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Abstract. We consider a microscopic model for friction mediated by transient elastic linkages
introduced in [8, 10]. In this study we extend results and the general approach employed in [5].
We introduce a new unknown and reformulate the model. Based on this framework, we derive new
a-priori estimates. In a first step this approach allows us to reproduce results of [5] concerning the
convergence of the system to a macroscopic friction law in the semi-coupled case, but under weaker
assumptions. Furthermore we consider the fully coupled case and prove existence and uniqueness of
the solution.
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1. Introduction. In this study we consider a mathematical model for the load-
dependent turnover of chemical bonds modeled as elastic linkages. We are especially
interested in the asymptotic limit of fast linkage turnover which allows to derive non-
linear friction laws relevant in cell mechanics.

This model and its asymptotic counterpart have found many applications in
biomathematical studies, specifically in cell mechanics and tumor biology. In [9]
it has been used to describe the effect of cross-linking proteins in a lamellipodial F-
actin meshwork. In this study the simplicity of the limit friction model allowed to
achieve numerically feasible simulations of the deformation of keratocytes in response
to external stimuli which reproduce characteristic cell shapes. In [6] the same sub-
model for actin associated cross-linker proteins has been used in the derivation of
a mathematical model which explains and quantifies the viscous properties of a one
dimensional bundle of short actin filaments and its ability to propagate contractile
force. Furthermore in [12], the authors use the asymptotic limit model in order to
relate adhesion forces with the eulerian velocities of cells and embed these terms in a
visco-elasto-plastic model for tumor growth. They also use experimental data found
in [1] and [15] to reconstruct the load dependence of the off-rate of protein linkages
(s. below) from the forces measured at tear-off.

We focus on the following system of equations which describes the evolution of
the time-dependent position of a single binding site denoted by zε(t) ∈ R,

(1.1)


1

ε

∫ ∞
0

(zε(t)− zε(t− εa)) ρε(t, a) da = f(t) , t ≥ 0 ,

zε(t) = zp(t) , t < 0 ,
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where the function f = f(t) ∈ R represents a given exterior force. The known past
positions are given by the Lipschitz function zp(t) ∈ R for t < 0. The time-dependent
density function %ε(t, a) represents the age-distribution of the linkages and solves itself
the aged structured problem (1.2) with a non-local boundary term,

(1.2)


ε∂t%ε + ∂a%ε + ζε %ε = 0 , t > 0 , a > 0 ,

%ε(a = 0, t) = βε(t)

(
1−

∫ ∞
0

%ε(t, ã) dã

)
, t > 0 ,

%ε(a, t = 0) = %I,ε(a) , a ≥ 0 ,

with the kinetic rate functions βε = βε(t) ∈ R+ and ζε ∈ R+, both possibly depending
on the dimensionless parameter ε > 0.

Bonds are created as the binding site at zε(t) moves on the substrate. We denote
by a ≥ 0 the age of a chemical bond which connects the massless single binding site at
zε(t) to the point zε(t− εa) on the substrate where that bond has been created. The
system (1.2) models ageing of linkages and the boundary term describes the creation
of new bonds which is proportional to the availability of free binding sites. The more
linkages already exist, the less new bonds with age a = 0 are created, and vice-versa.

Finally, at any point in time, equation (1.1) claims the equilibrium of the sum of
the external force and all elastic spring forces (see fig. 1.1) caused by these linkages.

The dimensionless parameter ε denotes the typical age of linkages as compared
to the timescale of the problem and hence 1/ε represents the rate of linkage turnover.
What we have in mind is to pass to a limit where this turnover is fast (ε small).
Simultaneously, we make the assumption that linkages are very stiff, their elasticiy
scaling like 1/ε, which allows to obtain meaningful limit equations (see below). The
key transformations which allows to obtain the scaled system from an unscaled one,
are

z =
1

ε
zε, ρ(t, a) =

1

ε
%ε

(
t,
a

ε

)
, β =

1

ε
βε, ζ =

1

ε
ζε

and to take a/ε as the new independent variable for the age. For details of the scaling
see [8, 5, 7].

In this work and in many others (see [12] and references therein), one of the
crucial points is the precise behavior of ζε. If the off-rate

(1.3) ζε := ζε(a, t)

is a given function, then we call the system semi-coupled : in a first step, one can
solve (1.2) to obtain %ε and then use it in order to solve for zε. From the modeling
point of view, the more interesting case consists in defining ζε such that it depends
on zε, after scaling, as

(1.4) ζε(t, a) := ζ

(
|zε(t)− zε(t− εa)|

ε

)
, t ≥ 0 , a ≥ 0 ,

for a given monotonically increasing function ζ = ζ(s) > 0. In this case, we call the
system fully coupled since %ε and zε are now interdependent. In fact by (1.4) the
linkages’ off-rate depends on their extension i.e on their mechanical load. A typical
situation is, for example, an exponential increase of the off-rate as the elastic linker
is extended, ζε(t, a) = ζ0 exp (|zε(t)− zε(t− εa)|/ε) (cf. [14, 2, 12, 13]).
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zε(t )zε( t−ε a1) zε(t−ε a2) zε(t−ε a3) ....

f (t−ε a3) f (t)

Fig. 1.1. Positions of the moving binding site at time t and time t − εa3 with the respective
linkages, (see [5]).

We especially focus on the behavior of solutions as ε tends to zero. The tuple
(%0, z0) satisfies the formal limit of the system above

(1.5)

µ1,0 ∂tz0 = f with µ1,0(t) :=

∫ ∞
0

a%0(t, a) da , t > 0 ,

z0(t = 0) = zp(0) ,

where %0 is explicitly given by

(1.6) %0(t, a) =
1

1
β0(t) +

∫∞
0

exp
(
−
∫ b

0
ζ0 dã

)
db

exp

(
−
∫ a

0

ζ0 dã

)
,

being the solution of

(1.7)


∂a%0 + ζ0 %0 = 0 , t > 0 , a > 0 ,

%0(t, a = 0) = β0(t)

(
1−

∫ ∞
0

%0(t, ã) dã

)
, t > 0 .

In the fully coupled case (1.4), the limit off-rate is given by ζ0 = ζ(a |∂tz0|) , whereas
in the semi-coupled case, ζ0 is defined as the limit of the family ζε as ε tends to zero.

Combining (1.5) and (1.6), we are able to give an explicit expression for the
viscosity constant µ1,0, which represents the macroscopic friction effect, in terms of
the microscopic rate constants. In the general fully coupled case (1.4), the viscosity
µ1,0 depends on the velocity of the binding site ∂tz0 and it is given by

(1.8) µ1,0(t) =

∫∞
0
a exp

(
−
∫ a

0
ζ0(ã |∂tz0|) dã

)
da

1
β0(t) +

∫∞
0

exp
(
−
∫ a

0
ζ0(ã |∂tz0|) dã

)
da

.

