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Abstract. We construct an asymptotic expansion for the integral delay operator already intro-
duced in [7, 8] and show how to improve convergence rates already obtained in the latter papers.
Moreover, we weaken one of the major hypotheses made on the off-rates in our previous works : we
do not assume exponential decay of the linkages’ density. Instead, polynomial decrease is allowed,
leading to stronger adhesions and slower motions of adhesion sites.
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1. Introduction. This work is a continuation of a series of works related to
the mathematical study of adhesion forces in the context of cell motility (see [1], [7],
[8], [9] and [10]). Cell adhesion and migration play a crucial role in many biological
phenomena such as embryonic development, inflammatory responses, wound healing
and tumor metastasis. The adhesion model discussed further has been designed at
the scale of a single binding site [13, Chapter 5]. Lately, it has also been used at the
mesoscopic cell scale ([3], [11]). The cell is modelled as a point particle whose position
on the real line is denoted Xε and depends on t. The position Xε is obtained solving
a force balance equation

(1.1)


1

ε

∫
R+

(Xε(t)−Xε(t− εa)) ρε(a, t)da = f(t), t > 0,

Xε(t) = Xp(t), t ≤ 0,

where f is an external force and the left hand side a continuum of elastic spring forces
with respect to past positions. The density of linkages ρε is either a given function or
it can also be a solution of an age-structured model [12, 14] :

(1.2)


(ε∂t + ∂a + ζ(a, t)) ρε(a, t) = 0, (a, t) ∈ R+ × (0, T ),

ρε(0, t) = β(t)

(
1−

∫
R+

ρε(a, t)da

)
, (a, t) ∈ {0} × (0, T ),

ρε(a, 0) = ρI(a), (a, t) ∈ R+ × {0}.

In the latter system, β ∈ R+ (resp. ζ ∈ R+) is the kinetic on-rate (resp. off-rate)
function and the speed of linkage turnover is represented by the small parameter
known as ε > 0 ([7], [8], and [9]). Under the assumption that the death rate ζ
admits a strictly positive lower bound ζmin, in [7], the authors studied rigorously the
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asymptotic limit of the systems (1.1) and (1.2) when ε goes to zero. They obtained
the convergence results

∥Xε −X0∥C0([0,T ]) + ∥ρε − ρ0∥C0((0,T ];L1(R+)) → 0,

where the limit X0 solves

(1.3)

{
µ1,0(t)X

′
0 = f(t), t > 0,

X0(t = 0) = Xp(0), t = 0,

where µ1,0(t) denotes the first moment of ρ0, namely µ1,0(t) :=
∫∞
0

aρ0(a, t)da and
ρ0 satisfies :

(1.4)


∂aρ0 + ζ(a, t)ρ0 = 0, t > 0, a > 0,

ρ0(a = 0, t) = β(t)

(
1−

∫ ∞

0

ρ0(t, ã) dã

)
, t > 0.

We underline that, to some extent, the ε scaling can be associated with the long time
behavior of solutions of (1.1) and (1.2) [11, Theorem 4.4].

In [7],using the Lyapunov functional

(1.5) H[u] :=

∣∣∣∣∫ ∞

0

u(a)da

∣∣∣∣+ ∫ ∞

0

|u(a)|da ,

the authors have proved the convergence of ρε towards ρ0. In the same article they
showed as well the convergence of the position Xε thanks to a comparison principle
specific to Volterra equations [4, Chapter 9, Section 8]. Here as well, the main goal
is to study the asymptotic behavior of solutions of the coupled problem (1.1)-(1.2)
under two major constrains :
1) increase the order of approximation with respect to ε,
2) weaken hypotheses on ζ allowing ρε and ρ0 to have fat tails with respect to the

age variable.
More precisely, we aim at constructing the N th-order asymptotic approximation

of the solution Xε satisfying (1.1) as

(1.6) X̃ε,N = Xouter(t) +Xinner(τ) +O(εN ),

where τ = t/ε is the stretched variable. The construction of this asymptotic develop-
ment is done in two steps. First, we constructXouter containing a series of macroscopic
correctors in power of ε. These correctors are valid away from t = 0. Next, we con-
struct Xinner containing microscopic correctors that correct the fast variation near
the boundary layer at t = 0.

We start by studying problem (1.1) with a given non-negative density of linkages
ρ such that

µN+1 :=

∫ R+

0

(1 + a)N+1ϱ(a)da < +∞

and such that it is not compactly supported (cf. Hypotheses 1 for a more precise
definition). In this case, we construct an expansion (1.6) for any fixed integer N . The
macroscopic part Xouter consists of correctors solving first order differential equations
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(see (3.7)). Initial conditions of these correctors are then defined by matching inner
and outer expansion. An error estimate is obtained in Theorem 2 leading to∥∥∥Xε − X̃ε,N

∥∥∥
C([0,T ])

≲ εN .

Finally, we consider the general case where the density also depends on ε and
solves (1.2). We are mainly concerned with the asymptotic behavior of Xε as the
perturbation parameter ε approaches zero. First, we study the asymptotic behavior
of ρε when ε goes to 0. The novelty here, compared to [7], is that we weakened the
assumptions on the death rate ζ. Namely we assume that there exists a non-increasing
function m ∈ L1(R+; (1 + a)3) such that

(1.7) ζ(a, t) ≥ −m′(a)

m(a)
, a.e. a ∈ R+

This hypothesis allows ζ to go to zero for large a and allows ϱ to have fat tails. In
comparison, in [7], the hypothesis on ζ was stronger : ζ(a, t) ≥ ζmin > 0. This allowed
to use of Gronwall’s Lemma and get a priori estimates :

∥ρε(·, t)− ρ0(·, t)∥L1(R+) ≤ H[ρI(·)− ρ0(·, 0)] exp (−ζmint/ε) + oε(1).

Showing an exponential decay in time and age of the initial layer near to t = 0 [6]. In
our case, if ζ satisfies the condition (1.7), we cannot use Gronwall’s Lemma to establish
the convergence when ε tends to 0. For this sake, we enrich the asymptotic expansion
of ρε with supplementary terms. We introduce ρ1, the first order macroscopic solution
of :

(1.8)


(∂a + ζ(a, t)) ρ1(a, t) = −∂tρ0(a, t), a > 0, t > 0,

ρ1(0, t) = −β(t)

∫
R+

ρ1(a, t)da, a = 0, t > 0,

and r0 the initial layer approximation solving :

(1.9)


(∂t + ∂a + ζ(a, 0)) r0(a, t) = 0, a > 0, t > 0,

r0(0, t) = −β(0)

∫
R+

r0(a, t)da, a = 0, t > 0,

r0(a, 0) = ρI(a)− ρ0(a, 0), a > 0, t = 0.

This enhances the earlier error estimates. Indeed, for any t > 0, one has

H[ρε(·, t)− ρ0(·, t)− ερ1(·, t)− r0(·, t/ε)] ≲ oε(1),

leading to :
∥ρε − ρ0∥L1(R+×(0,T ),(1+a))) ≤ oε(1).

In turn this result is used to establish the strong convergence of Xε towards X0 solving
(1.3) extending the results from [8] to this more general framework.

