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INITIAL LAYER ANALYSIS FOR A LINKAGE DENSITY
IN CELL ADHESION MECHANISMS ∗

Vuk Milisic1

Abstract. In this paper we present a non local age structured equation involved in cell motility
modeling [4, 8, 10]. It models the evolution of a density of linkages of a point submitted to adhesion.
It depends on an asymptotic parameter ε representing the characteristic age of linkages. Here we
introduce a new initial layer term in the asymptotic expansion wrt ε. This improves error estimates
obtained in [4]. Moreover, we study the convergence of the time derivative of this density and show how
a singular term appears when ε goes to zero. We show convergence, in the tight topology of measures,
to the time derivative of the limit solution and a Dirac mass supported on the initial half-axis. In
order to illustrate theoretical results, direct numerical simulations are performed and compared to the
asymptotic expansion for various values of ε.

Résumé. Dans cet article, nous analysons un problème structuré en âge avec un terme non local de
saturation. Ce problème apparait dans la modélisation de la motilité et des mécanismes d’adhérence
cellulaires [4, 8, 10]. L’équation dépend d’un paramètre asymptotique ε représentant l’âge caractéris-
tique des liaisons. Ici, nous introduisons un nouveau terme de couche initiale dans le développement
asymptotique par rapport à ε. Ceci améliore les estimations d’erreur obtenues dans [4]. En outre, nous
étudions la convergence de la dérivée en temps de la densité des liaisons et montrons comment un terme
singulier apparait quand ε devient nul. Nous montrons la convergence, dans la topologie étroite des
mesures, vers la somme de la dérivée temporelle de la solution limite et d’une masse de Dirac supportée
par le demi-axe initial. Des simulations numériques directes sont effectuées pour diverses valeurs d’ε
et comparées au développement asymptotique afin d’illustrer les résultats théoriques.

Introduction

This work is related to the mathematical modeling of cell motility. Originally, a mechanical description of
a network of actin filaments allowed to model the lamellopodium and was presented in [8–10]. From these, D.
Oelz and the author extracted a toy model presented and extensively analyzed from the mathematical point
of view in [4]. The model describes the motion of a single adhesion point submitted to some ascribed external
force. This motion is described by zε, a position variable solving a Volterra equation

1

ε

∫ ∞
0

(zε(t)− zε(t− εa)) ρε(a, t) da = f(t) , t ≥ 0 ,

zε(t) = zp(t) , t < 0 ,

(1)
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coupled with a density of linkages ρε weighting the adhesions already set and creating the pull-back force exerted
from these (see (2) below). Then various mathematical problems were handled extending [4] : in [5], the authors
weakened some of the hypotheses and rephrased the model in new variables, while in [6] the non-linear coupling
was exposed and blow-up in finite time vs global existence was proved.

More recently, a model closer to the original description in [8] is analyzed [3]. This led to new questions,
this work aims to answer one of those. We focus, here, on the age structured model governing the density of
linkages ρε. The age distribution ρε = ρε(a, t) is the solution of the following system :

ε∂tρε + ∂aρε + ζε ρε = 0 , a > 0 , t > 0 ,

ρε(0, t) = βε(t) (1− µ0,ε) , a = 0, t > 0 ,

ρε(a, 0) = ρI(a) , a > 0, t = 0,

(2)

where µk,ε(t) :=
∫∞

0
akρε(ã, t) dã and the on-rate of bonds is a given coefficient βε times a factor, that takes into

account saturation of the moving binding site with linkages. The off-rate ζε is a prescribed function representing
the death rate of the population for a given age a at a time t. The limit function ρ0 := limε→0 ρε is explicitly
given by

ρ0(a, t) =
1

1
β0(t) +

∫∞
0

exp
(
−
∫ b

0
ζ0(ã, t) dã

)
db

exp

(
−
∫ a

0

ζ0(ã, t) dã

)
, (3)

being the solution of 
∂aρ0 + ζ0 ρ0 = 0 , t ≥ 0 , a > 0 ,

ρ0(a = 0, t) = β0(t)

(
1−

∫ ∞
0

ρ0(ã, t) dã

)
, t ≥ 0 .

(4)

The characteristic curves associated to (2) are straight lines parallel to t = εa. Close to S0 := {(a, t) ∈
R+ × {0}}, there is a set Sε := {(a, t) ∈ (R+)2 ; εa > t}, where the initial condition is transported and when ε
goes to zero, Sε collapses to S0. The paper focusses precisely on the behavior of ρε in this area. Namely in [4],
the convergence of ρε towards ρ0 was shown in C((0, T ];L1(R+)) ∩ L1((0, T )× R+) : an a priori estimate was
obtained leading to

‖ρε(·, t)− ρ0(·, t)‖L1(R+) ≤ C exp(−ζmint/ε) + oε(1). (5)
where ζmin is the strictly positive lower bound of ζε. Here, we enrich the asymptotic expansion with a supple-
mentary term. We solve the initial layer problem : find ρ̃0 solving

∂t̃ρ̃0 + ∂aρ̃0 + ζ0(a, 0)ρ̃0 = 0, (a, t̃) ∈ (R+)2,

ρ̃0(0, t̃) = −β0(0)

∫
R+

ρ̃0(a, t̃)da, a = 0, t̃ > 0,

ρ̃0(a, 0) = ρI(a)− ρ0(a, 0) =: ρ̃I(a), a > 0, t̃ = 0.