For the semi-coupled system (1.1), (1.2), (1.3), the viscosity µ1,0, however, does not
depend on the velocity of the binding site, and, in the special case where the limit
off-rate does also not depend on age, ζ0 = ζ0(t), the viscosity constant is given by
µ1,0(t) = (ζ0(t)(1 + ζ0(t)/β(t)))−1 . For instance, in the fully coupled case, following
example 2, section 4, [12], one can define ζ as

ζ(w) :=

{
ζ0 if w < w0,

ζ1 otherwise.

where 0 < ζ0 < ζ1 < ∞. We denote v := ∂tz0, which is a velocity. One is able to
compute explicitly µ1,0 in (1.8) :

µ1,0(v) :=
v e

w0 ζ0
v ζ2

1 − w0 ζ0 ζ
2
1 − v ζ2

1 + w0 ζ
2
0 ζ1 + v ζ2

0

v ζ0 ζ1

(
ζ0 e

w0 ζ0
v ζ1 + e

w0 ζ0
v ζ1 − ζ1 + ζ0

) .
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We plot (1.5) as a force-velocity relation, µ1,0(v)v = f , displayed in fig. 1.2, where we
chose w0 = 5, β = 1, ζ0 = 1 and various values of ζ1 in order to emphasize whether
the relation is bijective or not. These results are to be compared with curves plotted
on p.1914 of [12]. One can observe that depending on the values of ζ1, there can
be one or more values of v for a given force, which is also observed in [12]. In [12]
different regions of the velocity-force plan were related to various cellular regimes (see
fig. 5 p. 1918).
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Fig. 1.2. Velocity force diagram for a specific piecewise definition of ζ and various values of
ζ1. On the left we zoom on smaller values of v.

In the semi-coupled case (1.3), the authors gave a first series of results concerning
existence and uniqueness for fixed ε in [5]. They proved as well the convergence of
(%ε, zε) to (%0, z0) when ε goes to 0. Although this limit leads to a linear Darcy type
friction law, as stated in example 1, p. 1913, [12], the mathematical justification is
far from being simple. In particular, in [5] p. 487, specific hypotheses concerning ζε
were made : ζε was a definite positive bounded Lipschitz function wrt age, it was
also supposed monotone non increasing on [a0,∞), a0 being some arbitrary chosen
positive age. These assumptions guaranteed that

a) if 0 < ζmin < ζε(t, a), one obtains convergence of %ε without hypotheses on the
initial data wrt to %0(0, a), (which means that we were able to control the boundary
layer in time for the %ε model), and mild convergence rates of the on- and off-rates
(typically o(1) wrt ε).

b) if ζε(t, a) < ζmax < ∞, the total mass µ0,ε(t) :=
∫
R+
%ε(t, a)da is positive definite

for all times, which was necessary for the convergence of zε,
c) if ζε is monotone for a > a0 for some a0 > 0, comparison results allowed to prove

convergence of zε.

As stated above and in [7, 12], realistic cases involve less restrictive hypotheses on ζε.

In this article, we introduce a new variable uε (see (2.2)) that shall replace the
unknown zε and that can be seen as a discrete difference involving zε (see next sections
for further details). This transforms equation (1.1) into a scalar integro-differential
equation that can be compared to the renewal equation presented in [3, 11] i.e. it is
an age structured equation with a non-local integral source term depending on the
unknown itself, see (2.1).

In the semi-coupled case, the new formalism allows to obtain the global existence
and uniqueness of the tuple (%ε, uε) in suitable functional spaces, for any fixed ε.
Thanks to this new framework, we are also able to prove convergence when ε goes to
zero, supposing that 0 < ζmin ≤ ζε(t, a) ≤ ζmax < ∞ but without the monotonicity
assumption c) above.
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We use then the new framework in order to construct a solution pair, for a fixed
ε, in the case of a strong coupling: we suppose that ζ is regular but depends on |uε|
and s.t. 0 < ζmin ≤ ζε(w) ≤ ζmax <∞ for all w ∈ R.

For what concerns further relaxing the assumption in item a) above, when ζε is
only non-negative, one needs a well prepared initial condition %I,ε and βε and ζε shall
converge as o(ε) to their respective limits in order to guarantee convergence as ε goes
to zero in the semi-coupled case. For what concerns item b), a work is in preparation
that fully treats the case when ζ is an unbounded function ([4]) for both the semi-
and fully coupled cases.

The outline of the paper is as follows. In the next section, we detail the precise
framework and the main tools of our analysis and we state our main results. Then,
in Section 3, we recall results concerning the %ε model (1.2) already established in
[5]. In Section 4, we introduce the variable uε and eliminate zε from the system so
to express the problem in terms of (%ε, uε) exclusively. Furthermore, in Section 5,
we prove a priori estimates for the reformulated system. These results apply to the
semi-coupled case as well as to the fully coupled case. Hence in Section 6, we treat the
semi-coupled case and prove the existence of a unique solution (uε, %ε) as well as the
weak convergence of uε towards the solution u0 of the limit problem. Furthermore we
show that this implies the strong convergence of zε as formulated in Theorem 2.1. In
the last section, we prove, based on results of previous sections, and extending them,
the existence and uniqueness of a solution of the fully coupled system (1.1), (1.2),
(1.4) for fixed ε by fixed point techniques.

2. Analytical framework and main results. In this study, it is our aim to
introduce a new analytic method to deal with the system (1.1), (1.2) and either (1.3)
or (1.4) and to obtain new results based on it. To this end, we introduce the new
variable uε as the solution of the system

(2.1)


ε∂tuε + ∂auε =

1

µ0,ε

(
ε∂tf +

∫ ∞
0

ζεuε%ε da

)
, t > 0 , a > 0 ,

uε(t, 0) = 0 , t > 0 ,

uε(0, a) = uI,ε(a) , a ≥ 0 ,

where µ0,ε(t) :=
∫∞

0
%ε(ã, t) dã and

uI,ε(a) :=
zε(0)− zp(−εa)

ε
,

and where according to (1.1), it holds that

zε(0) =
1

µ0,ε(0)

(∫ ∞
0

zp(−εa) %I,ε(a) da+ εf(0)

)
.

