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Modelling and simulation of fibrous biological tissues via discrete homog-
enization methods
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3 Université libanaise and Lebanese International University, Beyrouth
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Thanks to their geometrical organization at the cell level,soft biological tissues can be modelled from the mechanicalpoint
of view as multidimensional networks of elastic bars. The length of the bars is supposed to be small with respect to the size of
the macroscopic medium. We introduce a detailed description of the overall structure accounting both for the tensions due to
the bars and for the moments between pairs of bars. Using quasi-periodicity hypotheses, we apply a discrete homogenization
technique, [1]. We derive a continuous homogenized mechanical law in the large transformation setting. We describe the
basic principles of this approach that was first introduced in the cardiac modelling context in [2]. In a last step we present its
implementation in a finite element framework. We comment some aspects of our numerical results.
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1 Introduction

We are interested in the mechanical behavior of muscles under external load. Such living tissues are characterized by the
presence of structures with separate scales that confer to them anisotropic features. While the skeleton muscles present quite
trivial fiber orientation (aligned with the bones), some organs – the heart muscle for instance – do not. In this particular case,
the specific geometrical distribution of fibers inside the myocardium is still under investigation [3, 4]. From the modelling
point of view, mechanical elastic energy densities are often derived empirically and “tuned” via macroscopic measures[5].
In most of them the anisotropy resulting from the fibers is taken into account. We present here a first attempt in infering the
constitutive myocardium modelling from the cell level. Thetissue is seen as a discrete network. Each bar in the net stands for
a cell that is a constitutive contractile part of a fiber that,in turn, is a constitutive part of the muscle. In this way a description
of the mechanical behavior of a single myocyte or of adjacentmyocytes, when experimentally available, will be sufficient
to provide a macroscopic mechanical description of the whole ventricle. In the first section of this paper we introduce the
discrete network and we derive the homogenized continuous macroscopic system obtained – roughly speaking – by letting
the bar length go to0. We introduce the finite element discretization of the problem in the large deformation context. The
structure of the homogenized law, which is an implicit law, requires the use of numerical procedures at the cell level. Weend
by commenting some numerical results in 3D obtained by a home-made development of the softwareContinu [6].

2 Discrete muti-scale homogenization

Let a network with nodes (resp. bars) labelled by a setN (resp. B) be given. LetR : N 7→ R
d be the position of its nodes

under the action of loadsf applied on the nodes. As bars remain straight, the overall position of the lattice is then known. We
write down the balance of forces at each nodeñ and the balance of moments for each barb̃. Then we put these equations under
a weak discrete form by multiplying the force equations (resp. moment equations) by virtual discrete diplacementsv, (resp.
by virtual rotations), and by summing over nodes and bars. This leads to the following discrete virtual power formulation:

∑

b̃∈B

N b̃
B

b̃ · ∆v
b̃ +

∑

c̃∈C

M c̃
[

AP (c̃)
B

D(c̃) · ∆v
P (c̃) + AD(c̃)

B
P (c̃) · ∆v

D(c̃)
]

+
∑

ñ∈N

f(ñ) · v(ñ) = 0

where, in the first term,Bb̃ = R(E(b̃)) − R(O(b̃)) is the deformed position of the barb̃ with origin nodeO(b̃) and end node
E(b̃), ∆v

b̃ = v(O(b̃))−v(E(b̃)), andN b̃ is the axial tension in bar̃b divided by the deformed bar length. From the objectivity
principle, we know thatN b̃ reduces to a function of the bar length. In the second term,C numbers the bar interactions,M c̃ is
the quotient of the modulus of the moment vector between two interacting barsP (c̃) andD(c̃) (which, from the objectivity
principle, depends only on the scalar product of the unit vectors of the bars in their deformed position) by the product oftheir
lengths. Finally,Ab̃ = e