The paper’s outline is structured as follows : in section 2, we list notations which
will be used throughout this paper. In section 3, we analyze the case where the
kernel in (1.1) is fixed and depends on the age variable. Moreover, we construct the
asymptotic expansion ofXε and show error estimates. Finally, in section 4, we analyze
the asymptotic behavior of ρε and Xε solutions of (1.2) and (1.1) respectively when
ε tends to 0. Then we extend results from [8] to our setting and conclude.
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2. Notations. Before presenting our main result, we list some notations and
assumptions that will be used in this paper. In the rest of the paper, we’ll use some
notations for the functional spaces, for instance Lp

tL
q
a := Lp((0, T );Lq(R+)) for any

real (p, q) ∈ [1,∞]2. We refer to [15] for a general framework for BV functions (used
in Section 4), our notations being coherent with this reference.

Hereafter, in the following sections, capital letters (Xi)i∈N denote the macroscopic
correctors defined on [0, T ], and the microscopic correctors (xi,j)(i,j)∈N2 or (wk)k∈N
are defined on R. They are then renamed with a tilde when rescaled with respect
to ε : x̃i,j(t) := xi,j(t/ε) for t ∈ (0, T ) and (i, j) ∈ N2.

3. The linkages’ density is constant in time. In this section, we begin to
study the simple model of the problem (1.1) with a kernel ρ constant in time. We
assume that the data of the problem satisfies : the following assumptions :

Assumptions 1. Assume that :
i) the source term is such that f ∈ CN (R+).
ii) the past condition Xp ∈ CN+1(R+).
iii) for all a ∈ R+, there exists M ⊂ (a,∞), M compact and |M | > 0 such that

ϱ(ã) > 0 for almost every ã ∈ M .
iv) moreover

µN+1 :=

∫
R+

(1 + a)N+1ϱ(a)da < ∞.

3.1. Construction of the expansion. First, we start with the construction
of the terms forming the N th-order approximation of Xε solution of (1.1) for a fixed
kernel as

(3.1) X̃ε,N :=

N−1∑
i=0

εiXi(t)︸ ︷︷ ︸
outer expansion

+YN (t) + ZN (t) +WN (t)︸ ︷︷ ︸
inner expansion

,

where these terms are set later on. Define the operator Lε : C([0, T ]) → C([0, T ])
that maps X to

Lε[X](t) :=
1

ε

{
µ0X(t)−

∫ t
ε

0

X(t− εa)ϱ(a)da

}
.

Then problem (1.1) can be rephrased as :

(3.2) Lε[Xε](t) = f(t) +
1

ε

∫ ∞

t
ε

Xp(t− εa)ϱ(a)da, ∀t > 0

and we aim at constructing X̃ε,N such that it satisfies

(3.3) Lε[X̃ε,N ] = f(t) +
1

ε

∫ ∞

t
ε

Xp(t− εa)ϱ(a)da+O(εN ).

Proposition 1. Assume that Hypotheses 1 hold, let the sequence of functions
(Xi)i∈{0,...,N−1} be given and for all i ∈ {0, . . . , N − 1} assume that Xi ∈ WN+1,∞
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([0, T ]), then one has the expansion :

Lε[Xi](t) =

N−i∑
k=1

εk−1(−1)k+1

k!
X

(k)
i (t) (µk − Ξ0,k(t)) +

1

ε

∫ ∞

t
ε

ϱ(a)daXi(t)

+ εN−iRN+1−i
i ,

where

µk :=

∫
R+

akϱ(a)da, Ξ0,k(t) :=

∫ ∞

t
ε

akϱ(a)da =: ξ0,k

(
t

ε

)
,

and the rest can be controlled :∣∣RN+1−i
i

∣∣ ≤ 1

(N + 1− i)!

∥∥∥X(N+1−i)
i

∥∥∥
∞

∫
R+

aN+1−iϱ(a)da,

Proof. One writes :

Lε[Xi](t) =
1

ε

∫ t
ε

0

(Xi(t)−Xi(t− εa))ϱ(a)da+
1

ε

∫ ∞

t
ε

ϱ(a)da Xi(t)

then using the Taylor expansion :

Xi(t− εa) =

N−i∑
k=0

εkak

k!
(−1)kX

(k)
i (t)

+
(−εa)N+1−i

(N − i)!

∫ 1

0

X
(N+1−i)
i (t− sεa)(1− s)N−ids

so that the first term above becomes :

1

ε

∫ t
ε

0

(Xi(t)−Xi(t− εa)) ϱ(a)da

=

N−i∑
k=1

∫ t
ε

0

εk−1ak

k!
ϱ(a)da(−1)k+1X

(k)
i (t) + εN−iRN+1−i

i

=

N−i∑
k=1

(−1)k+1

k!
X

(k)
i (t)

(
εk−1µk − 1

ε

∫ ∞

t
ε

(εa)kϱ(a)da

)
+ εN−iRN+1−i

i

which provides the result.

Proposition 2 (Outer expansions).
Under the same hypothesis as above, the zeroth-order macroscopic limit is given

by

(3.4) µ1X
(1)
0 = f,

and at any order ℓ ∈ {1, . . . , N}, we have :

(3.5) µ1X
′
ℓ−1 =

ℓ∑
k=2

(−1)k
µk

k!
X

(k)
ℓ−k.
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Proof. The result proved in Proposition 1 leads to :

(3.6)

Lε

[
N−1∑
i=0

εiXi

]
=

N−1∑
i=0

εi
N−i∑
k=1

εk−1(−1)k+1

k!
X

(k)
i (t) (µk − Ξ0,k(t))

+

N−1∑
i=0

εi−1

∫ ∞

t
ε

ϱ(a)da Xi(t) + SN,0,

where we set SN,0 := εN
∑N−1

i=0 RN+1−i
i and |SN,0| ≤ max

i∈{0,...,N−1}

{
∥Xi∥WN+1,∞(0,T )

µN+1−i}. Considering the first sum gives :

N−1∑
i=0

εi
N−i∑
k=1

εk−1(−1)k+1

k!
X

(k)
i (t) (µk − Ξ0,k(t))

=

N∑
k=1

N∑
ℓ=k

εℓ−1 (−1)k+1

k!
X

(k)
ℓ−k(t) (µk − Ξ0,k(t))

=

N∑
ℓ=1

εℓ−1
ℓ∑

k=1

(−1)k+1

k!
X

(k)
ℓ−k(t) (µk − Ξ0,k(t))

Separating powers of ε and considering that terms containing functions Ξ0,k belong
to the initial layer (these depend only on the microscopic variable t/ε) provides :

(3.7)

ℓ∑
k=1

µk

X
(k)
ℓ−k(t)

k!
(−1)k+1 =

{
0 if ℓ ̸= 1,

f otherwise,

and by relating the lowest derivative with the highest index to the rest of the correc-
tors, we establish macroscopic nested ODEs (3.4) and (3.5).

Remark 3.1. The initial conditions of the macroscopic correctors Xi are to be
defined later (cf Theorem 1).