(6)

This improves the error estimates above. Indeed for any t ≥ 0, one has now :

‖ρε(·, t)− ρ0(·, t)− ρ̃0(·, t/ε)‖L1(R+) . oε(1).

The initial layer is a sort of microscopic lifting of the initial condition of the difference ρε − ρ0, it removes
the exponential decay occurring in Sε, which is visible on the first term of the rhs in (5). As the boundary
term in (2) is non local, the analysis is not straightforward, and relies strongly on the specific energy functional
introduced in [4].

Since ε mutiplies ∂tρε in (2), it is interesting to investigate to which space the time derivative ∂tρε belongs
uniformly wrt ε. Another question of interest is to characterize its limit when ε goes to zero. We show in
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Theorem 3.2 that ∂tρε belongs to the dual of Cb([0, T ] × R+) (bounded continuous functions on [0, T ] × R+)
uniformly wrt ε. Moreover, it tends to ∂tρ0 and a Dirac mass supported by S0 in the tight topology of measures
(see Theorem 3.3 for a precise claim).

The paper is organized as follows : in Section 1 we present some notations, the main assumptions and useful
results from [4], in Section 2, we analyse the initial layer, provide basic existence results and show that it is of
bounded variation in time, so that the time derivative is related to a bounded Radon measure. We show some
limits involving this measure used later on. In Section 3, we construct the zero order asymptotic expansion
and show error estimates, we then prove that ∂tρε is also associated to a finite Radon measure and finally we
provide error estimates in the total variation norm and show the main claim in Proposition 3.2 and Theorem
3.3. Numerical simulations are performed in order to illustrate these results in Section 4

1. Notations, hypotheses and previous results

1.1. Some notations

We set QT := R∗+ × (0, T ) and QT := R+ × [0, T ]. The space of signed, locally bounded Radon measures
M1

loc(QT ) is by Riesz’ Theorem identified as the space of linear forms on Cc(QT ), the space of continuous
functions with compact support in QT . We call C0(QT ) the space of continuous functions vanishing at infinity.
The space of signed bounded Radon measures is denoted M1(QT ) = C0(QT )∗ (for more details cf [1, 7] and
references therein). We define Cb(QT ), the space of bounded continuous functions on QT . The absolute value
applied to a measure denotes the total variation measure, i.e. if λ ∈M1

loc(QT ) then by the Hahn decomposition,
λ = λ+ − λ− and |λ| = λ+ + λ− where λ± are positive measures. For any function u defined a.e. (a, t) ∈ QT ,
we define the discrete time derivative operator Dτ

t

Dτ
t u(a, t) :=

u(a, t+ τ)− u(a, t)

τ
(7)

where τ is a small positive parameter.
In what follows, we put ourselves in a similar context as in [4]. For this sake we recall assumptions and main

results useful for the rest of the paper.

1.2. Main assumptions

Assumptions 1.1. The dimensionless parameter ε > 0 is assumed to induce two families of chemical rate
functions that satisfy:
(i) For any T > 0 the function βε is Lipschitz in [0, T ] (the Lipschitz constant is denoted βLip) and ζε is in

Lipt([0, T ];L∞a (R+)) (resp. ζLip).
(ii) For limit functions β0 ∈W 2,∞([0, T ]) and ζ0 ∈W 2,∞([0, T ];L∞a (R+)), moreover it holds that

‖ζε − ζ0‖Lipt([0,T ];L∞(R+)) → 0 and ‖βε − β0‖W 1,∞([0,T ]) → 0

as ε→ 0.
(iii) We also assume that there are upper and lower bounds such that

0 < ζmin ≤ ζε(a, t) ≤ ζmax and 0 < βmin ≤ βε(t) ≤ βmax

for all ε > 0, a ≥ 0 and t > 0.

The initial data for the density model (2) satisfies some hypotheses that we sum up here:

Assumptions 1.2. The initial condition ρI ∈ L∞a (R+) satisfies
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(i) positivity
ρI(a) ≥ 0 , a.e. in R+ ,

moreover, one has also that the total initial population satisfies

0 <

∫
R+

ρI(a)da < 1 .

(ii) boundedness of higher moments,

0 <

∫
R+

apρI(a) da ≤ cp , for p = 1, 2 ,

where cp are positive constants depending only on p.
(iii) further regularity : we assume that ∂aρI ∈ L1(R+), which together with the first hypotheses on ρI implies

that ρI ∈W 1,1(R+).

1.3. Useful existing results

In this setting, one has existence and uniqueness as stated in Theorem 2.1 [4] recalled here for sake of
self-compliance.

Theorem 1.1. Let assumptions 1.1 and 1.2 hold, then for every fixed ε there exists a unique solution ρε ∈
C(R+;L1(R+)) ∩ L∞((R+)2) of the problem (2). We say that ρε is a mild solution since it satisfies (2) in the
sense of characteristics, namely

ρε(a, t) =


βε(t− εa)

(
1−

∫∞
0
ρε(ã, t− εa) dã

)
×

× exp
(
−
∫ a

0
ζε(ã, t− ε(a− ã)) dã

)
, when a < t/ε ,

ρI(a− t/ε) exp
(
− 1
ε

∫ t
0
ζε((t̃− t)/ε+ a, t̃) dt̃

)
, if a ≥ t/ε .