In fact, zε, being the solution of (1.1) and uε, being the solution of (2.1), contain
the same information. We state, on the one hand, that, given zε, one actually obtains
the function uε according to

(2.2) uε(t, a) =

{
zε(t)−zε(t−εa)

ε , t > εa ,
zε(t)−zp(t−εa)

ε , t ≤ εa .
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On the other hand, given uε one obtains zε evaluating

(2.3) zε(t) = zε(0) +

∫ t

0

1

µ0,ε(t̃)

(
ε∂tf(t̃) +

∫ ∞
0

ζε(t̃, a) uε(t̃, a) %ε(t̃, a) da

)
dt̃ .

Finally the original integral equation (1.1) may be recasted as

(2.4)

∫ ∞
0

%ε(t, a)uε(t, a) da = f(t) , t ≥ 0 ,

and in the fully coupled case (1.4) is replaced by

(2.5) ζε = ζ(|uε|) ,

which defines the coupling with (1.2) in a straightforward way.
In our analysis, system (2.1) replaces the original integral equation (1.1) and

allows to derive a priori bounds for uε. First, we obtain the previously unknown a
priori estimate

(2.6)

∫ ∞
0

%ε(t, a) |uε(t, a)| da ≤
∫ ∞

0

%I,ε(a) |uI,ε|(a) da+

∫ t

0

|∂tf | dt ,

which holds provided ζε ≥ 0 only (see Lemma 5.1). Observe that the estimate formu-
lated in (2.6) includes an ε-dependent weight-function. Then, under the supplemen-
tary hypothesis that ζε is bounded from above, we get, in Lemma 5.2, a pointwise
bound on uε

(2.7) |uε(t, a)| ≤ α0 + α1a, ∀(t, a) ∈ (0, T )× R+,

where the coefficients α0 and α1 depend on the data, on T but not on ε.
In the semi-coupled case (1.3), we obtain weak convergence results for uε converg-

ing towards the formal limit of the model (2.1). Finally, this argument ensures also the
strong convergence of zε to z0, thus reproducing the results obtained in [5]. The main
advantage of this approach is that no hypotheses are required on the monotonicity of
ζε.

In the fully coupled case (1.4), we prove the existence and uniqueness of a solution
to (1.2), (2.1), (2.5) for a fixed ε.

The analysis in this paper relies on the following set of assumptions. The initial
data for the density model (1.2) satisfies the following hypotheses.

Assumption 2.1. The initial condition %I,ε ∈ L∞a (R+) is
(i) nonnegative, i.e. %I,ε(a) ≥ 0 , a.e. in R+ .

(ii) Moreover, the total initial population satisfies

0 <

∫ ∞
0

%I,ε(a)da < 1 ,

(iii) and higher moments are bounded,

0 <

∫ ∞
0

ap%I,ε(a) da ≤ cp , for p = 1, 2 ,

where cp are positive constants depending only on p.
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Concerning the integral equation (1.1) and its new analogue (2.1) we assume
Assumption 2.2. The time dependent exterior force f = f(t) in (1.1) is locally

a Lipschitz function on R+, i.e. f ∈ Liploc(R+). The past condition zp belongs to
Lip(R−).

For the chemical reaction rates we assume:
Assumption 2.3. The dimensionless parameter ε > 0 is assumed to induce a

family of on-rates for the protein linkages that satisfy
(i) For the limit function β0 ∈ Liploc(R+) it holds that ‖βε − β0‖L∞t → 0 as ε→ 0.

(ii) We also assume that there are upper and lower bounds such that

0 < βmin ≤ βε(t) ≤ βmax,

for all ε > 0 and t > 0.
For the off-rates we distinguish between the fully coupled and the semi-coupled

cases. In the semi-coupled case we make assumptions for the off-rates which are
analogues of Assumptions 2.3.

Assumption 2.4. There is a family ζε of functions that satisfy
(i) the limit function ζ0 ∈W 1,∞(R+;L∞(R+)), and ‖ζε − ζ0‖L∞t L∞a → 0 as ε→ 0.

(ii) We also assume that there are upper and lower bounds such that

0 < ζmin ≤ ζε(t, a) ≤ ζmax,

for all ε > 0, and a.e. a ≥ 0 and a.e. t > 0.
In the fully coupled case we assume instead
Assumption 2.5. The function ζ = ζ(s), s ∈ R is Lipschitz-continuous with

Lipschitz-constant ζlip := ‖ζ ′(·)‖L∞(R) and there are upper and lower bounds such
that

0 < ζmin ≤ ζ(s) ≤ ζmax <∞,

for all s ∈ R.
In order to set up the analytic framework to deal with the function uε, we intro-

duce the weight function

(2.8) ω(a) :=
1

1 + a

and we define the functional space

(2.9) XT :=

{
g ∈ L∞loc((0, T )× R+) s.t. sup

t∈(0,T )

‖g(t, a)ω(a)‖L∞a <∞

}

and the corresponding norm is denoted ‖·‖XT . Given two real times Tn+1 > Tn, one
denotes as well X(Tn,Tn+1) the space where the time interval in the (2.9) is replaced
by (Tn, Tn+1).

If Y is a Banach space, then we denote by C([0, T ];Y ) the set of continuous func-
tions with values in Y equipped with the norm ‖u‖C([0,T ];Y ) := supt∈[0,T ] ‖u(t, ·)‖Y .
When the time interval is infinite, and if not specified, the norm is to be understood
in the local sense.

Our first result applies to the semi-coupled system of equations (1.1), (1.2) and
(1.3) and relaxes the technical assumptions used in [5].
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Theorem 2.1. Let assumptions 2.1, 2.2, 2.3 and 2.4 hold, then for every fixed
ε there exists a unique solution of the coupled system (1.1), (1.2), (1.3) denoted by
(zε, ρε) ∈ Lip([0, T ])× (C([0, T ]; L1(R+)) ∩ L∞(R2

+)). Moreover if the same assump-
tions hold for T =∞ then the time of existence and uniqueness extends to T =∞ as
well. Let (z0, %0) be the unique solution to the formal limit system (1.5-1.7), then for
every finite T > 0 it holds that

‖zε − z0‖C([0,T ]) + ‖%ε − %0‖C(]0,T ];L1(R+)) → 0

as ε→ 0.
We consider in a second step the fully coupled system described by (1.2) coupled

to (2.1), (2.5) or, alternatively, (1.2), (1.1), (1.4). We prove existence and uniqueness
of the solution (uε, %ε) for a fixed ε > 0.

Theorem 2.2. Let assumptions 2.1, 2.2, 2.3 and 2.5 hold, then there exists a
unique solution (%ε, uε) ∈ C([0, T ];L1(R+)) × XT solving the coupled system (1.2)-
(2.1)-(2.5) for any positive time T . The maximal time of existence is infinite and the
stability results Lemma 5.1 (i.e.(2.6)) and Lemma 5.2 (i.e. (2.7)) hold. This results
provide existence and uniqueness of the couple (%ε, zε) ∈ C([0, T ];L1(R+))×Lip([0, T ])
solving (1.1)-(1.2)-(1.4).