Proposition 3 (Inner expansion). It is threefold.
• The first part accounts for terms containing Ξ0,k in the first sum of (3.6) :

(3.8) YN (t) :=

N∑
m=1

εm
m∑
q=1

q∑
k=1

(−1)k+1

k!(m− q)!
X

(k+m−q)
q−k (0)x̃m−q,k(t)

where x̃j,k := xj,k(t/ε) and the microscopic correctors solve :

(3.9) L1[xj,k](t) = ξj,k(t) := tj
∫ ∞

t

akϱ(a)da,

and L1 is the operator Lε taken for ε set to 1.
• The second part corrects the second sum in (3.6) and reads :

(3.10) ZN (t) := −
N∑

m=1

εm
m−1∑
q=0

1

(m− q)!
X(m−q)

q (0)x̃m−q,0 −
N−1∑
i=0

εiXi(0).
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• The last part concerns the remainders related to the past source term in (3.3)

WN (t) :=

N∑
i=0

εi

i!
X(i)

p (0)w̃i(t),

where w̃i(t) := wi(t/ε) and (wℓ)ℓ solve for ℓ ∈ N,

(3.11)


∫
R+

(wℓ(t)− wℓ(t− a))ϱ(a)da = 0, t > 0,

wℓ(t) = tℓ, t ≤ 0.

Proof. First, we begin by constructing the first part of the initial layer YN . We
consider the second term in (3.6) and we use Taylor’s expansion :

X
(k)
ℓ−k(t) =

N−k∑
j=0

X
(k+j)
ℓ−k (0)

tj

j!
+ εNRN

k,l,

where

RN
k,l :=

ε−k+1

(N − k)!

(
t

ε

)N−k+1 ∫ 1

0

(1− s)N−kX
(N−k+1)
ℓ−k (st)ds,

which implies that

(3.12)

N∑
ℓ=1

εℓ−1
ℓ∑

k=1

(−1)k

k!
X

(k)
ℓ−k(t)Ξ0,k(t)

=

N∑
ℓ=1

εℓ−1
ℓ∑

k=1

(−1)k

k!
Ξ0,k(t)


N−k∑
j=0

X
(k+j)
ℓ−k (0)

tj

j!
+RN

k,l


=

N∑
ℓ=1

ℓ∑
k=1

N−k∑
j=0

(−1)k

k!j!
εℓ+j−1X

(k+j)
ℓ−k (0)

(
t

ε

)j

Ξ0,k(t) + SN,1 =: I + SN,1

where

(3.13) SN,1 :=
∑
ℓ,k

εℓ+N−k (−1)k

k!
Ξ0,k(t)RN

k,l,

that can be estimated as :

(3.14) |SN,1| ≤ CεNµN+1

The first triple sum can be decomposed thanks to Proposition 6 as

I :=

N∑
m=1

εm−1

(
m∑
q=1

q∑
k=1

(−1)k

k!(m− q)!
X

(k+m−q)
q−k (0)Ξm−q,k(t)

)

+

2N−1∑
m=N+1

εm−1

 N∑
q=m+1−N

q+N−m∑
k=1

(−1)k

k!(m− q)!
X

(k+m−q)
q−k (0)Ξm−q,k(t)


=: I1 +O(εN )
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In order to compensate I1, we define microscopic correctors x̃j,k as (3.9) and set YN

as in (3.8). Now, we need to correct the third term in (3.6), which we do with the
same technique as above :

N−1∑
i=0

εi−1Xi(t)

∫ ∞

t
ε

ϱ(a)da

=

N−1∑
i=0

εi−1


N−i∑
j=0

tj

j!
X

(j)
i (0) +

tN+1−i

(N − i)!

∫ 1

0

XN+1−i
i (st)(1− s)N−ids


∫ ∞

t
ε

ϱ(a)da

=

N−1∑
i=0

N−i∑
j=0

εi+j−1

j!
X

(j)
i (0)

tj

εj
Ξ0,0(t) + SN,2 =

N−1∑
i=0

N−i∑
j=0

εi+j−1

j!
Ξj,0(t)X

(j)
i (0) + SN,2

=

N∑
m=1

εm−1
m−1∑
q=0

1

(m− q)!
Ξm−q,0(t)X

(m−q)
q (0) +

N−1∑
i=0

εi−1Ξ0,0(t)Xi(0) + SN,2

where Ξj,0(t) := ξj,0(t/ε) and

(3.15) SN,2(t) :=

N−1∑
i=0

εi−1 t
N+1−i

N − i!

∫ 1

0

XN+1−i
i (st)(1− s)N−idsΞ0,0(t),

and one has :

(3.16) |SN,2| ≤ CεN
∫
R+

(1 + a)N+1ϱ(a)da sup
i∈{0,...,N}

∥Xi∥WN+1−i,∞(0,t).

It suffices then to add the correction ZN defined as in (3.10). Lastly, it remains to
correct the terms of the past. To find them, we need to develop Xp(t− εa) around 0,
which is stated as :

Xp(t− εa) =

N∑
i=0

εiX(i)
p (0)

(t/ε− a)i

i!

+ εN+1 (t/ε− a)N+1

N !

∫ 1

0

X(N+1)
p (s(t− εa))(1− s)Nds,

and it involves

∫ +∞

t
ε

Xp(t− εa)ϱ(a)da =

N∑
i=0

εiX(i)
p (0)

∫ +∞

t
ε

(t/ε− a)i

i!
ϱ(a)da+ SN,3,

where

(3.17) SN,3 := εN+1

∫ +∞

t
ε

(t/ε− a)N+1

N !

∫ 1

0

X(N+1)
p (s(t− εa))(1− s)Ndsϱ(a)da,

and
(3.18)

|SN,3| ≤ εN
1

N !
∥X(N)

p ∥∞
∫ +∞

t
ε

(
t

ε
− a

)N

ϱ(a)da

≤ εN
1

N !
∥X(N)

p ∥∞
N+1∑
k=0

CN+1
k

∫ +∞

t
ε

(
t

ε

)k

(−a)N−k+1ϱ(a)da ≤ cεN+1µN+1
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Which then yields that past-correctors should be added as :

WN (t) :=

N∑
i=0

εi
X

(i)
p (0)

i!
w̃i(t),

where w̃i(t) := wi(t/ε) and wi satisfies (3.11).

Lemma 1. If µj+k+1 < ∞, then one has :

xj,k(0) =

{
µk

µ0
, if j = 0,

0, otherwise,

and xj,k(t) → µj+1+k/((j + 1)µ1) when t → ∞.

Proof. The resolvent associated to (3.9), satisfies :

r(t)− (r ⋆ k)(t) = k(t),

where

(3.19) k(a) := ϱ(a)/µ0, (r ⋆ k)(t) :=

∫ t

0

r(t− τ)k(τ)dτ

and it can be decomposed [5, Theorem 7.4.1, p.201] as

r(t) =
µ0

µ1
+ γ(t),

where the function γ ∈ L1(R+). Moreover, the resolvent being defined the solution
xj,k is computed explicitly and reads :

xj,k = ξj,k + ξj,k ⋆ r = ξj,k + ξj,k ⋆ (µ0/µ1 + γ) = ξj,k + ξj,k ⋆ γ +
µ0

µ1

∫ t

0

ξj,k(s)ds.