(8)

Moreover, it is a weak solution as well since it satisfies∫ ∞
0

∫ T

0

ρε(a, t) {(ε∂t + ∂a + ζε)ϕ(a, t) + βε(t)ϕ(0, t)} dt da− ε
∫ ∞

0

ρε(a, T )ϕ(a, T ) da

=

∫ T

0

βε(t)ϕ(0, t) dt− ε
∫ ∞

0

ρI(a)ϕ(a, 0) da = 0 ,

(9)

for every T > 0 and every test function ϕ ∈ C∞((R+)2) ∩ L∞((R+)2).

Lemma 1.1. Let assumptions 1.1 and 1.2 hold, then the unique solution ρε ∈ C(R+;L1(R+)) ∩ L∞((R+)2) of
the problem (2) from Theorem 1.1 satisfies

ρε(t, a) ≥ 0 a.e. in (R+)2 and

µ0,min ≤ µ0,ε(t) < 1 , ∀t ∈ R+ where µ0,min := min

(
µ0,ε(0),

βmin

βmin + ζmax

)
. (10)

Furthermore the following results on the convergence of ρε as ε tends to 0 have been obtained. We define
the functional

H[u] :=

∣∣∣∣∫ ∞
0

u(a) da

∣∣∣∣+

∫ ∞
0

|u(a)| da , (11)

and we obtain
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Lemma 1.2. Let ζmin > 0 be the lower bound to ζε(a, t) according to assumption 1.1, then it holds for all t ≥ 0
that

H[ρε(·, t)− ρ0(·, t)] ≤ H[ρε,I − ρ0(·, 0)]e
−ζmint

ε +
2

ζmin

∥∥∥‖Rε‖L1
a(R+) + |Mε|

∥∥∥
L∞t (R+)

(12)

with Rε := −ε∂tρ0 − ρ0(ζε − ζ0) and Mε := (βε − β0)
(
1−

∫∞
0
ρ0 da

)
.

As a consequence we conclude

Theorem 1.2. Let ρε be the solution to the system (2) according to Theorem 1.1 and let the ρ0 be as defined
in (3), then it holds that

ρε → ρ0 in Cloc(]0,∞);L1(R+)) as ε→ 0 .

Remark 1.1. Note that in general ρε,I does not converge to ρ0(·, 0) in L1
a as ε → 0. An initial layer will be

observable and its profile will be shaped like a multiple of e
−ζmint

ε , which is again a consequence of Lemma 1.2.

2. The initial layer

The limit solution ρ0 can be seen as a crude approximation of ρε for a fixed ε. Since ρ0 does not depend on
ρI , in a certain way it has forgotten the past. This is why we introduce a microscopic corrector solving (6).

2.1. Existence uniqueness and a priori estimates

The same analytic tools as above are applied in order to prove existence and uniqueness of ρ̃0 on compact
time intervals. We detail the global existence and boundedness.

Theorem 2.1. Under hypotheses 1.1 and 1.2, there exists a unique solution ρ̃0 ∈ C(R+;L1(R+)) ∩ L1(R+ ×
R+) ∩ L∞(R+ × R+).

Proof. Local existence in C([0, T ];L1(R+)) is easy and follows the same lines as in Theorem 1.1. The global
existence in L1(R+ × R+) is more involved and we detail it here. Using the functional H one has that

∂tH[ρ̃0(·, t)] + ζminH[ρ̃0(·, t)] ≤ 0

which by applying Grönwall’s Lemma gives that

H[ρ̃0(·, t)] ≤ exp(−ζmint)H[ρ̃0(·, 0)] = exp(−ζmint)H [ρI(·)− ρ0(·, 0)] (13)

and this integrated in time gives the L1
t (R+) bound in time for H[ρ̃0(t, ·)] this with the definition of H proves

that ρ̃0 ∈ L1(R+ × R+) and that µ̃0(t) :=
∫
R+
ρ̃0(a, t)da is in L1([0, T ]). Inequality (13) also proves that

µ̃0 ∈ L∞(R+) and thus ρ̃0 ∈ L∞(R+ × R+) since the initial and boundary values are bounded. Since on any
compact interval in time ρ̃0 is continuous with values in L1

a(R+), the claim follows. �

Corollary 2.1. Under hypotheses 1.1 and 1.2, the unique solution ρ̃0 ∈ L1(R+ × R+) satisfies also

H[t̃ρ̃0(·, t̃)] ∈ L1
t̃ (R+).

Proof. The proof is a consequence of (13), which multiplied by t and integrated in time provides the claim. �



6 ESAIM: PROCEEDINGS AND SURVEYS

2.2. The time derivative ∂tρ̃0 is a signed bounded Radon measure

Theorem 2.2. If ζε(·, 0) is a function bounded from below, the time derivative of the initial layer ∂tρ̃0 can be
identified with a finite Radon measure λ∂tρ̃0 and one has

|λ∂tρ̃0 |((R+)2) = lim sup
τ→0

‖Dτ
t ρ̃0‖L1((R+)2) <∞,

where the absolute value of the measure denotes its total variation. One has also that

‖(1 + t)Dτ
t ρ̃0‖L1((R+)2) <∞

The proof is very similar to the proof of Theorem 3.2, and is left to the reader.

