weak sense analogous to equation (12).

Proof. Observe that the integrations in this proof are expressed in a formal way but can be made
rigorous in a weak sense like in the step leading to (12).

On one hand the system (18) implies that

d

dt

∫ ∞

0

|ρ̂ε| da ≤
1

ε

(

βε

∣
∣
∣
∣

∫ ∞

0

ρ̂ε da

∣
∣
∣
∣
−

∫ ∞

0

ζε |ρ̂ε| da

)

+

∫ ∞

0

1

ε
Rε sign(ρ̂ε) da+

1

ε
|Mε| . (20)

On the other hand using (16) we write

d

dt

∫ ∞

0

ρ̂ε da =
1

ε

(

−βε

∫ ∞

0

ρ̂ε da−

∫ ∞

0

ζερ̂ε da

)

+
1

ε

∫ ∞

0

Rε da+
1

ε
Mε ,

which implies

d

dt

∣
∣
∣
∣

∫ ∞

0

ρ̂ε da

∣
∣
∣
∣
=

1

ε

(

−βε

∣
∣
∣
∣

∫ ∞

0

ρ̂ε da

∣
∣
∣
∣
− sign

(∫ ∞

0

ρ̂ε

)∫ ∞

0

ζερ̂ε da

)

+

+ sign

(∫ ∞

0

ρ̂ε da

)
1

ε

(∫ ∞

0

Rε da+Mε

)

. (21)

The sum of (20) and (21) controls the evolution of the functional (7),

d

dt
H[ρ̂ε] ≤ −

1

ε

∫ ∞

0

ζε

(

|ρ̂ε|+ sign

(∫ ∞

0

ρ̂ε da

)

ρ̂ε

)

︸ ︷︷ ︸

=:A

da+

+
1

ε

∫ ∞

0

(

sign (ρ̂ε) + sign

(∫ ∞

0

ρ̂ε da

))

Rε da+
1

ε

(

|Mε|+Mε sign

(∫ ∞

0

ρ̂ε da

))

, (22)

where it is easy to check that A ≥ 0 for almost any age a and any time t. We therefore conclude

d

dt
H[ρ̂ε] ≤ −

ζmin

ε

(∣
∣
∣
∣

∫ ∞

0

ρ̂ε da

∣
∣
∣
∣
+

∫ ∞

0

|ρ̂ε| da

)

+
2

ε

(∫ ∞

0

|Rε| da+ |Mε|

)

,

which implies the result.
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We add three remarks which explain and illustrate the consequences of the above crucial
Lemma:

Remark 3.1. Under more general conditions then in the present study, namely without a positive
lower bound on ζε as assumed in assumption 1.1, the functional (7) is still a Lyapunov functional.
If Rε = Mε = 0 it satisfies

d

dt
H[ρ̂ε] = −

1

ε
ζ̄εH[ρ̂ε] ≤ 0

in a weak sense analogous to equation (12). Hence, up to a scaling factor, it decreases at an
exponential rate which is a certain mean value of the decay rate, ζ̄ε :=

∫∞

0
ζε(t, a)π(a, t) da where

π(a, t) stands for the probability density π(a, t) :=
(
|ρ̂ε|+ sign

(∫∞

0 ρ̂ε
)
ρ̂ε
)
/H[ρ̂ε] (cf. (22)).

Remark 3.2. Under assumption 1.1, the Lyapunov functional does not only control the solution
ρ̂ε in the L1

a norm but it also controls µ̂ε := µ0,ε − µ0 which is related to the boundary value at
a = 0, for any time.

Remark 3.3. Let the data be such that Rε = Mε = 0 and let assumption 1.1 hold, then (8)
implies time asymptotic exponential convergence of ρε towards ρ0 wrt the L1

a norm as well as of
the averages µ0,ε towards µ0.