Thus the leading term in xj,k when t grows large is the last integral. Indeed

µ0

µ1

∫
R+

tj
∫ ∞

t

akk(a)dadt =
1

µ1

∫
R+

(∫ a

0

tjdt

)
akϱ(a)da =

1

(j + 1)

µj+k+1

µ1

and one has :

xj,k − 1

(j + 1)

µj+k+1

µ1
∈ L1(R+).

which we define as the formal expression xj,k(t) → µj+1+k/((j+1)µ1) when t → ∞.

Lemma 2. Under the same assumptions as in the previous Lemma, the micro-
scopic functions wℓ are discontinuous at t = 0, for all ℓ ≥ 0 :

wℓ(0
+) = (−1)ℓ

µℓ

µ0
, wℓ(0

−) = 0,

and and wℓ(t) → ((−1)ℓµℓ+1)/((ℓ+ 1)µ1) when t → ∞.

Proof. Using (3.11), we can easily show the discontinuity of the correctors wℓ at
t = 0. By the same arguments as proof of Lemma 1, one has that :

lim
t→∞

wℓ(t) =
1

µ1

∫
R+

∫ ∞

t

(t− a)ℓϱ(a)dadt =
1

µ1

∫
R+

(∫ a

0

(t− a)ℓdt

)
ϱ(a)da

=
(−1)ℓ

(ℓ+ 1)

µℓ+1

µ1
,

which ends the proof.
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Lemma 3. Under the previous results, we obtain the error estimate∣∣∣Xε(0
+)− X̃ε,N (0+)

∣∣∣ ≲ εN .

Proof. By definition, one has :

X̃ε,N (0+) =

N−1∑
i=0

εiXi(0) + YN (0) + ZN (0) +WN (0+),

then one has

YN (0) :=
1

µ0

N∑
ℓ=1

εℓ
ℓ∑

k=1

(−1)k+1

k!
X

(k)
ℓ−k(0)µk = ε

f(0)

µ0

where we used that x̃j,k(0) = 0 for all j ̸= 0 and (3.7). By definition,

ZN (0) = −
N−1∑
i=0

εiXi(0)x̃0,0(0) = −
N−1∑
i=0

εiXi(0),

and compensates the first terms of the sum, then

WN (0) =
1

µ0

N∑
i=0

εi
X

(i)
p (0)

i!
(−1)iµi.

Then one observes that

Xε(0) = ε
f(0)

µ0
+

∫
R+

Xp(−εa)
ϱ(a)

µ0
da

and so the Taylor expansion of the last term ends the proof.

3.2. Matching inner and outer expansions. So far the initial conditions of
the outer expansion are not defined. For this sake, we write the inner expansion’s
limit when t → ∞. This gives :

lim
t→∞

YN (t) =

m∑
q=1

q∑
k=1

(−1)k+1

(m− q + 1)!k!
X

(k+m−q)
q−k (0)µm−q+k+1 =: s1,

together with :

lim
t→∞

ZN (t) = −
N∑

m=1

εm
m−1∑
q=0

X(m−q)
q

µm−q+1

(m− q + 1)!µ1
−

N−1∑
i=0

εiXi(0)

and

lim
t→∞

WN (t) =

N∑
i=0

εi
X

(i)
p (0)

(i+ 1)!
(−1)i

µi+1

µ1
=: s3.

As we do not want the inner expansion to interfere with the outer expansion, we
gather the powers of ε and define the initial conditions of the outer expansion so that

lim
t→∞

(YN (t) + ZN (t) +WN (t)) = 0

which then gives :
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Theorem 1. The macroscopic Ansatz should be given the initial conditions : for
m = 0, X0(0) = Xp(0) while for m ∈ {1, . . . , N − 1}

µ1Xm(0) = (−1)mX(m)
p (0)

µm+1

((m+ 1)!)
−

m−1∑
q=0

X(m−q)
q (0)

µm−q+1

(m− q + 1)!

+

m∑
q=1

q∑
k=1

(−1)k+1

(m− q + 1)!k!
X

(k+m−q)
q−k (0)µm−q+k+1.

3.3. Error estimates. In this section, we give an error estimate between Xε,
the solution of

(3.20)


1

ε

∫
R+

(Xε(t)−Xε(t− εa)) ρ(a)da = f(t), t > 0,

Xε(t) = Xp(t) t ≤ 0,

and the asymptotic expansion X̃ε,N given by (3.1). This result is based on the ap-
plication of a comparison principle [4, Chap. 9, Section 8] and the construction of a

super solution UN such that UN ≥
∣∣∣Xε − X̃ε,N

∣∣∣ and UN ≲ εN . The following lemma

is required in order to apply the latter comparison principle :

Lemma 4. Under the Assumptions 1, Kε(ã) :=
1

εµ0
ϱ
(
ã
ε

)
satisfies :

∥Kε∥B∞(0,T ) := ess sup
t∈(0,T )

∫ t

0

|Kε(ã, t)| dã < 1.

Proof. For almost every t ∈ (0, T ),

(3.21) 0 ≤
∫ t

0

|Kε(ã, t)| dã =

∫ t
ε

0
ϱ(a) da∫

R+
ϱ(a) da

≤
∫ T

ε

0
ϱ(a) da∫

R+
ϱ(a) da

.

But, by definition, for every fixed ε there exists a compact set M ⊂ (T/ε,∞) such
that ϱ(a) > 0 for almost every a ∈ M so that∫

R+

ϱ(a)da−
∫ T

ε

0

ϱ(a) da =

∫ ∞

T
ε

ϱ(a)da ≥
∫
M

ϱ(a)da > 0.

which ends the proof.

Theorem 2. Suppose that Assumptions 1 holds, then :∥∥∥Xε − X̃ε,N

∥∥∥
C([0,T ])

≲ εN .

where X̃ε,N is defined in (3.1) and Xε solving (3.20).

Proof. First, we consider the zero order approximation (i.e. N = 1). We denote
X̂1 := Xε − X̃ε,1, it solves :

Lε[X̂1] = S1 :=

3∑
i=1

S1,i,
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where |S1| ≤ εK1 (see estimates (3.14), (3.16) and (3.18) for N = 1). We construct a
super-solution U1 such that

Lε

[∣∣∣X̂1

∣∣∣] ≤ Lε[U1], and
∣∣∣X̂1(0)

∣∣∣ ≤ U1(0).

We set
U1(t) := ε (c1 + tc2 − εc3w̃1(t)) ,

where w̃1 solves (3.11) with ℓ = 1. As the resolvent associated to (3.11) is non-
negative, applying the comparison principle [5, Propostion 8.1 and Lemma 8.2], shows
that w̃1(t) ≤ 0 for t > 0. Then

Lε[U1] = c1Ξ0,0(t) + εc2µ1 + c2

∫ ∞

t
ε

(t− εa)ϱ(a)da− εc3Lε[w̃1]

= c1Ξ0,0(t) + εc2µ1 + εc2

∫ ∞

t
ε

(
t

ε
− a

)
ϱ(a)da− εc3

∫ ∞

t
ε

(
t

ε
− a

)
ϱ(a)da ≥ εc2µ1.

The last inequality being true when c1 ≥ 0 and c2 = c3. Then, one tunes c2 ≥ K1/µ1

so that
Lε

[∣∣∣X̂1

∣∣∣] ≤ |S1| ≤ εK1 ≤ εµ1c2 ≤ Lε[U1],

and the constant c1 is chosen such that
∣∣∣X̂1(0)

∣∣∣ ≤ εc1 ≤ εc1 + ε2c3
µ1

µ0
= U1(0).