Proposition 2.1. Under hypotheses 1.2, ∂tρ̃0 extends to a linear continuous form on Cb(QT ) and the tight
convergence holds up to a subsequence (τk)k∈N :

lim
k→∞

∫
QT

φ(a, t)Dτk
t ρ̃0dadt =

∫
QT

φ(a, t)dλ∂tρ̃0(a, t)

for all functions φ ∈ Cb(QT ).

Proof. The convergence occurs in the weak topology, i.e. for all φ ∈ C0(QT ) (cf p.11 Chap. 4, [7]). The
continuous linear form extends to all φ ∈ Cb(QT ), (see Lemma 3.3.2, p.11 [7]). The convergence occurs also in
the tight topology of measures. Indeed, we consider∫ T

0

∫ ∞
R

|Dτ
t ρ̃0|dadt ≤

∫ T

0

∫
R−T

|Dτ
a ρ̃I(a)|+ C|ρ̃I(a)|da . ‖ρ̃I‖W 1,1((R−T,∞))

By Lebesgues theorem as R goes to infinity the norm goes to zero. This shows that for every δ > 0 there exists
a compact set K = [0, T ]× [0, R] ∈ QT s.t.∣∣λDτt ρ̃0∣∣ (QT \K) < δ, ∀τ ∈ (τ0, 0],

which implies that λDτt ρ̃0 tends towards λ∂tρ̃0 in the tight topology up to the extraction of a subsequence (cf
Lemma 3.4.5, p.14 [7]). �

Moreover one has

Proposition 2.2. Under the same hypotheses as above, one has

lim
ε→0

∫
QT
ε

ϕ(a)dλ∂tρ̃0(a, t) = −
∫
R+

ϕ(a)ρ̃I(a)da

for every ϕ ∈ Cb(R+).

Proof. Because ρ̃0 is of bounded variation wrt time

lim sup
τ→0

∫ T/ε

0

∫
R+

|ϕ(a)| |Dτ
t ρ̃0(a, t)| da ≤ |λ∂tρ̃0 | ‖ϕ‖L∞(R+) <∞

and thus

lim sup
τ→0

∫ T
ε

0

∣∣∣∣∣Dτ
t

∫
R+

ϕ(a)ρ̃0(a, t)da

∣∣∣∣∣ dt ≤ lim sup
τ→0

∫ T
ε

0

∫
R+

|ϕ(a)| |Dτ
t ρ̃0(a, t)| dadt <∞.
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This shows that q(t) :=
∫
R+
ϕ(a)ρ̃0(a, t)da is a function of bounded variation, thus there exists a Radon measure

λ∂tq associated to the time derivative of q. The integral
∫ T/ε

0
dλ∂tq coincides with the Riemann-Stieltjes integral.

Thus integration by parts holds, leading to∫ T/ε

0

dλ∂tq = q(T/ε)− q(0) =

∫
R+

ϕ(a)ρ̃0(a, T/ε)da−
∫
R+

ϕ(a)ρ̃I(a)da.

On the other hand, Dτ
t and integration commute giving that∫

QT
ε

ϕ(a)Dτ
t ρ̃0(a, t)dadt =

∫ T
ε

0

Dτ
t

{∫
R+

ϕ(a)ρ̃0(a, t)da

}
dt.

By Proposition 2.1, the lhs tightly converges to its limit, whereas the rhs converges weakly, leading to∫ T
ε

0

∫
R+

ϕ(a)dλ∂tρ̃0(a, t) =

∫ T
ε

0

dλ(∫
R+

ϕ(a)ρ̃0(a,t)da
),

which thus gives that∫ T
ε

0

∫
R+

ϕ(a)dλ∂tρ̃0(a, t) =

∫
R+

ϕ(a)ρ̃0(a, T/ε)da−
∫
R+

ϕ(a)ρ̃I(a)da.

The first term in the rhs can be estimated as∣∣∣∣∣
∫
R+

ϕ(a)ρ̃0(a, T/ε)da

∣∣∣∣∣ ≤ ‖ϕ‖L∞(R+)‖ρ̃0(·, t)‖L1(R+) ≤ C exp(−T/ε),

which vanishes as ε goes to zero since T > 0. �

3. A complete zero order approximation

3.1. Error estimates on the density of linkages

Simple computations on the explicit solution ρ0 of (4) given by (3) lead to

Lemma 3.1. Under hypotheses 1.1 and 1.2, one has

max(|ρ0(a, t)|, |∂tρ0(a, t)|, |∂ttρ0(a, t)|) ≤ C
(
‖β0‖W 2,∞([0,T ]), ‖ζ0‖W 2,∞([0,T ];L∞(R+))

)
exp(−ζmina),

for all (a, t) in QT .

We denote by ρ̃0,ε(a, t) := ρ̃0(a, t/ε) and µ̃0,ε(t) :=
∫
R+
ρ̃0(a, t/ε)da = µ̃0(t/ε). Now we define an approxima-

tion of ρε solving (2),
ρ̃ε(a, t) := ρ0(a, t) + ρ̃0,ε(a, t),

and we compute error estimates when accounting for the initial layer ρ̃0.