We underline that such an existence and uniqueness result is completely new. An
open problem is still the convergence of such a non-linear model when ε goes to zero.

3. Preliminary results. The following preliminary results on the solution %ε
of (1.2) have been obtained in [5].

Theorem 3.1. Let assumptions 2.1, 2.3 and 2.4 hold, then for every fixed ε there
exists a unique solution %ε ∈ C(R+;L1(R+))∩L∞(R2

+) of the problem (1.2). We say
that %ε is a mild solution since it satisfies (1.2) in the sense of characteristics, namely
(3.1)

%ε(t, a) =


βε(t− εa)

(
1−

∫∞
0
%ε(ã, t− εa) dã

)
×

× exp
(
−
∫ a

0
ζε(ã, t− ε(a− ã)) dã

)
, when a < t/ε ,

%I,ε(a− t/ε) exp
(
− 1
ε

∫ t
0
ζε((t̃− t)/ε+ a, t̃) dt̃

)
, if a ≥ t/ε .

Moreover, it is a weak solution as well since it satisfies

(3.2)

∫ ∞
0

∫ T

0

%ε(t, a) (ε∂tϕ+ ∂aϕ+ ζεϕ) dt da− ε
∫ ∞

0

%ε(t, a)ϕ(a, t = T ) da +

+

∫ T

0

%ε(a = 0, t)ϕ(0, t) dt+ ε

∫ ∞
0

%I,ε(a)ϕ(a, t = 0) da = 0 ,

for every T > 0 and every test function ϕ ∈ C∞(R2
+) ∩ L∞(R2

+).
Obviously %ε can be more regular provided that the data is regular and that a

compatibility condition is satisfied at the origin :
Corollary 3.1. We fix T > 0 possibly equal to infinity, if βε ∈ C([0, T ]),

ζε ∈ Cloc([0, T ] × R+), %I,ε ∈ Cloc(R+) and the compatibility condition : %I,ε(0) =
βε(0)(1− µ0,ε(0)) is satisfied, then %ε ∈ Cloc([0, T ]× R+).

The following two Lemmas formulate bounds on the moments of %ε which we
denote by

µp,ε(t) :=

∫ ∞
0

ap%ε(t, a) da , where p = 1, 2 .
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Lemma 3.1. Let assumptions 2.1, 2.3 and 2.4 hold, then the unique solution
%ε ∈ C(R+;L1(R+)) ∩ L∞(R2

+) of the problem (1.2) from Theorem 3.1 satisfies

%ε(t, a) ≥ 0 a.e. in R2
+ and

(3.3)

µ0,min ≤ µ0,ε(t) < 1 , ∀t ∈ R+ where µ0,min := min

(
µ0,ε(0),

βmin

βmin + ζmax

)
.

In a more straightforward manner one gets for higher moments as well
Lemma 3.2. Let assumption 2.1 hold, then

µp,min < µp,ε(t) ≤ k for p = 1, 2 , where µp,min := min

(
µp,ε(0),

µp−1,min

ζmax

)
,

and the generic constant k is independent of both time and ε.
Furthermore the following results on the convergence of %ε as ε tends to 0 have

been obtained. We define the functional

(3.4) H[u] :=

∣∣∣∣∫ ∞
0

u(a) da

∣∣∣∣+

∫ ∞
0

|u(a)| da ,

and we obtain
Lemma 3.3. Let ζmin > 0 be the lower bound to ζε(t, a) according to assump-

tion 2.4, then it holds for all t ≥ 0 that

H[%ε(t, .)− %0(t, .)] ≤ H[ρε,I − ρ0(0, .)]e
−ζmint

ε +
2

ζmin

∥∥∥‖Rε‖L1
a(R+) + |Mε|

∥∥∥
L∞t (R+)

with Rε := −ε∂t%0−%0(ζε−ζ0) and Mε := (βε−β0)
(
1−

∫∞
0
%0 da

)
. As a consequence

we conclude
Theorem 3.2. Let %ε be the solution to the system (1.2) according to Theorem 3.1

and let the %0 be as defined in (1.6), then it holds that

%ε → %0 in Cloc(]0,∞);L1(R+)) as ε→ 0 .

Remark 3.1. Note that in general ρε,I does not converge to ρ0(., 0) in L1
a as

ε → 0. A boundary layer will be observable and its profile will be shaped like a

multiple of e
−ζmint

ε , which is again a consequence of Lemma 3.3. In the opposite
case we obtain

Corollary 3.2. Considering the asymptotic behavior as ε → 0: Under the
additional assumption that ρε,I → ρ0(., 0)) in L1(R+) it holds by coercivity that
H[ρε,I − ρ0(., 0)] → 0 and therefore the convergence %ε → %0 in L1

a is uniform with
respect to t ∈ R+. In fact it holds that

‖%ε − %0‖L∞t L1
a
≤ sup

t≥0
H[%ε(t, .)− %0(t, .)] ≤

≤ H[ρε,I − ρ0(., 0)] +
2

ζmin

∥∥∥‖Rε‖L1
a(R+) + |Mε|

∥∥∥
L∞t (R+)

.
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We provide estimates on the convergence of the first moment as well.
Lemma 3.4. Let %ε be the solution to the system (1.2) according to Theorem 3.1

and let %0 be defined as in (1.6), then it holds for t > 0 that∫ ∞
0

a|%ε − %0| da ≤ e
−ζmint

ε

∫ ∞
0

a |ρε,I(a)− ρ0(a, 0)| da+
1

ζmin
Cε ,

where the family of constants Cε ∈ R is such that Cε → 0 as ε→ 0.
Remark 3.2. Integrating in time estimates from Lemma 3.3 and above, one

concludes that (1 + a)%ε actually converges to (1 + a)%0 strongly in L1((0, T ) × R+)
for any finite time T .

4. Reformulating the Volterra integral equation. Given the functions %ε
and ζε, our goal in this section is to replace zε = zε(t) satisfying (1.1) by a new
quantity which we denote by uε = uε(t, a). It is defined as the solution of (2.1).
Observe that in Section 6 and Section 7 we will actually prove the existence of a
unique solution to (2.1).

In the following two results we state, on the one hand, that, given zε, one actually
obtains the function uε according to (2.2) and that on the other hand, given uε, one
recovers zε evaluating (2.3). Finally we also show that as a consequence of (2.1) the
original equation (1.1) transforms into (2.4).