Lemma 3.2 implies the result on ρε as ε → 0,

Lemma 3.3. Let ζmin > 0 be the lower bound to ζε(a, t) according to assumption 1.1, then it holds
that

H[ρ̂ε(., t)] ≤ H[ρε,I − ρ0(., 0)]e
−ζmint

ε +
2

ζmin

∥
∥
∥‖Rε‖L1

a(R+) + |Mε|
∥
∥
∥
L∞

t (R+)

for all t ≥ 0.

Proof. We intend to apply Gronwall’s inequality to the inequality (19) given in the weak sense.
Hence we choose the testfunction ϕ = exp(ζ0/εt) as it was done in the proof of Lemma 2.2 and
obtain

H[ρ̂ε(., t)] ≤ H[ρ̂ε(., 0)]e
−ζmint

ε +

∫ t

0

e
−ζmin(t−t̃)

ε
2

ε

(∫ ∞

0

|Rε(a, t̃)| da+ |Mε|

)

dt̃

≤ H[ρ̂ε(., 0)]e
−ζmint

ε +
2

ζmin

(

1− e
−ζmint

ε

) ∥
∥‖Rε‖L1

a(R+) + |Mε|
∥
∥
L∞

t (R+)
,

which implies the result.

Theorem 3.1. Let ρε be the solution to the system (2) according to Theorem 2.1 and let the ρ0
be as defined in (4), then it holds that

ρε → ρ0 in C0(]0,∞);L1(R+)) as ε → 0 ,

where the convergence with respect to time is in the sense of uniform convergence on compact
subintervals.

Proof. This is an immediate consequence of Lemma 3.3, because it holds that |H[ρε,I−ρ0(., 0)]| ≤ 4
due to (4) and assumption 1.2 and because the residual terms tend to zero in the respective norms
as ε → 0 by assumption 1.1.

Remark 3.4. Note that in general ρε,I does not converge to ρ0(., 0) in L1
a as ε → 0. A boundary

layer will be observable if their difference does not oscillate and its profile will be shaped like a

multiple of e
−ζmint

ε , which is again a consequence of Lemma 3.3.

In the opposite case we obtain
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Corollary 3.2. Considering the asymptotic behaviour as ε → 0: Under the additional assumption
that ρε,I → ρ0(., 0)) in L1(R+) it holds by coercivity that H[ρε,I − ρ0(., 0)] → 0 and therefore the
convergence ρε → ρ0 in L1

a is uniform with respect to t ∈ R+. In fact it holds that

‖ρε − ρ0‖L∞

t L1
a
≤ sup

t≥0
H[ρ̂ε] ≤ H[ρε,I − ρ0(., 0)] +

2

ζmin

∥
∥
∥‖Rε‖L1

a(R+) + |Mε|
∥
∥
∥
L∞

t (R+)
.

We need to estimate the convergence of the first moment as well:

Lemma 3.4. Let ρε be the solution to the system (2) according to Theorem 2.1 and let ρ0 be as
defined in (4), then it holds for t > 0 that

∫ ∞

0

a|ρε − ρ0| da ≤ e
−ζmint

ε

∫ ∞

0

a |ρε,I(a)− ρ0(a, 0)| da+
1

ζmin
Cε ,

where the family of constants Cε ∈ R is such that Cε → 0 as ε → 0.

Proof. The proof follows the same lines as above, but is simpler because the presence of the factor
a cancels boundary terms. Indeed, integrating (18) against a by setting φ(t, a) = aφ̃(t) in its weak
formulation we obtain the weak formulation of

ε∂t

∫ ∞

0

a|ρ̂ε| da = −

∫ ∞

0

ζεa|ρ̂ε| da+

∫ ∞

0

|ρ̂ε| da+

∫ ∞

0

aRε sign(ρ̂ε) da

≤ −ζmin

∫ ∞

0

a|ρ̂ε| da+Kε ,

where Kε :=
∫∞

0 |ρ̂ε| da + ε
∫∞

0 a |∂tρ0| da + ‖ζε − ζ0‖L∞

a,t(R
2
+)