Theorem 3.1. Under hypotheses 1.1 and 1.2, one has for every fixed time t > 0 :

H[(ρε − ρ̃ε)(·, t)] ≤ oε(1)

with respect to ε. Thus ρε − ρ̃ε tends to zero in L∞((0, T );L1(R+)) strongly when ε goes to zero.
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Proof. We set ρ̂ε(a, t) := ρε(a, t)− ρ̃ε(a, t) and write the problem it satisfies :
ε∂tρ̂ε + ∂aρ̂ε + ζε(a, t)ρ̂ε = Rε , a > 0 , t > 0 ,

ρ̂ε(a = 0, t) = −βε(t)
∫ ∞

0

ρ̂ε(ã, t) dã+Mε , t > 0 ,

ρ̂ε(a, t = 0) = 0, a ≥ 0 ,

(14)

with 
Rε := −ε∂tρ0 − ρ0(ζε − ζ0) + (ζ0(a, 0)− ζε(a, t)) ρ̃0,ε,

Mε := (βε − β0)

(
1−

∫ ∞
0

ρ0 da

)
− (βε(t)− β0(0)) µ̃0,ε.

Applying the same estimates as above one concludes that :

ε
dH
dt

[ρ̂ε(·, t)] + ζminH[ρ̂ε(·, t)] ≤
∫
R+

|Rε|da+ |Mε| =: I1 + I2.

Now we decompose the rests inside the rhs

I1 ≤ ε
∫
R+

|∂tρ0| da+ ‖ζε − ζ0‖L∞(R+×R+) + I1,1 ≤ oε(1) + I1,1,

I2 ≤ ‖βε − β0‖L∞t (R+) + I2,1 ≤ oε(1) + I2,1,

where the latter terms are due essentially to errors introduced by our new initial layer :

I1,1(t) :=

∫
R+

|(ζ0(a, 0)− ζε(a, t)) ρ̃0(a, t/ε)| da, I2,1(t) := |(βε(t)− β0(0)) µ̃0(t/ε)| .

Using Grönwall’s Lemma and the fact that H[ρ̂ε(·, 0)] = 0 one has

H[ρ̂ε(·, t)] ≤
1

ε

∫ t

0

{
exp

(
−ζmin

(t− s)
ε

)
(I1,1(s) + I2,1(s))

}
ds+ oε(1)

Now we detail the second term in the rhs, the first follows the same arguments :

1

ε

∫ t

0

exp

(
−ζmin

(t− s)
ε

)
I2,1(s)ds ≤

∫ t/ε

0

{|βε(εs̃)− β0(εs̃)|+ |β0(εs̃)− β0(0)|} |µ̃0(s̃)| ds̃

≤ ‖βε − β0‖L∞(0,T )

∫
R+

|µ̃0(s̃)| ds̃+ ε‖β′0‖L∞(0,T )

∫
R+

s̃ |µ̃0(s̃)| ds̃

≤ oε(1)‖H[ρ̃ε]‖L1(R+) + ε‖β′0‖L∞(0,T )

∥∥H[t̃ρ̃ε]
∥∥
L1
t̃
(R+)

≤ oε(1)

where we assumed that βε is uniformly Lipschitz in [0, T ] according to hypotheses 1.1, and we used Theorem
2.1 and its Corollary 2.1. �

Remark 3.1. This result is to be compared with Lemma 1.2 and Theorem 1.2. It shows that the addition of an
initial layer improves the convergence result for small times since if t ∼ ε the first term in the rhs of (12) is of
order 1.

Remark 3.2. This result is useful since it shows that we found an approximation of the actual initial layer
depending only on the data ζ0, β0 and ρI at t = 0.
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3.2. Variation in time

Considering (2), ε multiplies ∂tρε. As we are interested in the convergence of ρε when ε goes to zero, one
could ask where does ∂tρε belongs uniformly wrt ε and to which limit does it tend. To this aim we consider the
system satisfied by Dτ

t ρε (the operator is defined as in (7)) :

(ε∂t + ∂a + ζε)D
τ
t ρε = − (Dτ

t ζε) ρε(a, t), (a, t) ∈ QT

Dτ
t ρε(0, t) = −βε

∫
R+

Dτ
t ρε(t, ã)dã+ (Dτ

t βε) (1− µ0,ε), a = 0, t > 0

Dτ
t ρε(a, 0) =

ρε(a, τ)− ρI(a)

τ
, a > 0, t = 0

(15)

Theorem 3.2. Under hypotheses 1.1 and 1.2, and for every fixed τ small enough, one has :

H [Dτ
t ρε( ·, t)] ≤ C1 exp(−ζmint/ε)/ε+ C2

which gives the uniform bound in ε :
‖Dτ

t ρε‖L1((0,T )×R+) ≤ C3.

where the constants Ci are independent on ε, for i ∈ {1, 2, 3}.
Proof. One uses H, the functional introduced above and gets using Grönwall’s Lemma that

H [Dτ
t ρε( ·, t)] ≤ exp(−ζmint/ε)H [Dτ

t ρε( ·, 0)] + 2 (ζLip + βLip) /ζmin (16)

The main point of the proof is the control of the initial term H [Dτ
t ρε( ·, 0)] as a function of ε and τ .