More generally, for any N , one sets UN := εN (c1 + c2t − εc3w̃1) and the result

follows the same : choosing c1 :=
∣∣∣X̂N (0)

∣∣∣, c2 := KN/µ1 where |SN | ≤ εNKN and

c3 = c2.

4. The kernel is time-dependent.

Assumptions 2. Assume the kernel ρε solves (1.2) and that the data satisfies :
a) the off-rate ζ is in C([0, T ];L∞(R+)) and there exists a non-increasing m ∈

L1(R+; (1 + a)3) such that

−m′(a)

m(a)
≤ ζ(a, t) ≤ ζmax, a.e. a ∈ R+.

b) the birth-rate β ∈ C(R+) is such that

0 < βmin ≤ β(t) ≤ βmax.

c) the initial condition ρI ∈ BV (R+) ∩ L∞(R+) ∩ L1(R+, (1 + a)3) satisfies

ρI ≤ cm(a), for almost every a ∈ R+.

Whereas Xε solves (1.1) and the data satisfy
d) the source term f belongs to C2(R+).

4.1. The linkages’ asymptotic expansion. Now we assume that ρε solves
the ε, t, a-dependent problem (1.2). We introduce its first order (with respect to ε)
asymptotic approximation :

(4.1) ρ̃ε(a, t) := ρ0(a, t)− r̃0(a, t)− ερ1(a, t)

where ρ0 is the zeroth order macroscopic limits given by (1.4), ρ1 is the first order
macroscopic limits given by (1.8) and r̃0 := r0(a, t/ε) where the initial layer r0 solve
(1.9).
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4.1.1. Outer expansions of ρε.

Proposition 4. Let Assumptions 2 hold, then there exists generic constants cj >
0 and cj,1 > 0, such that ρ0 (resp. ρ1) solution of (1.4) (resp. (1.8)) satisfies

|ρj(a, t)| ≤ cj(1 + a)2jm(a), for j ∈ {0, 1}.

In a generic way, for all j ∈ {0, 1} and k ∈ N, if ζ ∈ W k,∞(R+ × R+) then :∣∣∂k
tkρj(a, t)

∣∣ ≤ cj,k(1 + a)2j+km(a).

The proof uses equations (1.4) and (1.8) together with Assumptions 2 and is postponed
to Appendix B.

4.1.2. The initial layer. One considers the problem (1.9) and defines x(t) :=
r0(0, t), then by using Duhamel’s principle this problem can be rewritten as

(4.2)



x+ k ⋆ x = b,

k(a) := β exp

(
−
∫ a

0

ζ(τ, 0)dτ

)
,

b(t) := −β

∫ ∞

t

r0(a− t, 0) exp

(
−
∫ a−t

a

ζ(τ, 0)dτ

)
da.

As a consequence of the Paley-Wiener theorem [4, Theorem 4.1] and the fact that k
is a decreasing function of a, [4, p.264] :

Theorem 3. If k is a decreasing non-negative kernel such that k ∈ L1(R+), then
the resolvent associated to (1.9) satisfies : r + r ⋆ k = k and r ∈ L1(R+).

Proposition 5. Let Assumptions 2 hold. If moreover, r0(·, 0) ∈ L1(R+, (1+a)2)
and that there exists a constant c > 0 such that

r0(a, 0) ≤ cm(a),

then x = r0(0, ·) ∈ L1
t (R+; (1 + t)2) ∩ L∞(R+) and

r0 ∈ L1(R+ × R+; (1 + a)),

and there exists another constant c′ > 0 such that

r0(a, t) ≤ c′m(a).

Proof. Using the Assumption 2.a) on ζ and on the data, one has

|b(t)| ≤ β

∫ ∞

t

r0(a− t, 0)
m(a)

m(a− t)
da ≤ c

∫ ∞

t

m(a)da

which is bounded since m ∈ L1(R+) and it is also integrable because so is the first
moment of m. Writing then that

x = b− r ⋆ b

and since L1 is an algebra for the convolution, x ∈ L1(R+). Because, b is bounded
and r ∈ L1, x ∈ L∞(R+) as well. Then in a similar way, using Duhamel’s principle,
one has :

r0(a, t) :=

{
r0(0, t− a) exp

(
−
∫ a

0
ζ(ã, 0)dã

)
, if t > a,

r0(a− t, 0) exp
(
−
∫ a

a−t
ζ(ã, 0)dã

)
, otherwise ,
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so that

|r0(a, t)| ≤

{
∥x∥L∞

m(a)
m(0) , if t > a,

|r0(a−t,0)|
m(a−t) m(a) ≤ cm(a), otherwise ,

which gives c′ in the last estimates of the claim. Next we consider :∫
R+

|r0(a, t)|da ≤
∫ t

0

|r0(0, t− a)| exp
(
−
∫ a

0

ζ(ã, 0)dã

)
da

+

∫ ∞

t

|r0(a− t, 0)| exp
(
−
∫ a

a−t

ζ(ã, 0)dã

)
da

≤
∫ t

0

|r0(0, t− a)| m(a)

m(0)
da+

∫ ∞

t

r0(a− t, 0)
m(a)

m(a− t)
da

=
1

m(0)

{
(|r0(0, ·)| ⋆ m) (t) +

∫
R+

|r0(ã, 0)|
m(ã)

m(ã+ t)dã

}

=
1

m(0)
(|x| ⋆ m) (t) + c

∫ ∞

t

m(a)da

Then using that L1(R+) is an algebra for the convolution, and that m ∈ L1(R+, (1 +
a)), one concludes that∫

R+

∫
R+

r0(a, t)dadt <
∥m∥L1(R+,(1+a))

m(0)

(
∥r0(0, ·)∥L1(R+) + cm(0)

)
the same holds for the first moment as well.

Setting q1(a, t) := tr0(a, t) and y(t) := q1(0, t), one has

y(t) = −β(0)

∫ t

0

y(t− a) exp

(
−
∫ a

0

ζ(s, 0)ds

)
da

− β(0)

∫ t

0

ax(t− a) exp

(
−
∫ a

0

ζ(s, 0)ds

)
da

− β

∫ ∞

t

tr0(a− t, 0) exp

(
−
∫ a

a−t

ζ(s)ds

)
da

i.e. y + k ⋆ y = bx. Assuming that
∫
R+

(1 + a)2m(a)da < ∞ shows that bx ∈ L1(R+).

Then as above,∫ t

0

|q1(a, t)| da ≤
∫ t

0

(|q1(0, t− a)|+ a |x(t− a)|) exp
(
−
∫ a

0

ζ(s, 0)ds

)
da

≤ C |q1(0, ·)| ⋆ m+ |x(0, ·)| ⋆ (·)m(·)

together with∫ ∞

t

|q1(a, t)| da ≤ t

∫ ∞

t

r0(a− t, 0) exp

(
−
∫ a

a−t

ζ(τ, 0)dτ

)
da ≤ tc

∫ ∞

t

m(a)da

both left-hand sides are then L1
t (R+) functions in time, provided thatm ∈ L1

a(R+, (1+
a)2). For the next step, one works similarly and obtains that∫

R+

∫
R+

t2r0(a, t)dadt < ∞

since m is in L1
a(R+, (1 + a)3).
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Corollary 1. Under the Assumptions 2, one has x(t) := r0(0, t) → 0 when t
grows large and the first moment can be estimated as follows :∫

R+

(1 + a) |r0(a, t)| da ≤ o(1) + c

∫ ∞

t

(1 + a)m(a)da,

where o(1) denotes small when t grows large.