In this paper we consider ”mild” solutions to (2.1) which satisfy (2.1) after inte-
gration along characteristics, namely

(4.1) uε(t, a) :=

{∫ a
0
g(t− εã) dã , t > εa,∫ t/ε

0
g(t− εã) dã+ uI,ε(a− t/ε) , t ≤ εa,

where

g(t) :=
1

µ0,ε(t)

(
ε∂tf +

∫ ∞
0

%ε(t, a) ζε uε(t, a) da

)
.

Being a mild solution uε is as well a weak solution of (2.1) in the sense that it satisfies

(4.2) −
∫ T

0

∫ ∞
0

uε(ε∂tϕ+ ∂aϕ) da dt+ ε

[∫ ∞
0

uε(s, a)ϕ(s, a) da

]s=T
s=0

=

=

∫ T

0

1

µ0,ε

(
ε∂tf +

∫ ∞
0

ζε %ε uε da

)(∫ ∞
0

ϕ(t, ã) dã

)
dt

for any function ϕ ∈ C∞c ([0, T ];C∞c (R+)).
Lemma 4.1. Let zε be a Lipschitz-continuous solution to (1.1), then the function

uε recovered according to (2.2) satisfies the system (2.1) in the sense of integration
along characteristics (4.1).

Proof. In fact, the function uε if defined by (2.2) solves the following system

(4.3) u(t, a) :=

{∫ a
0
z′ε(t− εã) dã , t > εa,∫ t/ε

0
z′ε(t− εã) dã+ uI,ε(a− t/ε) , t ≤ εa.

Hence the weak formulation of the following system holds
ε∂tuε + ∂auε = z′ε(t) , a > 0 , t > 0 ,

uε(t, 0) = 0 , t > 0 ,

uε(0, a) = uI,ε , a ≥ 0 .
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Testing against %ε and integrating in age, one gets that

(4.4) ε∂t

∫ ∞
0

%εuεda+

∫ ∞
0

ζε%εuεda = z′ε(t)µ0,ε(t) ,

but then one uses again the fact zε solves (1.1), which in term of uε means (2.4).
According to Lemma 3.1 it holds that µ0,ε(t) > µ0,min, hence we might isolate z′ε(t)
in (4.4) and combine it with (2.4) and (4.3) to obtain (4.1).

Lemma 4.2. Let uε satisfy (2.1) in the sense of (4.1), then the reformulated
version (2.4) of the original equation (1.1) holds and zε recovered from uε according
to (2.3) satisfies (1.1).

Proof. Testing (2.1) against %ε and integrating in age gives

ε
d

dt

∫ ∞
0

uε(t, a)%ε(t, a) da = ε∂tf ,

which after integration in time gives∫ ∞
0

uε(t, a)%ε(t, a) da− f(t) =

∫ ∞
0

uI,ε(a)%ε(0, a) da− f(0) = 0 , ∀t > 0 ,

implying (2.4).
Now we would like to confirm that zε given by (2.3) satisfies (1.1). Using (4.1)

and (2.3), one checks that, if t ≥ εa,

zε(t)− zε(t− εa)

ε
=

1

ε

∫ t

t−εa
g(t̃)dt̃ =

∫ a

0

g(t− εã)dã = uε(t, a),

and if t ≤ εa,

zε(t)− zε(t− εa)

ε
=

1

ε

(∫ t

0

g(t̃)dt̃+ zε(0)− zp(t− εa)

)
=

∫ t/ε

0

g(t− εã)dã+ uI,ε(a− t/ε) = uε(t, a).

This gives when evaluating the left hand side of (1.1) that∫
R+

(
zε(t)− zε(t− εa)

ε

)
%ε(t, a)da =

∫
R+

uε(t, a)%ε(t, a)da,

which thanks to (2.4) proves that zε actually solves (1.1).
In the rest of the paper we solve the coupled model for the tuple (%ε, uε).

5. A priori estimates. The uniform a priori estimates below will be very useful
for the further analysis. They apply both to the semi and the fully coupled cases.

Lemma 5.1. If ζε ≥ 0, then the solution of system (2.1) satisfies the ε-uniform
estimate (2.6).

Proof. Multiplying formally the equation by sign(uε), testing against %ε and
integrating with respect to a gives

ε∂t

∫ ∞
0

%ε(t, a)|uε(t, a)| da+

∫ ∞
0

%εζε|uε|da ≤ ε|∂tf |+
∫ ∞

0

%εζε|uε|da .
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The rigorous proof follows the same steps as in the proof of Lemma 3.1 p. 493, [5]
and is left to the reader. On both sides the same term

∫∞
0
ζε%ε|uε| da appears and

thus cancels. One concludes then directly the claim after integration in time.
The following result refers to the typical profile in age of the function uε.
Lemma 5.2. Let ζε be such that 0 ≤ ζmin ≤ ζε ≤ ζmax, then on any fixed time

interval (0, T ) the profile a 7→ uε(t, a) is at most linear in age. Indeed, if we suppose
that there are two constants α0 and α1 such that

– the growth factor of the rhs is controlled,

α1 ≥
1

µ0,min

{
‖∂tf‖L∞(0,T ) + ζmax

(∫ ∞
0

%I,ε|uI,ε(a)|da+

∫ T

0

|∂tf |ds

)}
,

– as well as the Lipschitz constant of the past data,

α1 ≥
∥∥z′p∥∥L∞(R−)

, α0 ≥
1

µ0,min

(∥∥z′p∥∥L∞(R−)
µ1,ε(0) + f(0)

)
.

Then one has

|uε(t, a)| ≤ α0 + α1a, (t, a) ∈ (0, T )× R+ .

Proof. Observe that

ε∂t(α0 + α1a− |uε|) + ∂a(α0 + α1a− |uε|) ≥

≥ α1 −
1

µ0,min

{
|∂tf |+

∫ ∞
0

ζε%ε|uε|da
}

≥ α1 −
1

µ0,min

{
‖∂tf‖L∞(0,T ) + ζmax

∫ ∞
0

%ε|uε|da
}
.

Then, using Lemma 5.1 one recovers that under the first assumption on α1 one has

ε∂t(α0 + α1a− |uε|) + ∂a(α0 + α1a− |uε|) ≥ 0, (t, a) ∈ (0, T )× R+ .