∫∞

0 |aρ0| da. An argumentation

which is analogous to the one in the proof of Lemma 3.3 implies that

∫ ∞

0

a|ρ̂ε| da ≤ e
−ζmint

ε

∫ ∞

0

a|ρ̂ε(a, 0)| da+
1

ζmin

(

1− e
−ζmint

ε

)

Cε (23)

for all t ≥ 0, where Cε := ‖Kε‖L∞

t (R+) satisfies Cε → 0 as ε → 0 due to Lemma 3.3 and
assumption 1.1. Indeed one has

∫

R+

aρ0(a, t) da ≤
βmax

ζ2max

and

∫

R+

a|∂tρ0|(a, t) da ≤ k(ζmin, ζmax, ‖βε‖W 1,∞
t

, ‖∂tζε‖L∞

t,a
) .

(24)

Since the first moments of ρ0 and ρε,I are bounded by (24) and assumption 1.2 respectively, the
expression

∫∞

0 a|ρ̂ε(a, 0)| da in (23) is uniformly bounded, which finishes the proof.

Having defined properly, for any fixed ε, the solutions of the coupled system (1-2), we are
finally able to prove the main theorem: as ε goes to 0, (ρε, zε) tends to (ρ0, z0), which solves the
limit system (5).

Setting z̃ε := zε − z0, where z0 solves exactly (3), one has:

1

ε

∫ ∞

0

(z̃ε(t)− z̃ε(t− εa)) ρε(a, t) da = hε(t)

with hε(t) := f(t)−
1

ε

∫ ∞

0

(z0(t)− z0(t− εa))ρε da . (25)

To prepare the proof of the main theorem we state
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Lemma 3.5. For 0 < t̃ < T it holds that

‖hε‖L∞(t̃,T ) ≤ C1 exp

(

−
t̃ζmin

ε

)

+ C2ε+ C̃ε , (26)

for constants C1 > 0 and C2 > 0 and a family of constants C̃ε > 0 with Cε → 0 as ε → 0.

Proof. We concentrate on the second part of the rhs,

εhε(t) = εf(t)−

∫ t/ε

0

∫ t

t−εa

∂tz0(s) ds ρε(a, t) da−

∫ ∞

t/ε

(z0(t)− z0(t− εa))ρε(a, t) da

= εf(t)−

∫ t/ε

0

∫ t

t−εa

f(s)

µ1,0
ds ρε(a, t) da−

∫ ∞

t/ε

∫ t

0

f(s)

µ1,0
ds ρε(a, t) da

=

∫ t/ε

0

∫ t

t−εa

{
f(t)

µ1,0(t)
−

f(s)

µ1,0(s)

}

ds ρε(a, t) da+

∫ ∞

t/ε

∫ t

0

{
f(t)

µ1,0(t)
−

f(s)

µ1,0

}

ds ρε(a, t) da

︸ ︷︷ ︸

=:I1

+ εf(t)−

∫ t/ε

0

∫ t

t−εa

f(t)

µ1,0(t)
ds ρε(a, t) da−

∫ ∞

t/ε

∫ t

0

f(t)

µ1,0(t)
ds ρε(a, t) da

︸ ︷︷ ︸

=:I2

.

Due to the regularity assumptions 1.1 on βε and ζε and the assumptions 1.3 on f(t), it is easy to
prove that the function g := f/µ1,0 is uniformly Lipschitz with respect to time with a Lipschitz
constant Lg. This implies

|I1| ≤ Lg

{
∫ t/ε

0

∫ t

t−εa

(t− s) ds ρε(a, t) da+

∫ ∞

t/ε

∫ t

0

(t− s) ds ρε(a, t) da

}

=
Lg

2

{
∫ t/ε

0

(εa)2ρε(a, t) da+

∫ ∞

t/ε

t2ρε(a, t) da

}

≤
Lg

2

{
∫ t/ε

0

(εa)2ρε(a, t) da+

∫ ∞

t/ε

(εa)2ρε(a, t) da

}

≤
ε2Lg

2
µ2,ε ≤ C2ε

2 ,

where µ2,ε :=
∫
a2ρε(a, t) da. The upper bound of Lemma 2.3 allows to state that the constant