H [Dτ
t ρε( ·, 0)] =

∫
R+

∣∣∣∣ρε(a, τ)− ρI(a)

τ

∣∣∣∣ da+

∣∣∣∣µ0,ε(τ)− µ0,ε(0)

τ

∣∣∣∣ =: I1 + I2

The first term decomposes in two parts

I1 =

∫ τ/ε

0

∣∣∣∣ρε(a, τ)− ρI(a)

τ

∣∣∣∣ da+

∫ ∞
τ/ε

∣∣∣∣ρε(a, τ)− ρI(a)

τ

∣∣∣∣ da
=

1

τ

∫ τ/ε

0

∣∣∣∣βε(τ − εa)(1− µ0,ε(τ − εa) exp

(
−
∫ 0

−a
ζε(a+ s, τ + εs)ds

)
− ρI(a)

∣∣∣∣ da
+

1

τ

∫ ∞
τ/ε

∣∣∣∣∣ρI(a− τ/ε) exp

(
−
∫ 0

−τ/ε
ζε(a+ s, τ + εs)ds

)
− ρI(a)

∣∣∣∣∣ da = I1,1 + I1,2

where we used the method of characteristics. One splits the first term adding and subtracting intermediate
terms

I1,1 .
1

τ

∫ τ/ε

0

dτ‖ρε‖L∞(QT ) .
1

ε
As for I1,2, one has :

I1,2 ≤
1

ε

(
TV(ρI) + C‖ρI‖L1(R+)

)
.

1

ε
‖ρI‖W 1,1(R+)

where TV denotes total variation of ρI [11]. In a similar way, as |ε∂tµ0,ε(t)| ≤ C, one obtains

I2 ≤
1

ε
(βmax + ζmax) ,

which ends the first part of the proof, then integrating (16) in time gives the other claim. �
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Proposition 3.1. There exists a unique regular measure λ∂tρε ∈M1(QT ) associated to ∂tρε. Moreover ∂tρε is
also a linear functional on Cb(QT ), for a fixed ε, one has∫

QT

ϕ(a, t)Dτ
t ρε(a, t)dadt→

∫
QT

ϕ(a, t)dλ∂tρε , ∀ϕ ∈ Cb(QT ).

when τ goes to zero (up to a subsequence).

Proof. By Theorem 1.7.2. [2], there exists a finite Radon measure s.t.

|λ∂tρε |(QT ) = lim sup
τ→0

∫
QT

|Dτ
t ρε| dadt <∞.

The distribution ∂tρε belongs to M1(QT ). By similar arguments as in Proposition 2.1, one extends Dτ
t ρε and

∂tρε into a linear continuous map on Cb(QT ), and shows the tight convergence. �

3.3. Error estimates for the time derivative of the density of linkages

Now we prove the key point of this paper :

Proposition 3.2. Under assumptions 1.1 and 1.2, setting ρ̂ε := ρε − ρ0 − ρ̃0,ε, one has that∣∣λ∂tρε − λ∂tρ0 − λ∂tρ̃0,ε ∣∣ (QT ) = lim sup
τ→0

‖Dτ
t ρ̂ε‖L1(QT ) ∼ oε(1)

Proof. The proof follows the same line as above, nevertheless since it is a crucial estimate, we give the details
of the computations. One applies the discrete time operator Dτ

t to ρ̂ε solving (14) and uses the functional H in
the same spirit as above. This leads to

ε

2
∂tH[Dτ

t ρ̂ε(·, t)] +
ζmin

2
H[Dτ

t ρ̂ε(·, t)] ≤
∫
R+

|Dτ
t ζε||ρ̂ε|+ |Dτ

tRε|da+ |Dτ
t βε|H[ρ̂ε(·, t)] + |Dτ

tMε|

. (ζLip + βLip)H[ρ̂ε(·, t)] + ε‖∂ttρ0‖L1(R+) +

∫
R+

|∂t((ζε − ζ0)ρ0)|da+ |∂t(βε − β0)|

+ (ζLip + βLip)

∫
R+

|ρ̃0,ε(a, t)| da+

∫
R+

|ζε(a, t)− ζ0(a, 0)||Dτ
t ρ̃0,ε|da+ |βε(t)− β0(0)| |Dτ

t µ̃0,ε|

. oε(1) +

∫
R+

|ζε(a, t)− ζ0(a, 0)||Dτ
t ρ̃0,ε|da+ |βε(t)− β0(0)|Dτ

t µ̃0,ε|︸ ︷︷ ︸
=:Iτ (t)

+H[ρ̃0,ε(·, t)].