Hence it holds that α0 + α1a − |uε| ≥ 0 along the characteristics of the transport
operator ε∂t+∂a provided this quantity is nonnegative at the boundaries where a = 0
or t = 0 respectively. When a = 0, it is straightforward to observe that α0 − |uε| =
α0 ≥ 0. On the other hand, when t = 0, the boundary term is α0 + α1a− |uI,ε| and
we need to estimate the initial datum,

|uI,ε(a)| =
∣∣∣∣zε(0)− zp(−εa)

ε

∣∣∣∣ ≤ ∣∣∣∣zε(0)− zp(0)

ε

∣∣∣∣+

∣∣∣∣zp(0)− zp(−εa)

ε

∣∣∣∣ =

=
1

µ0,ε(0)

∣∣∣∣f(0) +
1

ε

∫ ∞
0

(zp(−εa)− zp(0)) %ε(a, 0) da

∣∣∣∣+

∣∣∣∣zp(0)− zp(−εa)

ε

∣∣∣∣ ≤
≤ 1

µ0,min

(∥∥z′p∥∥L∞(R−)
µ1,ε(0) + f(0)

)
+
∥∥z′p∥∥L∞(R−)

a ≤ α0 + α1a .

Due to the assumptions on α0 and α1 this ends the proof.
Lemma 5.3. Under assumptions 2.4 or 2.5 , let (%ε, uε) be the solution of problem

(1.2)-(2.1), then zε given by formula (2.3) is a Lipschitz continuous function on any
finite time interval (0, T ).
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Proof. The proof is a straightforward consequence of Lemmas 5.1 and 5.2. They
provide an L∞ bound uniform in ε on the rhs of (2.1). Thanks to formula (2.3) one
gets directly the Lipschitz continuity of zε.

Remark 5.1. Lemma 5.3 completes Lemma 4.2 and proves the equivalence be-
tween (%ε, uε) solutions of system (1.2) and (2.1) belonging to C([0, T ];L1(R+)) ×
C([0, T ], L∞(R+, ω)) and (%ε, zε), solving system (1.2)-(1.1) which are in C([0, T ];L1(
R+))× Lip([0, T ]). This results holds in both semi and fully coupled cases.

6. Existence of solutions and convergence in the semi-coupled case. In
this section we consider the semi-coupled case which consists of the equations (1.2)
and (1.3) coupled to either (2.1) or (1.1) and prove Theorem 2.1. The framework for
the analysis is the function space defined in (2.9) which relies on the weight function ω
defined in (2.8). The following result is a straightforward consequence of the definition.

Theorem 6.1. Let the Assumptions 2.1, 2.2, 2.3 and 2.4 hold and let %ε be the
unique solution of (1.2) according to Theorem 3.1, then for any fixed ε and any T > 0
there exists a unique uε ∈ XT solving problem (2.1). Moreover the maximal time of
existence is infinite and stability results stated in Lemmas 5.1 and 5.2 hold.

Proof. The proof follows by a fixed point argument. We define the mapping
Φ(w) = u such that

(6.1) u(t, a) :=

{∫ a
0
h(t− εã) dã , t > εa,∫ t/ε

0
h(t− εã) dã+ uI,ε(a− t/ε) , t ≤ εa,

where h(t) := (ε∂tf +
∫∞

0
%ε(t, a)ζε(t, a)w(t, a)da)/µ0,ε(t). A simple computation

shows that

‖u‖XT ≤ ‖h‖L∞(0,T )

T

ε+ T
+ ‖uI,ε‖L∞(R+,ω)

which allows then with the specific definition of h to write:

‖u‖XT ≤
1

µ0,min
ε‖∂tf‖L∞(0,T ) + ζmax

(
1 +

k

µ0,min

)
‖w‖XT1 + ‖uI,ε‖L∞(R+,ω) ,

where k is the constant from Lemma 3.2. This proves that Φ is an endomorphism for
any given time T . By similar arguments one shows as well that if we set ui = Φ(wi)
for i ∈ {1, 2}, then it holds that

‖u1 − u2‖XT ≤ C2
T

ε
‖w1 − w2‖XT

for a constant C2 > 0. Choosing then T < ε/C2 proves local existence in time in
the interval [0, T ] by the Banach-Picard fixed point theorem. As the contraction time
does not depend on the initial data, we can extend the same result by continuation
and existence and uniqueness in XT follow for any T > 0.
Next we obtain a weak convergence result for uε which in a second step implies the
strong convergence of zε.

Theorem 6.2. Under the assumptions of Theorem 6.1 one has

(6.2) uε ⇀ u0 weakly-* in XT

as ε→ 0, where u0 satisfies

(6.3)

 ∂au0 =

∫ ∞
0

ζ0u0%0 da , t ≥ 0, a > 0,

u0(t, 0) = 0 t ≥ 0, a = 0.
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and

(6.4)

∫ ∞
0

u0(t, a)%0(t, a)da = f(t) , a.e t ∈ (0, T ).

Furthermore it also holds that

zε → z0 strongly in L∞(0, T ) as ε→ 0 ,

where z0 = zp(0) +
∫ t

0
f(t̃)

µ1,0(t̃)
dt̃ is the unique solution of (1.5).

Proof. As already noticed in Remark 3.2, Theorem 3.2 and Lemma 3.4 imply that

(1 + a) %ε → (1 + a) %0

in L1((0, T )×R+) strongly. On the other hand, one has, by Lemma 5.2, that ‖uε‖XT ≤
max{α0, α1}, which implies (6.2), i.e.

uε
1 + a

⇀
u0

1 + a

in L∞((0, T )× R+) in the weak-* sense for a limit function u0 ∈ XT . As ζε → ζ0 in
L∞((0, T )×R+) by Assumption 2.4 one concludes that for every ψ ∈ L∞((0, T )×R+)
one has ∫ T

0

∫ ∞
0

(ζε uε %ε ψ) da dt→
∫ T

0

∫ ∞
0

(ζ0 u0 %0 ψ) da dt .

Observe that this implies the weak convergence of
∫∞

0
(ζε uε %ε ) da in L1(0, T ) since we

might choose ψ = ψ(t). Passing hence to the limit ε→ 0 in (4.2) we obtain that u0 =
w(t) a for a function w = w(t). Due to Lemma 4.2 it holds that

∫∞
0
uε(t, a)%ε(t, a)da =

f(t) for every t ≥ 0. By analogous arguments one obtains the weak convergence of∫∞
0
uε%εda to

∫∞
0
u0%0da in L1(0, T ). Hence one concludes that the limit satisfies the

identity (6.4) which proves that u0 = w(t)a where w(t) = f(t)/µ1,0(t).
A triangular inequality gives that∣∣∣∣∫ t

0

1

µ0,ε(t̃)

∫ ∞
0

ζε %ε uεda dt̃−
∫ t

0

1

µ0,0(t̃)

∫ ∞
0

ζ0 %0 u0 da dt̃

∣∣∣∣ ≤
≤
(∫ t

0

∣∣∣∣ 1

µ0,ε(t̃)
− 1

µ0,0(t̃)