Proof. Using Lyapunov’s functional (1.5), one has that∫
R+

|r0(a, t)| da ≤ ∞

which, thanks to the boundary condition, provides that x(t) is bounded on R+. This
shows using Duhamel’s principle that r0 ∈ L∞(R+ × R+). Moreover, defining the
discrete differences

Dh
t r0(a, t)r0 :=

r0(a, t+ h)− r0(a, t)

h

it solves the problem :

(4.3)



(∂t + ∂a + ζ(a, 0))Dh
t r0 = 0, a > 0, t > 0,

Dh
t r0(0, t) = −β(0)

∫
R+

Dh
t r0(a, t)da, a = 0, t > 0,

Dh
t r0(a, 0) =

r0(a, h)− r0(a, 0)

h
, a > 0, t = 0.

Thanks to Assumptions 2, one shows that r0(·, 0) ∈ BV (R+). Moreover, one has that∣∣Dh
t x(t)

∣∣ = ∣∣Dh
t r0(0, t)

∣∣ ≤ β(0)

∫
R+

∣∣Dh
t r0(a, t)

∣∣ da ≤ β(0)H[Dh
t r0(a, t)]

similarly as [6, Theorem 3.2], by using Gronwall’s Lemma, we obtain that

H[Dh
t r0(·, t)] ≤ H[Dh

t r0(·, 0)].

It suffices then to prove that the initial term H[Dh
t r0(·, 0)] is bounded. Indeed, we

have

H[Dh
t r0(a, 0)] =

∫
R+

∣∣∣∣ r0(a, h)− r0(a, 0)

h

∣∣∣∣ da+

∣∣∣∣µr0(h)− µr0(0)

h

∣∣∣∣ := I1 + I2

where µr0(t) :=
∫
R+

r0(a, t)da. For the first term, we split the integral in two parts

I1 =

∫ h

0

∣∣∣∣ r0(a, h)− r0(a, 0)

h

∣∣∣∣ da+

∫ +∞

h

∣∣∣∣ r0(a, h)− r0(a, 0)

h

∣∣∣∣ da
=

1

h

∫ h

0

∣∣∣∣r0(0, h− a) exp

(
−
∫ a

0

ζ(ã, 0)dã

)
− r0(a, 0)

∣∣∣∣ da
+

1

h

∫ +∞

h

∣∣∣∣r0(a− h, 0) exp

(
−
∫ a

a−h

ζ(ã, 0)dã

)
− r0(a, 0)

∣∣∣∣ da =: I1,1 + I1,2

where we used Duhamel’s principle. It easy to see that the first term

I1,1 ≲
1

h

∫ h

0

da
(
|β(0)| ∥r0∥L∞

t L1
a
+ ∥r0(a, 0)∥L1(R+)

)
< ∞.
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Concerning I1,2, one splits the integral adding and subtracting intermediate terms

I1,2 ≤ 1

h

∫ +∞

h

∣∣∣∣(r0(a− h, 0)− r0(a, 0)) exp

(
−
∫ a

a−h

ζ(ã, 0)dã

)∣∣∣∣ da
+

1

h

∫ +∞

h

∣∣∣∣r0(a, 0) exp(−∫ a

a−h

ζ(ã, 0)dã

)
− r0(a, 0)

∣∣∣∣ da
≲ TV (r0(·, 0)) + C∥r0(a, 0)∥L1(R+)

where TV denotes total variation of r0(·, 0) [2]. For the second term I2 noting that

|∂tµr0(t)| ≤ (ζmax + βmax) ∥r0∥L∞
t L1

a
,

one obtains

I2 ≤ (ζmax + βmax) ∥r0∥L∞
t L1

a
,

and finally, we obtain that H[Dh
t r0(a, t)] < ∞, for all t > 0, which shows that x ∈

Lip(R+). Since x ∈ L1(R+) (see Proposition 5), this implies that limt→+∞ x(t) = 0.
Now, we consider

J(t) :=

∫ t

0

(1 + a) |r0(a, t)| da ≤
∫ t

0

|x(t− a)| (1 + a)m(a)da

=

(∫ t/2

0

+

∫ t

t/2

)
|x(t− a)| (1 + a)m(a)da =: J1 + J2.

For every δ > 0 there exists η1 such that t > η1,implying that

sup
s∈( t

2 ,t)

|x(s)| < δ(
2
∫
R+

(1 + a)m(a)da
)

which shows that J1 < δ/2. On the other hand, there exists η2 such that t > η2 which
implies that

J2 ≤ ∥x∥L∞(R+)

∫ t

t/2

(1 + a)m(a)da < δ/2,

by Lebesgue’s Theorem (since the integral of (1 + a)m(a) is finite). These arguments
show that J(t) vanishes when t grows large. On the other hand :∫ ∞

t

(1 + a) |r0(a, t)| da ≤ c

∫ ∞

t

(1 + a)m(a)da,

which is an initial layer.

4.1.3. Error estimates for the linkage’s density. We define the difference :
ρ̂ε(a, t) := ρε(a, t)− ρ̃ε(a, t) where ρ̃ε is defined by (4.1). We obtain :

Theorem 4. Under Assumptions 2, one has that

(4.4) H[ρ̂ε](t) ≤ oε(1), a.e. t ∈ R+

where H[u](t) :=
∫
R+

|u(a)| da+
∣∣∣∫R+

u(a)da
∣∣∣.
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Proof. We write the system satisfied by ρ̂ε :

(4.5)


(ε∂t + ∂a + ζ(a, t))ρ̂ε(a, t) = −ε (ζ(a, t)− ζ(a, 0)) r̃0(a, t)− ε2∂tρ1

ρ̂ε(0, t) =− β(t)

∫
R+

ρ̂ε(a, t)da− (β(t)− β(0))

∫
R+

r̃0(a, t)da

ρ̂ε(a, 0) = −ερ1(a, 0)

Then following the same steps as in [7], one has that

ε
d

dt
H[ρ̂ε](t) +

∫
R+

ζ(a, t)

{
|ρ̂ε(a, t)|+ ρ̂ε(a, t) sgn

(∫
R+

ρ̂ε(ã, t)dã

)}
da

≤ 2ε2
∫
R+

|∂tρ1(a, t)| da+ 2

∫
R+

|ζ(a, t)− ζ(a, 0)| |̃r0(a, t)| da

+ |β(t)− β(0)|
∫
R+

|̃r0(a, t)| da

which after integration in time provides :

H[ρ̂ε](t) ≤H[ρ̂ε](0) + 2ε

∫ t

0

∫
R+

|∂tρ1(a, s)| dads

+ 2

∫ t
ε

0

∫
R+

∣∣ζ(a, εt̃)− ζ(a, 0)
∣∣ ∣∣r0(a, t̃)∣∣ dadt̃

+ 2

∫ t
ε

0

∣∣β(εt̃)− β(0)
∣∣ ∫

R+

∣∣r0(a, t̃)∣∣ dadt̃.
Now, here the crucial point is that, thanks to Lebesgue’s Theorem, the last two terms
of the right-hand side do tend to zero as ε goes to zero.