C2 does not depend on ε. On the other hand

|I2| =

∣
∣
∣
∣
∣
εf(t)−

∫ t/ε

0

εa
f(t)

µ1,0(t)
ρε(a, t) da−

∫ ∞

t/ε

t
f(t)

µ1,0(t)
ρε(a, t) da

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
εf(t)

{

1−

∫ ∞

0

aρε(a, t)

µ1,0
da

}

+
f(t)

µ1,0(t)

∫ ∞

t/ε

(εa− t) ρε(a, t) da

∣
∣
∣
∣
∣

≤ ε

∥
∥
∥
∥

f

µ1,0

∥
∥
∥
∥
L∞(0,T )

(

|µ1,0(t)− µ1,ε(t)|+

∫ ∞

t/ε

(

a−
t

ε

)

ρε(a, t) da

)

,

where, using the second case in (9), it holds that

∫ ∞

t/ε

(

a−
t

ε

)

ρε(a, t) da ≤ µ1,ε(0) exp

(

−
tζmin

ε

)

for t > 0 .

This, together with Lemma 3.4, defines the constants C1 and C̃ε in the result.

Now we are ready to prove the main theorem.
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proof of Theorem 1.1. The idea of the proof is to use a comparison principle to construct a ma-
jorizing function Uε ≥ |z̃ε| such that Uε → 0 as ε → 0.

The comparison principle applies to the integral equation (25) in a rewritten form, namely by
setting kε(ã, t) :=

1
µε(t)

1
ερε(

t−ã
ε , t) it becomes

z̃ε(t) =

∫ t

0

z̃ε(ã)kε(ã, t) dã+ h̃ε with h̃ε(t) := ε
1

µε(t)
hε(t) +

∫ 0

−∞

z̃ε(ã)kε(ã, t) dã (27)

for all t ≥ 0. For the kernel of this integral operator we find that

0 ≤

∫ t

0

kε(ã, t) dã =

∫ t/ε

0

ρε(a, t)

µε(t)
da ≤ 1− µ0,ε(0) exp

(

−
t ζmax

ε

)

< 1 ,

which implies that the Volterra kernel kε is of modulus

|||kε|||B∞(0,T ) := sup
0≤t≤T

∫ t

0

|kε(ã, t)|dã ≤ 1− µ0,ε(0) exp

(

−
T ζmax

ε

)

< 1

according to the Definition 5.1 in chapter 9 of [1]. Hence, by Proposition 8.1 and the generalized
Gronwall Lemma 8.2 (p. 257) in chapter 9 of [1] a comparison principle holds: the control of the
right hand side of of the equation implies the control of the solution. First observe that

|z̃ε(t)| −

∫ t

0

|z̃ε(ã)|kε(ã, t) dã ≤ |h̃ε| .

We will construct a function Uε which satisfies

|h̃ε(t)| ≤ ε
1

µε(t)
|hε(t)|

︸ ︷︷ ︸

=:h̃1,ε

+

∫ 0

−∞

|z̃ε(ã)| kε(ã, t) dã

︸ ︷︷ ︸

=:h̃2,ε

≤ Uε(t)−

∫ t

0

Uε(ã)k(ã, t) dã (28)

and hence is a majorizing function such that Uε(t) ≥ |z̃ε(t)| for all t ≥ 0 due to the comparison
principle.