∣∣∣∣ dt̃) ζmax

∥∥∥∥∫ ∞
0

%ε |uε| da
∥∥∥∥
L∞(0,T )

+

+

∣∣∣∣∫ t

0

1

µ0,0(t̃)

∫ ∞
0

(ζε %ε uε − ζ0%0 u0) da dt̃

∣∣∣∣
where both terms on the right hand side tend to zero as ε → 0 thanks to the weak
convergence of

∫∞
0
ζε uε %ε da in L1(0, T ) combined with the strong convergence of

1/µ0,ε in L1(0, T ) due to Theorem 3.2 and Lemma 3.1. This allows to pass to the
limit in the third term in the right hand side of (2.3). Moreover, as z′p is uniformly
bounded an easy check gives that zε(0)→ zp(0) when ε goes to zero. These two facts
prove that zε → z0 strongly in L∞(0, T ) , z0 solving:

z0(t) = zp(0) +

∫ t

0

1

µ0,0

(∫ ∞
0

ζ0u0%0 da

)
dt̃ =

= zp(0) +

∫ t

0

∂au0 dt̃ = zp(0) +

∫ t

0

f(t̃)

µ1,0(t̃)
dt̃ ,

which concludes the proof.
Finally Theorem 2.1 summarizes the results of the Theorems 3.2 and 6.2.
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7. Existence of a unique solution in the fully coupled case. We prove the
result stated in Theorem 2.2 using the Banach Fixed Point theorem.

Proof. For an arbitrary time T0 > 0, which we will determine in the end of
the proof, let A0 := BXT0 (0, C0) be the ball centered at the origin in XT0 with
radius C0. We construct a mapping that given w ∈ A0 defines the function %ε ∈
C([0, T0];L1(R+)) as the solution of

(7.1)


ε∂t%ε + ∂a%ε + ζ(w) %ε = 0 , t > 0 , a > 0 ,

%ε(a = 0, t) = βε(t)

(
1−

∫ ∞
0

%ε(t, ã) dã

)
, t > 0 ,

%ε(a, t = 0) = %I,ε(a) , a ≥ 0 .

Results from Theorem 3.1 and Lemmas 3.1 and 3.2 imply existence and uniqueness
of a solution as well as uniform bounds for moments of order up to 2. Then w and %ε
are used as the input in order to compute the function u ∈ XT0

solving the problem :

(7.2)


ε∂tu+ ∂au =

1

µ0,ε

(
ε∂tf +

∫ ∞
0

ζ(w)w %ε da

)
, t > 0 , a > 0 ,

u(t, 0) = 0 , t > 0 ,

u(0, a) = uI,ε(a) , a ≥ 0 .

By the same arguments as in the proof of Theorem 6.1, the solution u ∈ XT0
exists

for any given function w ∈ XT0
and u can be controlled by the norm in XT0

,

(7.3)
‖u‖XT0 ≤

(
ε
‖∂tf‖∞
µ0,min

+ ζmax

(
1 +

k

µ0,min

)
‖w‖XT0

)
T0

ε
+ ‖uI,ε‖L∞ω

≤ (c1 + c2C0)
T0

ε
+ ‖uI,ε‖L∞ω ,

where c1, c2 > 0 are constants defined by the preceding computation. Choosing the
time T0 such that T0 ≤ t0 where t0 := ε(C0−‖uI,ε‖L∞ω )/(c1 +c2C0), one then ensures

that u ∈ A0.

Next, we shall prove that this mapping is contractive in A0. To this end, given
two elements (w1, w2) and their respective images (u1, u2), we define û := u2−u1 and
ŵ = w2 − w1. We define also the corresponding densities (ρ1, ρ2) and the respective
zeroth and first order moments (µ0,1, µ0,2), (µ1,1 and µ1,2) as well as their differences
µ̂i := µi,2 − µi,1, i ∈ {0, 1}. It holds that

(7.4) û(t, a) =

{∫ a
0
ĝ(t− εã) dã , t > εa ,∫ t/ε

0
ĝ(t− εã) dã , t ≤ εa ,

where

ĝ(t) = ε∂tf

(
1

µ0,2
− 1

µ0,1

)
+

∫ ∞
0

(
ζ(w2)

ρ2

µ0,2
w2 − ζ(w1)

ρ1

µ0,1
w1

)
da .

We estimate

|ĝ(t)| ≤ ε|∂tf |
µ0,1µ0,2

|µ̂0|+
4∑
i=1

Ii ,
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and we detail the right hand side as follows,

I1 :=

∫ ∞
0

ζlip|ŵ|
∣∣∣∣ ρ2

µ0,2
w2

∣∣∣∣ da ≤ ζlip(1 +
3k

µ0,min

)
‖ŵ‖XT0 ‖w2‖XT0 ,

I2 :=

∫ ∞
0

|ρ̂|
∣∣∣∣ζ(w1)

1

µ0,2
w2

∣∣∣∣ da ≤ ζmax

µ0,min
‖w2‖XT0

∫ ∞
0

(1 + a) |ρ̂| da ,

I3 :=
1

µ0,1µ0,2
|µ̂0|

∫ ∞
0

|ζ(w1)ρ1w2| da

≤ ζmax

µ2
0,min

(
1 +

k

µ0,min

)
‖w2‖XT0 ‖µ̂0‖L∞(0,T0) ,

I4 :=

∫ ∞
0

|ŵ|
∣∣∣∣ζ(w1)

ρ1

µ0,1

∣∣∣∣ da ≤ ζmax

(
1 +

k

µ0,min

)
‖ŵ‖XT0 .

Using the same arguments as in the proof of Lemma 3.3 (see the proof of Lemma 3.3.
p. 495 in [5]) we show that

‖µ̂0‖L∞(0,T0) ≤ ‖ρ̂‖L∞(0,T0;L1(R)) ≤
2

ζmin

∥∥∥∥∫ ∞
0

|ζ(w2)− ζ(w1)|ρ2 da

∥∥∥∥
L∞(0,T0)

≤ 2ζlip
ζmin

(
1 +

k

µ0,min

)
‖ŵ‖XT0

and an analogous result to Lemma 3.2,

‖µ̂1‖L∞(0,T0) ≤ ‖a|ρ̂|‖L∞(0,T0;L1(R)) ≤ C‖ŵ‖XT0
for a constant C > 0. Using these results we obtain

‖u1 − u2‖XT0 ≤
T0

ε
(c3 + c4C0)‖w1 − w2‖XT0 ,

which is contractive provided that T0 < t1 where t1 := ε/(c3 + c4C0). Choosing for
example T0 < min(t0, t1) proves local existence of in time in the interval [0, T0] by the
Banach-Picard fixed point theorem.

