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Modelling and simulation of fibrous biological tissues via dscrete homog-
enization methods

Denis Cailleriet, Vuk Mili 8ic2*, Ayman Mourad?, andAnnie Raoult*

1 35-R, UMR CNRS-UJF-INPG 5521 Domaine Universitaire, BP8A. Grenoble Cedex 9

2 LIK-IMAG, UMR CNRS-UJF-INPG 5523, B. P. 53, 38041 Grenobled€x 9

3 Université libanaise and Lebanese International UnitseBeyrouth

4 MAP5, Université Paris Descartes and CNRS, 45 rue dessSRares, 75270 Paris Cedex 06

Thanks to their geometrical organization at the cell leseft biological tissues can be modelled from the mecharmoadt

of view as multidimensional networks of elastic bars. Thegtl of the bars is supposed to be small with respect to tleeo$iz
the macroscopic medium. We introduce a detailed descnitidhe overall structure accounting both for the tensiams t

the bars and for the moments between pairs of bars. Using-peasdicity hypotheses, we apply a discrete homogeitmat
technique, [1]. We derive a continuous homogenized mechhtaw in the large transformation setting. We describe the
basic principles of this approach that was first introducethé cardiac modelling context in [2]. In a last step we pneds
implementation in a finite element framework. We commenteaspects of our numerical results.
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1 Introduction

We are interested in the mechanical behavior of musclesrugxdernal load. Such living tissues are characterized by th
presence of structures with separate scales that confeeno anisotropic features. While the skeleton muscles pteggte
trivial fiber orientation (aligned with the bones), someang — the heart muscle for instance — do not. In this particalse,
the specific geometrical distribution of fibers inside theoegrdium is still under investigation [3, 4]. From the mduig
point of view, mechanical elastic energy densities arenofterived empirically and “tuned” via macroscopic meas\isgs

In most of them the anisotropy resulting from the fibers igtakto account. We present here a first attempt in inferieg th
constitutive myocardium modelling from the cell level. Tissue is seen as a discrete network. Each bar in the nesdtand
a cell that is a constitutive contractile part of a fiber ti@turn, is a constitutive part of the muscle. In this way aadiggion

of the mechanical behavior of a single myocyte or of adjacgywcytes, when experimentally available, will be suffitien
to provide a macroscopic mechanical description of the wivehtricle. In the first section of this paper we introduce th
discrete network and we derive the homogenized continu@aascopic system obtained — roughly speaking — by letting
the bar length go t6. We introduce the finite element discretization of the peabin the large deformation context. The
structure of the homogenized law, which is an implicit lagquires the use of numerical procedures at the cell leveleide
by commenting some numerical results in 3D obtained by a horage development of the softwatentinu [6].

2 Discrete muti-scale homogenization

Let a network with nodegésp. bars) labelled by a se¥ (resp. B) be given. LeR : N/ — R? be the position of its nodes
under the action of loadsapplied on the nodes. As bars remain straight, the overaitipo of the lattice is then known. We
write down the balance of forces at each nadend the balance of moments for eachhaFhen we put these equations under
a weak discrete form by multiplying the force equatioresf. moment equations) by virtual discrete diplacemant&esp.

by virtual rotations), and by summing over nodes and barss [€ads to the following discrete virtual power formulatio

STNBEAVE 4+ Y Mt [AP<5>BD<5> CAvP@ 4 AP@OBPE) AvD@} + 3 (7)) - v(7) =0
beB cec neN

where, in the first termB? = R(E(b)) — R(O(b)) is the deformed position of the bawith origin nodeO(b) and end node
E(b), Avb = =v(0(b)) —ng( ), andN? is the axial tension in bdrdivided by the deformed bar length. From the objectivity

principle, we know thaiV® reduces to a function of the bar length. In the second térmymbers the bar interactions/° is
the quotient of the modulus of the moment vector between tteracting bard”(¢) and D(¢) (which, from the objectivity
principle, depends only on the scalar product of the unitarsof the bars in their deformed position) by the produdhefr

lengths. FinallyA® = e’ @ e? — Id wheree? = Bb/||Bb|| Now we suppose that the network of bars is periodic: it isuvietd
by the repetition of a reference pattern consisting of adinitmber of nodes and bars. In the global network, each nade ca
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be labelled by an index € Z? that numbers the repeted pattern the node belongs to anddmalecbordinate: € B that
numbers the node inside this repeted cell. Similar desariptapply to bars and bar interactions. For instahee 3z counts
the number of bars in the elementary pattern. We let the Ipatihe go to0 and we perform an asymptotic expansion of the
node positions. The claimed expansions depend on the indeX/z, they infer expansions on the vectd@$ and altogether
give the usual cascade of equations in the homogenizatitiexio We denote by the slow variablev, see [1].

The zeroth order terms inimply that the zeroth order terms of the positions do not ddpm the fast variable. The first
order term provides the microscopic cell problem which rieimdiscrete and reads

> ON'BYAVP+ Y Me[APBP - AvP + APBP - AvP] =0, whereB® = AR} + V \Rqd", 1)
beBRr ceCr
ands? are vectors with integer entries related to the numberirigped connecting distinct cells. We summarize this equation
under the formu (R, 9\Ro)= 0. It is an implicit equation that provides the increment®afin terms of the gradient dR.

Note that the redefinition dB® comes from the first order asymptotic expansion and is typithomogenization Anzats.
The second order terms érprovide the macroscopic continuous equation that reads:

/ S Vavd\ = / f-vd\ whereS= > N'B'@d"+ Y M°[A"B” @s” + APB" 06"]. (2)
R4 R4 beBr ceCr

The nonlinear homogenization process contains two steysn @ macroscopic strain gradietR,, one solves (1) in order
to defineR,; at each point oR?, this is then used in order to compute the stress te®iguor the macroscopic scale by solving

().

3 FEM Multi-scale Newton method

Both the micro and the macro equations are nonlinear, sontbatse Newton methods at each scale in order to compute a
numerical solution. In the continuous setting, there aegteps in our algorithm: set= 0, then
1. at the microscopic level, at each pole R¢, one solves iteratively
ou

or; (Bi" — RY) + a(RY, VaRg) = 0, until XNj IRE™H" = RY™|| < tol, (3)
neENR

for a givenV,R2,

2. atthe macroscopic level, one performs a single resalditiva fixedp

< tol,,

/ 95 (VARE™ = VARG) : Vvar + | S(ORE): VvdA= [ f-vax, uni HVAR{;“ — VAR? <
R Rd L2(R4)

a OF Rd

whereF" denotes the strain gradiem{Ry. Then one returns tb and increments.

We discretize the problem in the finite element frameworlhwétrahedra and?, elements. Since the application we aim
at is the heart contraction, we add a pressure force impostitetinormal direction to an interior surface, this gives tis
additional nonlinear terms that participate to the lineedistiffness matrix at the macroscopic level.

4 Results & perspectives

We observe a very sensitive behavior of the multi-scale @atterespect to the pressure load. The method of incremkradl
was necessary in order to avoid either numerical divergengery slow convergence in the microscopic iterations. refid
analysis of the spectrum of the linearized stiffness masriwhen solving (3) reveals a buckling phenomenon occuiming
compression zones of the computational domain. The negtddt®ur approach consists in studying stability issues by
varying the geometry of the reference pattern and by testngral values of the underlying physical constants.
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