Applying Grönwall’s Lemma, one obtains

H[Dτ
t ρ̂ε] . exp(−ζmint/ε)H[Dτ

t ρ̂ε(·, 0)] + oε(1) +
1

ε

∫ t

0

(Iτ (s) +H[ρ̃0,ε(·, s)]) exp (−ζmin(t− s)/ε) ds, (17)

which integrated once again in time provides :∫ T

0

H[Dτ
t ρ̂ε]dt ≤ εH[Dτ

t ρ̂ε(·, 0)] + oε(1) +
1

ε

∫ T

0

∫ t

0

(Iτ (s) +H[ρ̃0,ε(·, s)]) exp (−ζmin(t− s)/ε) dsdt

again as in the proof of Theorem 3.1, one uses scaling arguments and obtain :

1

ε

∫ T

0

∫ t

0

Iτ (s) exp (−ζmin(t− s)/ε) dsdt ≤ oε(1)‖(1 + t)Dτ
t ρ̃0‖L1((R+)2) ∼ oε(1).
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In the same way, for the term containing H[ρ̃0,ε(·, t)] above,

1

ε

∫ T

0

∫ t

0

H[ρ̃0(·, s/ε)] exp (−ζmin(t− s)/ε) dsdt . ε
∫ T/ε

0

H[ρ̃0(·, s)]ds . ε‖H[ρ̃0]‖L1R+).

Now we concentrate on what remains near S0

H[Dτ
t ρ̂ε(·, 0)] ≤ 2

τ

{∫ τ/ε

0

|ρ̂ε(a, τ)|da+

∫ ∞
τ/ε

|ρ̂ε(a, τ)|da

}
=: J1 + J2.

We use the method of characteristics in order to express J1 and J2 as functions of initial and boundary values.

J1 ≤
2

τ

{∫ τ/ε

0

(
|ρ̂ε(0, τ − εa)|+

∫ 0

−a
|Rε(a+ s, τ + εs)|ds

)
da

}
=: J1,1 + J1,2.

The boundary term is given by (14), leading to

J1,1 ≤
1

τ

∫ τ/ε

0

βmaxH[ρ̂ε(·, τ − εa)]da+
1

τ

∫ τ/ε

0

‖βε − β0‖L∞(0,T ) + |βε(τ − εa)− β0(0)| |µ̃0,ε(τ − εa)| da

.
oε(1)

ε
+

1

τ

∫ τ/ε

0

|β0(τ − εa)− β0(0)| |µ̃0,ε(τ − εa)| da . oε(1)

ε
+

1

ετ

∫ τ

0

|β0(s)− β0(0)| |µ̃0,ε(s)| ds

.
oε(1)

ε
+
βLip

ετ

∫ τ

0

s exp(−ζmins/ε)ds ≤
oε(1)

ε
+ C,

the latter constant depends neither on ε nor on τ . Then

J2 ≤
1

τ

∫ ∞
τ/ε

∫ 0

−τ/ε
|Rε(a+ s, τ + εs)|dsda ≤ 1

τ

∫ τ/ε

0

‖Rε(·, τ − εs)‖L1(R+)ds

.
oε(1)

ε
+

1

τ

∫ τ/ε

0

∫
R+

|ζ0(τ − εs, a)− ζ0(a, 0)| |ρ̃0,ε(a, τ − εs)|dads

.
oε(1)

ε
+

1

ετ

∫ τ

0

∫
R+

|ζ0(s, a)− ζ0(a, 0)| |ρ̃0,ε(a, s)|dads

.
oε(1)

ε
+

1

τ

∫ τ/ε

0

∫
R+

|ζ0(εs, a)− ζ0(a, 0)| |ρ̃0(a, s)|dads

.
oε(1)

ε
+
εζLip

τ

∫ τ/ε

0

s

(∫
R+

|ρ̃0(a, s)|da

)
ds .

oε(1)

ε
+ ‖H[ρ̃0]‖L∞t (R+)

the latter term being bounded (cf. Theorem 2.1). A similar approach provides the same bound for J1,2. This
finally proves that

lim sup
τ→0

∫ T

0

H[Dτ
t ρ̂ε]dt ≤ oε(1)

which is the claim. �

Now we combine the latter result together with Proposition 2.2 in order to obtain

Theorem 3.3. Under hypotheses 1.1 and 1.2, when ε goes to zero, one has that

∂tρε ⇒ ∂tρ0 − δt=0 (ρI(a)− ρ0(a, 0))
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in the sense of tight convergence, i.e.∫
QT

ϕ(a, t)λ∂tρε(a, t)→
∫
QT

ϕ(a, t)∂tρ0(a, t)dadt−
∫
R+

ϕ(a, 0)(ρI(a)− ρ0(a, 0))da

for all ϕ ∈ Cb(QT ).

Proof. The convergence of measures in the total variation norm is stronger and implies tight convergence.
Moreover, by a triangular inequality, one has :∣∣∣∣∣

∫
QT

ϕ(a, t)λ∂tρε(a, t)−
∫
QT

ϕ(a, t)∂tρ0(a, t)dadt+

∫
R+

ϕ(a, 0)(ρI(a)− ρ0(a, 0))da

∣∣∣∣∣
≤
∣∣∣∣∫
QT

ϕ(a, t)λ∂tρε(a, t)−
∫
QT

ϕ(a, t)∂tρ0(a, t)dadt−
∫
QT

ϕ(a, t)dλ∂tρ̃0,ε(a, t)

∣∣∣∣
+

∣∣∣∣∣
∫
QT

ϕ(a, t)dλ∂tρ̃0,ε(a, t) +

∫
R+

ϕ(a, 0)(ρI(a)− ρ0(a, 0))da

∣∣∣∣∣ ≤ oε(1) + I

Expressing again the term containing λ∂tρ̃0,ε as the limit of the discrete operator Dτ
t , one gets :∫