We extend that result to longer times by induction. We suppose that the solutions
(%ε, uε) solving (1.2)-(2.1)-(1.4) exist until the time Tn i.e. (%ε, uε) ∈ C([0, Tn];L1(R+,
(1 + a)2))×XTn and that one has the bound :

(7.5)
∥∥(1 + a)2%ε

∥∥
L∞((0,Tn);L1(R+))

≤ k1(1 + µ1,ε(0) + µ2,ε(0)).

where k1 := 2(1 + 1/ζmin + 1/ζ2
min). Then on the next interval [Tn, Tn+1], one uses

again a fixed point strategy. We set the mapping defined above by solving (7.1)-(7.2)
on (Tn, Tn+1) with initial datum uε(Tn, ·) for uε, and %ε(Tn, ·) for %ε. We denote
by (ρ(w), u(w)) the solutions of (7.1)-(7.2) on (Tn, Tn+1) for a given function w ∈
X(Tn,Tn+1). Firstly, we prove using similar arguments as in Lemma 3.1 that∥∥(1 + a)2ρ(w)

∥∥
L∞((Tn,Tn+1);L1(R+))

≤ k1(1 + µ1,ε(Tn) + µ2,ε(Tn))

and similarly to Lemma 3.3 one has as well :

‖(1 + a)ρ̂‖L∞((Tn,Tn+1);L1(R+)) ≤ k2k1(1 + µ1,ε(Tn) + µ2,ε(Tn))‖ŵ‖X(Tn,Tn+1)
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where we denote k2 := (1/ζmin + 1/ζ2
min), ρ̂ := ρ2(w2) − ρ1(w1), and ŵ := w2 − w1.

Thanks to the induction hypothesis (7.5), these bounds can be estimated as

(7.6)
∥∥(1 + a)2ρ(w)

∥∥
L∞((Tn,Tn+1);L1(R+))

≤ k′2(1 + µ1,ε(0) + µ2,ε(0)) =: k′′2 ,

where k′2 := k2
1 and

‖(1 + a)ρ̂‖L∞((Tn,Tn+1);L1(R+)) ≤k
′
3(1 + µ1,ε(0) + µ2,ε(0))‖ŵ‖X(Tn,Tn+1)

=: k′′3 ‖ŵ‖X(Tn,Tn+1)
.

where k′3 := k2k
2
1. The norm of the initial condition for u(w) might indeed be larger

then ‖uI,ε‖L∞(R+,ω), at worst we may have attained the bound Cn during the previous

periods and we might have to choose Cn+1 > Cn. Rewriting (7.3) in [Tn, Tn+1) and
denoting ∆Tn := Tn+1 − Tn, one has indeed

‖u‖X(Tn,Tn+1)
≤

≤ 1

µ0,min

ε‖∂tf‖∞ + ζmax

∥∥∥∥∥
∫
R+

(1 + a)%ε(t, a)da

∥∥∥∥∥
L∞(Tn,Tn+1)

‖w‖X(Tn,Tn+1)

 ∆Tn
ε

+ ‖uε(Tn, ·)‖L∞ω

≤ 1

µ0,min

(
ε‖∂tf‖∞ + ζmaxk

′′
2‖w‖X(Tn,Tn+1)

) ∆Tn
ε

+ Cn

≤ (c1 + c′2Cn+1)
∆Tn
ε

+ Cn ,

where we used (7.6). A similar computation gives for the contraction part that :

‖û‖X(Tn,Tn+1)
≤

(
5∑
i=1

Ji

)
∆Tn
ε

,

where

J1 :=
ε

µ2
0,min

‖∂tf‖L∞(Tn,Tn+1)‖µ̂0‖L∞(Tn,Tn+1) ≤
εk′′3
µ2

0,min

‖∂tf‖L∞(Tn,Tn+1)‖ŵ‖X(Tn,Tn+1)
,

J2 :=
1

µ2
0,min

sup
(Tn,Tn+1)

(∫
R+

ζ(w)|w|%εda |µ̂0|

)
≤ ζmaxk

′′
2k
′′
3

µ2
0,min

‖w2‖X(Tn,Tn+1)
‖ŵ‖X(Tn,Tn+1)

,

J3 :=
1

µ0,min
sup

(Tn,Tn+1)

(∫
R+

|ζ̂w2|ρ2da

)
≤ ζlipk

′′
2

µ0,min
‖w2‖X(Tn,Tn+1)

‖ŵ‖X(Tn,Tn+1)
,

J4 :=
1

µ0,min
sup

(Tn,Tn+1)

(∫
R+

|ζ1ŵ|ρ2da

)
≤ ζmaxk

′′
2

ζmin
‖ŵ‖X(Tn,Tn+1)

,

J5 :=
1

µ0,min
sup

(Tn,Tn+1)

(∫
R+

ζ1|w1||ρ̂|da

)
≤ ζmaxk

′′
3

ζmin
‖ŵ‖X(Tn,Tn+1)

‖w1‖X(Tn,Tn+1)
,

leading to

‖û‖X(Tn,Tn+1)
≤
{

(c′3 + c′4Cn+1)
∆Tn
ε

}
‖ŵ‖X(Tn,Tn+1)

.
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Existence and uniqueness of the extended solution on the interval [0, Tn+1] = [0, Tn]∪
(Tn, Tn+1] hold provided that the period ∆Tn is chosen sufficiently small i.e.

(7.7) ∆Tn < min

{
ε∆Cn

c1 + c′2Cn+1
,

ε

c′3 + c′4Cn+1

}
.

where ∆Cn = Cn+1 − Cn. The fixed point theorem provides a pair (%ε, uε) defined
on C([0, Tn+1];L1(R+, (1 + a)2)) × XTn+1

, then Lemmas 3.1 and 3.2 establish that

µ0,ε(Tn+1) ≤ 1 and µ1,ε(Tn+1) ≤ µ1,ε(0) + ζ−1
min. For µ2,ε, the second order moment,

a similar estimate holds as well. This proves (7.5) up to Tn+1. The induction step is
complete.

Thus, in an iterative way we are able to extend the solution up to periods
[Tn, Tn+1) for any n > 0. We choose Cn := 2‖uI,ε‖L∞ω (R+)(n + 1). Since both se-

ries, ε∆Cn
c1+c′2Cn

and ε
c′3+c′4Cn

are scaled versions of the divergent series
∑∞
n=0

1
1+n , the

periods ∆Tn can be chosen such that Tn → ∞ as n grows large, which finishes the
proof.
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