b̃⊗e
b̃−Id whereeb̃ = B

b̃/‖Bb̃‖. Now we suppose that the network of bars is periodic: it is obtained
by the repetition of a reference pattern consisting of a finite number of nodes and bars. In the global network, each node can
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be labelled by an indexν ∈ Z
d that numbers the repeted pattern the node belongs to and by a local coordinaten ∈ BR that

numbers the node inside this repeted cell. Similar descriptions apply to bars and bar interactions. For instance,b ∈ BR counts
the number of bars in the elementary pattern. We let the bar lengthǫ go to0 and we perform an asymptotic expansion of the
node positions. The claimed expansions depend on the indexn ∈ NR, they infer expansions on the vectorsB

b̃ and altogether
give the usual cascade of equations in the homogenization context. We denote byλ the slow variableǫν, see [1].

The zeroth order terms inǫ imply that the zeroth order terms of the positions do not depend on the fast variablen. The first
order term provides the microscopic cell problem which remains discrete and reads

∑

b∈BR

N b
B

b · ∆v
b +

∑

c∈CR

M c
[

AP
B

D · ∆v
P + AD

B
P · ∆v

D
]

= 0, whereBb = ∆R
b
1 + ∇λR0δ

b, (1)

andδb are vectors with integer entries related to the numbering ofbars connecting distinct cells. We summarize this equation
under the formµ(R1, ∂λR0)= 0. It is an implicit equation that provides the increments ofR1 in terms of the gradient ofR0.
Note that the redefinition ofBb comes from the first order asymptotic expansion and is typical of homogenization Anzats.
The second order terms inǫ provide the macroscopic continuous equation that reads:

∫

Rd

S · ∇λvdλ =

∫

Rd

f · v dλ, whereS =
∑

b∈BR

N b
B

b ⊗ δb +
∑

c∈CR

M c
[

AP
B

D ⊗ δP + AD
B

P ⊗ δD
]

. (2)

The nonlinear homogenization process contains two steps; given a macroscopic strain gradient∂λR0 one solves (1) in order
to defineR1 at each point ofRd, this is then used in order to compute the stress tensorS on the macroscopic scale by solving
(2).

3 FEM Multi-scale Newton method

Both the micro and the macro equations are nonlinear, so thatwe use Newton methods at each scale in order to compute a
numerical solution. In the continuous setting, there are two steps in our algorithm: setp = 0, then

1. at the microscopic level, at each pointλ ∈ R
d, one solves iteratively

∂µ

∂R1
(Rk+1

1 − R
k
1) + µ(Rk

1 ,∇λR
p
0) = 0, until

∑

n∈NR

‖Rk+1,n
1 − R

k,n
1 ‖ < tolµ (3)

for a given∇λR
p
0,

2. at the macroscopic level, one performs a single resolution for a fixedp
∫

Rd

∂S

∂F

(

∇λR
p+1
0 −∇λR

p
0

)

: ∇vdλ +

∫

Rd

S(∂λR
p
0) : ∇vdλ =

∫

Rd

f · vdλ, until
∥

∥

∥
∇λR

p+1
0 −∇λR

p
0

∥

∥

∥

L2(Rd)
≤ tolm

whereF denotes the strain gradient∂λR0. Then one returns to1 and incrementsp.

We discretize the problem in the finite element framework with tetrahedra andP2 elements. Since the application we aim
at is the heart contraction, we add a pressure force imposed in the normal direction to an interior surface, this gives rise to
additional nonlinear terms that participate to the linearized stiffness matrix at the macroscopic level.

4 Results & perspectives

We observe a very sensitive behavior of the multi-scale codewith respect to the pressure load. The method of incrementalload
was necessary in order to avoid either numerical divergenceor very slow convergence in the microscopic iterations. A careful
analysis of the spectrum of the linearized stiffness matrices when solving (3) reveals a buckling phenomenon occurringin
compression zones of the computational domain. The next step of our approach consists in studying stability issues by
varying the geometry of the reference pattern and by testingseveral values of the underlying physical constants.
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