To find such a function Uε we also split up the integral operator applied to Uε,

Uε(t)−

∫ t

0

Uε(ã)k(ã, t) dã =

=

∫ t

−∞

(Uε(t)− Uε(ã)) kε(ã, t) dã+

∫ 0

−∞

Uε(ã) kε(ã, t) dã

=

∫ ∞

0

(∫ t

t−εa

∂tUε(t̃) dt̃

)
ρε(a, t)

µε(t)
da+

∫ ∞

t/ε

Uε(t− εa)
ρε(a, t)

µε(t)
da =: H1,ε +H2,ε ,

and intend to specify Uε such that H1,ε ≥ h̃1,ε and H2,ε ≥ h̃2,ε. To this end we make the ansatz

Uε = εC +
1

µ1,min

{∫ t

0
‖hε‖L∞(t̃,T ) dt̃ t > 0 ,

t ‖hε‖L∞(0,T ) t ≤ 0 ,
(29)

with a constant C > 0 which we will choose appropriately. The motivation for this ansatz is
the following. Both, the integral equation (27) and the formal limit equation (3) represent a
growth dynamic with the growth given by the inhomogenity. To construct the majorizing function
we hence take a suitable norm of the inhomogentiy and combine it with the structure of the
formal limit function, since this can be given explicitly. This explains the integral part in (29).
Furthermore, setting t = 0 in (27), one observes that z̃ε(t) = O(ε) due to the Lipschitz-continuity
of the past data zp according to assumption 1.3. This motivates the additional εC term in (29),
where C > 0 will be chosen large enough.
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Since Uε is differentiable one can rewrite H1,ε and verify that it controls h̃1,ε,

H1,ε(t) =

∫ ∞

0

(∫ t

t−εa

∂tU(t̃) dt̃

)
ρε(a, t)

µε(t)
da ≥

≥
1

µ1,min

∫ ∞

0

(∫ t

t−εa

‖hε‖L∞(t,T ) dt̃

)
ρε(a, t)

µε(t)
da =

=
εµ1,ε(t)

µε(t)µ1,min
‖hε‖L∞(t,T ) ≥ ε

1

µε(t)
|hε(t)| = h̃1,ε(t)

a.e. on R+. For the difference of the second components we find that

H2,ε − h̃2,ε =

∫ ∞

t/ε

U(t− εa)
ρε(a, t)

µε(t)
da−

∫ 0

−∞

|z̃ε(ã)|kε(ã, t) dã

=

∫ ∞

t/ε

(

εC + (t− εa)
‖hε‖L∞(0,T )

µ1,min
− |z̃ε(t− εa)|

)
ρε(a, t)

µ0,ε(t)
da

=

∫ ∞

0

(

εC + (−εa)
‖hε‖L∞(0,T )

µ1,min
− |z̃ε(−εa)|

)
ρε(

t
ε + a, t)

µε(t)
da

≥

∫ ∞

0

(

εC + (−εa)
‖hε‖L∞(0,T )

µ1,min
− Lεa

)
ρε(

t
ε + a, t)

µε(t)
da

= ε

∫ ∞

0

(

C − a

(
‖hε‖L∞(0,T )

µ1,min
+ L

))
ρε(

t
ε + a, t)

µε(t)
da ≥ 0 ,

where L > 0 is a Lipschitz constant for z̃ = zp − z0 on R− according to assumption 1.3 and C has
to be chosen such that

C ≥

(
‖hε‖L∞(0,T )

µ1,min
+ L

) ∫∞

0
a ρε

(
t
ε + a, t

)
da

∫∞

0
ρε
(
t
ε + a, t

)
da

using the uniform in ε bound on the expectation value of the tail established in Lemma 2.4. The
comparison principle which we discussed above applied to (28) finally implies for all 0 ≤ t ≤ T
that

0 ≤ |z̃ε(t)| ≤ Uε(t) = εC +
1

µ1,min

∫ t

0

‖hε‖L∞(t̃,T ) dt̃ → 0 as ε → 0

due to Lemma 3.5, hence zε → z0 in C0((0, T )).

4. A simple example

We give here a simple example illustrating the approximation performed when using system
(2-1) in order to approximate system (5-3).

Lemma 4.1. We set both ζε and βε to fixed values independent on ε, i.e.

ζε = ζ0 = ζ, βε = β0 = β.

Moreover defining the initial condition at equilibrium:

ρI,ε = ρ0 =
β ζ

β + ζ
e−ζa.