Corollary 2. Let Assumptions 2 hold, then one has∫
R+

(1 + a) |ρε(a, t)− ρ0(a, t)| da ≤ oε(1) +

∫ ∞

t
ε

(1 + a)m(a)da.

Proof. Considering the system solved by the difference e(a, t) = ρε(a, t)− ρ0(a, t)

(4.6)



(ε∂t + ∂a + ζ(a, t))e(a, t) = ε∂tρ0(a, t), a > 0, t > 0,

e(0, t) = −β(t)

∫
R+

(ρε(ã, t)− ρ0(ã, t)− r̃0(ã, t)) da

− β(t)

∫
R+

r̃0(a, t)da, a = 0, t > 0,

e(a, 0) = ρI(a)− ρ0(a, 0), a > 0, t = 0.

It satisfies (4.6) in the sense of characteristics, namely

(4.7)

e(a, t) =


e (0, t− εa) exp(−

∫ 0

−a
ζ(a+ s, t+ εs)ds)+

+ε
∫ 0

−a
∂tρ0(a+ s, t+ εs) exp(−

∫ 0

s
ζ(a+ τ, t+ ετ)dτ)ds, a < t/ε,

e (a− t/ε, 0) exp(−
∫ 0

t/ε
ζ(a+ s, t+ εs)ds)+

+ε
∫ 0

−t/ε
∂tρ0(a+ s, t+ εs) exp(−

∫ 0

s
ζ(a+ τ, t+ ετ)dτ)ds, a > t/ε.
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One has that

(4.8)

∫ +∞

0

(1 + a)e(a, t)da =

∫ t/ε

0

(1 + a)e(a, t)da+

∫ +∞

t/ε

(1 + a)e(a, t)da

:= I1 + I2.

We treat each term separately because they correspond to the two cases of Duhamel’s
formula (4.7) :

I1(t) ≤
∫ t

ε

0

(1 + a) |e(0, t− εa)| exp
(
−
∫ 0

−a

ζ(a+ s, t+ εs)ds

)
da

+ ε

∫ t
ε

0

(1 + a)

∫ 0

−a

∂tρ0(a+ s, t+ εs) exp

(
−
∫ 0

s

ζ(a+ τ, t+ ετ)dτ

)
dsda.

Using Theorem 4 and Corollary 1, one has that :

|e(0, t− εa)| ≲ oε(1) +

∫ ∞

t
ε−a

m(a)da,

which thanks to Proposition 4 gives that

I1(t) ≤oε(1)

∫ t
ε

0

(1 + a)m(a)da+

∫ t
ε

0

(1 + a)m(a)

∫ ∞

t
ε−a

m(ã)dãda

+ εc0,1

∫
R+

(1 + a)3m(a)da,

using similar argument as in the proof of Corollary 1, one shows that∫ t
ε

0

(1 + a)m(a)da

∫ ∞

t
ε−a

m(ã)dãda ≤ oε(1),

since (1+a)m(a) is integrable and by Lebesgue’s Theorem
∫∞
t

m(a)da → 0 as t grows
large. On the other hand,

I2 ≤
∫ ∞

t
ε

(1 + a)

∣∣∣∣e(a− t

ε
, 0)

∣∣∣∣ exp
(
−
∫ 0

− t
ε

ζ(a+ s, t+ εs)ds

)
da

+ ε

∫ ∞

t
ε

(1 + a)

∫ 0

− t
ε

|∂tρ0(a+ s, t+ εs)| exp
(
−
∫ 0

s

ζ(a+ τ, t+ ετ)dτ

)
dsda

≤ c

∫ ∞

t
ε

(1 + a)m(a)da+ ε

∫
R+

(1 + a)3m(a)da.

4.2. Convergence results for the position.

Theorem 5. Under Assumptions 2, if ρε is a solution of (1.2), ρ0 solves (1.4),
Xε is a solution of (1.1) and X0 solves (3.4) then

∥ρε − ρ0∥L1((0,T );L1(R+,(1+a))) ≤ oε(1), ∥Xε −X0∥C([0,T ]) ≤ oε(1).
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Proof. Setting uε(a, t) := Xε(t)−Xε(t− εa) where Xε(t) = Xp(t) when t < 0, uε

solves in a weak sense [8] :
(4.9)

(ε∂t + ∂a)uε = ∂tXε =
1

µ0,ε

{
ε∂tf +

∫
R+

uε(a, t)ζ(a, t)ρε(a, t)da

}
, a > 0, t > 0,

uε(0, t) = 0, a = 0, t > 0,

uε(a, 0) = uI(a) :=
Xε(0)−Xp(−εa)

ε
, a > 0, t = 0,

since problem (1.1) can be expressed in a integro-differential equation :

µ0,ε(t)∂tXε = ε∂tf +

∫
R+

(
Xε(t)−Xε(t− εa)

ε

)
ζ(a, t)ρε(a, t)da.

Following [8, Theorem 6.1], one has that∫
R+

|uε(a, t)|ρε(a, t)da ≤
∫ t

0

|∂tf(τ)| dτ + |f(0)|+ LXpµ1,max =: c1

Moreover, one has also the bound :

∥∂tXε∥L∞(0,T ) ≤
1

µ0,min

{
ε∥∂tf∥L∞(0,T ) + ζmaxc1

}
=: c2

which provides thanks to Ascoli-Arzella that there exists a converging sub-sequence
Xε in C([0, T ]). Moreover, it t > εa, using Duhamel’s principle,

|uε(a, t)| ≤
1

ε

∫ t

t−εa

|∂tXε(τ)| dτ ≤ c2a

whereas if t < εa, by similar arguments,

|uε(a, t)| ≤
t

ε
c2 +

∣∣∣∣ f(0)µ0,min

∣∣∣∣+ LXp

µ1,max

µ0,min

Thus, uε(a, t)/(1 + a) ∈ L∞(R+ × 0, T ) uniformly with respect to ε. These results
provide that uε weak-* converges in L∞(R+× (0, T ); (1+ a)−1) to u0 a weak solution
of

(4.10)


∂au0 = ∂tX0 =

1

µ0,0

∫
R+

u0ζ(a, t)ρ0(a, t)da

u0(0, t) = 0

which shows that u0(a, t) = aX0(t). Since (1.1) reads as

Aε :=

∫ T

0

∫
R+

uε(a, t)ρε(a, t)daφ(t)dt =

∫ T

0

f(t)φ(t)dt, ∀φ ∈ L1(0, T ),

ans since ∂tXε
⋆
⇀∂tX0 weak-⋆ in L∞(0, T ) together with

ρε → ρ0 in L1(R+ × (0, T ); (1 + a)), uε
⋆
⇀u0 in L∞(R+ × (0, T ); (1 + a)−1)

one concludes that

Aε →
∫ T

0

∫
R+

u0(a, t)ρ0(a, t)daφ(t)dt =

∫ T

0

µ0,1(t)∂tX0(t)φdt =

∫ T

0

f(t)φ(t)dt.
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j

i

N

(N
+
1)

(3−
N
)1

N

1

N − 10

m
=
i+

j

n
=
i−

j +
1

n
=
2N

+
1−

m

n
=
m
−
2N

+
3

Fig. A.1: The index change from (i, j) to (m,n) (here as an example N = 5).

Appendix A. Some summations over integers.

Proposition 6. Assume that N ≥ 2, and define the sum S as follows

S :=

N∑
i=1

i∑
k=1

N−k∑
j=0

ai,j,k

where ai,j,k is a sequence of real numbers, then this sum is in fact equal to

S =

 N∑
m=1

m∑
q=1

q∑
k=1

+

2N−1∑
m=N+1

N∑
q=m+1−N

q+N−m∑
k=1

 aq,m−q,k

Proof. We separate the case where i < N and the case where i = N . In the first
case, one has, by the following computation, that

s :=

N−1∑
i=1

i∑
k=1

N−k∑
j=0

ai,j,k =

N−1∑
i=1

N−i−1∑
j=0

i∑
k=1

ai,j,k +

N−1∑
i=1

N−1∑
j=N−i

N−j∑
k=1

ai,j,k,

because{
0 ≤ j ≤ N − i− 1, k ∈ {1, . . . , i} ⇒ k ∈ {1, . . . ,min(i,N − j)},
N − i ≤ j ≤ N − 1, k ∈ {1, . . . , N − j} ⇒ k ∈ {1, . . . ,min(i,N − j)}.

One has that

s =

N−1∑
i=1

N−1∑
j=0

min(i,N−j)∑
k=1

ai,j,k.

On the other hand, when i = N , a simple check shows that

s′ :=

N∑
k=1

N−k∑
j=0

aN,j,k =

N−1∑
j=0

N−j∑
k=1

aN,j,k,
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and then one remarks simply that min(i = N,N − j) = N − j which gathering the
terms gives that

S = s+ s′ =

N∑
i=1

N−1∑
j=0

min(i,N−j)∑
k=1

ai,j,k.

The previous sum can be rewritten as :

S =

(
N∑

m=1

m+1∑
n=3−m

+

2N−1∑
m=N+1

2N−m+1∑
n=m−2N+3

)
min(i,N−j)∑

k=1

ai(m,n),j(m,n),kχ{m,n∈N2}(m,n),

where m := i+ j and n := i− j + 1 and the inverse transform should provide integer
values i(m,n) and j(m,n) (see Fig. A.1). When m > N , one needs to bound the
summation on n in an interval depending on m (see Fig. A.1). Indeed, when i = N ,
we write :

n = N − j + 1, m = N + j, ⇒ n = 2N −m+ 1,

while if j = N − 1,

n = i−N + 2, m = i+N − 1, ⇒ n = m− 2N + 3,

a simple check shows that n ≤ 2N − 1 ⇔ m− 2N + 3 ≤ 2N −m+ 1.
Then since the indicatrix function is not zero when [n+m− 1]2 = 0, there exists

q ∈ Z such that

n+m− 1 = 2q ⇔ n = 1 + 2q −m

so that the summation with respect to n can be exchanged with a summation over q.
When n ∈ {3−m,m+1}, q ∈ {1,m}, and similarly when n ∈ {m−2N+3, 2N−m+1},
q ∈ {m+1−N,N}. Moreover q = i and j = m−q. Thus the previous sum becomes :

S =

 N∑
m=1

m∑
q=1

+

2N−1∑
m=N+1

N∑
q=m+1−N

min(q,N−(m−q))∑
k=1

aq,m−q,k

Since min(q, q+N−m) = q+min(0, N−m) = q as soon as m ≤ N this gives the first
term. Ifm ∈ {N+1, . . . , 2N−1}, then N−m ≤ −1 and min(q, q+N−m) = q+N−m
which ends the proof.

Proposition 7. In the same way as above

S′ :=

N−1∑
i=0

N−i∑
j=1

ai,j =

N∑
m=1

m−1∑
q=0

aq,m−q

Proof. Again we perform the change of variables m = i + j and q = i and we
proceed as above.

Appendix B. Proof of Proposition 4.

Proof. First, for j = 0, ρ0 is explicitly given by

ρ0(a, t) = ρ0(0, t) exp

(
−
∫ a

0

ζ(ã, t)dã

)
≤ ρ0(0, t)

m(a)

m(0)
≤ βmaxζmax

ζmax + βmin

m(a)

m(0)
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which gives c0. Similarly, ∂tρ0(a, t) it is explicit and reads :

∂tρ0(a, t) = ∂tρ0(0, t) exp

(
−
∫ a

0

ζ(ã, t)dã

)
−
∫ a

0

exp

(
−
∫ a

τ

ζ(ã, t)dã

)
∂tζ(τ, t)ρ0(τ, t)dτ,

where

∂tρ0(0, t) =
g(t)

1 + β(t)
∫ +∞
0

exp
(
−
∫ a

τ
ζ(ã, t)dã

)
da

and

g(t) = β′(t) (1− µ0(t))

∫ +∞

0

exp

(
−
∫ a

τ

ζ(ã, t)dã

)
da

−
∫ +∞

0

∫ a

0

exp

(
−
∫ a

τ

ζ(ã, t)dã

)
∂tζ(τ, t)ρ0(τ, t)dτda.

So that

|∂tρ0(a, t)| ≤ |∂tρ0(0, t)|
m(a)

m(0)
+m(a)∥ζ∥W 1,∞

∫ a

0

ρ0(τ, t)

m(τ)
dτ ≤ (k1 + k2a)m(a)

≤ c′(1 + a)m(a)

where

k1 := C

(
ζmax

βmax + ζmax
, ∥β∥W 1,∞ , ∥m∥L1(R+), ∥ζ∥W 1,∞

)
, k2 = c0

∥ζ∥W 1,∞

m(0)

and c0,1 := max(k1, k2). Now, for j = 1, ρ1 can be given explicitly by

ρ1(a, t) = ρ1(0, t) exp

(
−
∫ a

0

ζ(ã, t)dã

)
−
∫ a

0

exp

(
−
∫ a

τ

ζ(ã, t)dã

)
∂tρ0(τ, t)dτ,

where

ρ1(0, t) =
h(t)

1 + β(t)
∫ +∞
0

exp
(
−
∫ a

τ
ζ(ã, t)dã

)
da

such that

|h(t)| =

∣∣∣∣∣
∫
R+

∫ a

0

exp

(
−
∫ a

τ

ζ(ã, t)dã

)
∂tρ0(τ, t)dτda

∣∣∣∣∣
≤
∫
R+

∫ a

0

m(a)

m(τ)
|∂tρ0(τ, t)| dτda ≤ c0,1

∫
R+

(1 + a)2m(a)da,

and finally, we obtain that

|ρ1(a, t)| ≤ k′1
m(a)

m(0)
+

∫ a

0

c0,1(1 + τ)m(a)dτ ≤ max(k′1, c0,1)(1 + a)2m(a)

where

k′1 := C

(
ζmax

βmax + ζmax
,

∫
R+

(1 + a)2m(a)da

)
.
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Similarly, we can prove that

|∂tρ1| ≤ c1,1(1 + a)3m(a),

and the generic way can be deduced by induction.
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