We obtain µ0,ε = µ0,0 = β/(β + ζ), µ1,ε = µ1,0 = β/(ζ(β + ζ)) and ρ0(a) = µ0,0ζe
−ζa and then

one solves directly equation (1):

zε(t) =

∫ t

0

f

µ1,0
ds+ ε

f(t)

µ0,0
+

1

µ0,0

∫ ∞

0

zp(−εa) ρ0 da ,
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and hence

zε(t)− z0(t) = ε
f(t)

µ0,0
−

∫ 0

−∞

z′p(s) exp

(
ζs

ε

)

ds

with z0(t) = zp(0) +
∫ t

0 f(s)ds/µ1,0. Note that the last term is an ε order term according to
hypotheses 1.3, indeed it holds that

∣
∣
∣
∣

∫ 0

−∞

z′p(s) exp

(
ζs

ε

)

ds

∣
∣
∣
∣

≤
ε

ζ
‖zp‖W 1,∞(R−) .

Proof. In this case one can rephrase the equation for t ≥ 0 as

zε(t)−
ζ

ε

∫ t

0

zε(s) exp

(

−
ζ(t− s)

ε

)

ds = ε
f(t)

µ0,0
+

ζ

ε

∫ 0

−∞

zp(s) exp

(

−
ζ(t− s)

ε

)

ds .

Due to the separation of variable made possible by this specific form of the kernel, one can rewrite
this equation for all t ≥ 0 as

qε(t)−
ζ

ε

∫ t

0

qε(s)ds = ε exp

(
ζt

ε

)
f(t)

µ0,0
+

ζ

ε

∫ 0

−∞

zp(s) exp

(
ζs

ε

)

ds , (30)

where

qε(t) = zε(t) exp

(
ζt

ε

)

, t ≥ 0 .

Note that for t = 0+ the integral equation provides the initial data

qε(0
+) = εf(0)/µ0,0 +

ζ

ε

∫ 0

−∞

zp(s) exp

(
ζs

ε

)

ds .

Differentiating (30) for strictly positive times, one gets

q̇ε(t)−
ζ

ε
qε(t) =

exp
(

ζt
ε

)

µ0,0
(ζf(t) + εf ′(t)) , t > 0 .

Solving this differential equation in ]0, T [ and using the initial data given above, one gets

qε(t) = exp

(
ζ

ε
t

)(

ε
f(t)

µ0,0
+

ζ

ε

∫ 0

−∞

zp(s) exp

(
ζs

ε

)

ds+

∫ t

0

f

µ1,0
(s) ds

)

,

where we used that µ1,0 = µ0,0/ζ.

Acknowledgments

The first author was granted by Institut des Systemes Complexes1. This study has been
supported by the Wolfgang Pauli Institute (Vienna) and by the Vienna Science and Technology
Fund (WWTF) through its projects MA04-039 and MA09-004.

References

[1] G. Gripenberg, S.-O. Londen, and O. Staffans. Volterra integral and functional equations,
volume 34 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1990.

1
www.ixxi.fr

16



[2] F. Kreith, D. Y. Goswami, and B. I. Sandor, editors. The CRC handbook of mechanical
engineering. CRC, 2 edition, 2004.

[3] R. Kress. Linear integral equations, volume 82 of Applied Mathematical Sciences. Springer-
Verlag, New York, second edition, 1999.

[4] P. Michel, S. Mischler, and B. Perthame. General relative entropy inequality: an illustration
on growth models. J. Math. Pures Appl. (9), 84(9):1235–1260, 2005.

[5] D. Oelz and C. Schmeiser. How do cells move? mathematical modelling of cytoskeleton
dynamics and cell migration. In A. Chauviere, L. Preziosi, and C. Verdier, editors, Cell
mechanics: from single scale-based models to multiscale modelling. Chapman and Hall / CRC
Press, to appear, 2009.

[6] D. Oelz, C. Schmeiser, and V. Small. Modelling of the actin-cytoskeleton in symmetric lamel-
lipodial fragments. Cell Adhesion and Migration, 2:117–126, 2008.

[7] B. Perthame. Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag,
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