QT

ϕ(a, t)dλ∂tρ̃0,ε(a, t) =

∫
QT
ε

ϕ(a, εt̃)dλ∂t̃ρ̃0(a, t̃)

Because λ∂tρ̃0 is a signed measure on (R+)2 one has that∣∣∣∣∣∣
∫
QT
ε

(
ϕ(a, εt̃)− ϕ(a, 0)

)
dλ∂tρ̃0(a, t̃)

∣∣∣∣∣∣ ≤
∫
QT
ε

∣∣ϕ(a, εt̃)− ϕ(a, 0)
∣∣ d|λ∂tρ̃0 |(a, t̃)

The difference
∣∣ϕ(a, εt̃)− ϕ(a, 0)

∣∣χQT
ε

(a, t) is a bounded function converging pointwisely to zero everywhere in

(R+)2 and λ∂tρ̃0 is a finite measure, so applying Vitali’s convergence Theorem proves that the rhs tends to zero
as ε goes to zero. Thus

I ≤

∣∣∣∣∣∣
∫
QT
ε

(
ϕ(a, εt̃)− ϕ(a, 0)

)
dλ∂tρ̃0(a, t̃)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
QT
ε

ϕ(a, 0)dλ∂tρ̃0(a, t̃) +

∫
R+

ϕ(a, 0)(ρI(a)− ρ0(a, 0))da

∣∣∣∣∣∣
tends to zero as well thanks to Proposition 2.2. �

4. A numerical illustration

4.1. Numerical discretization

Let’s consider a bounded age domain A = [0, Amax]. It is discretized into control volumes Ai = [ai− 1
2
, ai+ 1

2
]

with uniform size ∆a = ai+ 1
2
− ai− 1

2
. The number of age cels is denoted Na = A/∆a. The time domain is

subdivided into intervals [tn, tn+1] with time step ∆t = tn+1 − tn. An upwind finite volume scheme is used in
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order to approximate the resolution of (2). So the numerical scheme reads :
ε
ρn+1
ε,i − ρnε,i

∆t
+
ρnε,i − ρnε,i−1

∆a
+ ζn+1

ε,i ρn+1
ε,i = 0 , n ≥ 0 , i > 0 ,

ρn+1
ε,0 = βnε (1− µnε ) , n ≥ 0 ,

ρ0
ε,i = ρI,i , i ≥ 0 ,

(18)

where ρnε,i ∼
1

∆a∆t

∫ tn+1

tn

∫ a
i+1

2

a
i− 1

2

ρε(ã, t)dãdt is a piecewise constant approximation of ρε, while ζnε,i := ζε(tn, ai),

βnε := βε(tn), ρI,i := ρI(ai) and µnε = S(ρε,·, i, Na). The latter function denotes the trapezoidal rule approxi-
mating the integral :

S(ρnε,·, i, Na) :=
∆a

2

Na−1∑
i=0

(
ρnε,i + ρnε,i+1

)
.

The approximation of (3) is given by:

ρn0,i =
1

1
βn0

+ S(exp(−S(ζn0,·, j, i)), i, Na)
exp

(
−S(ζn0,·, k, i)

)
, (19)

where ρn0,i = ρ0(tn, ai), βn0 = β0(tn). For the approximation of (6), the time domain is subdivided into intervals
[t̃n, t̃n+1] with time step ∆t̃ = t̃n+1− t̃n. Again the upwind finite volume scheme is used. The numerical scheme
is 

ρ̃n+1
0,i − ρ̃n0,i

∆t̃
+
ρ̃n0,i − ρ̃n0,i−1

∆a
+ ζ0

0,i ρ̃
n+1
0,i = 0 , n ≥ 0 , i > 0 ,

ρ̃n+1
0,0 = −β0

0S(ρ̃n0,·, i, Na) , n ≥ 0 ,

ρ̃0
0,i = ρI,i − ρ0,i , i ≥ 0 ,

(20)

where ρ̃n0,i ∼
1

∆a∆t

∫ tn+1

t−n

∫ a
i+1

2

a
i− 1

2

ρ̃0(ã, t̃n)dã, ζ0
0,i = ζ0(0, ai)and β0

0 = β0(0).

Using the approximations (18), we compute ρε for different values of ε. And ρε, ρ0 and ρ̃0 using (19) and
(20). The time steps are defined as ∆t = ε∆a and ∆t̃ = ∆a, we obtain ρ̃nε = ρn0 + ρ̃n0 .

4.2. Results

The convergence results is calculated with a discrete formulation of (11) defined as:

H∆[u] := |S(u·, i, Na)|+ S(|u|·, i, Na), (21)

where u is a real sequence (ui)i∈N.

4.2.1. Pure initial layer
In the simulations, one uses the on and off rates βε(t) = βmin + (sin(2πt))+ and ζε(a, t) = (1 + a)(1 + t),

while the initial data is ρI(a) := exp(−a). Amax := 1, ∆a := 1e− 3 and ∆t := ε∆a.
Numerical results agree in a close manner to theoretical estimates stated in Theorems 1.2 and 3.1, for the

L1 and L∞ norms either for ρε − ρ0 or for the complete expansion ρε − ρ0 − ρ̃0,ε (cf Fig. 1). We see that even
in the L1(0, T ) norm the complete zero order approximation is closer to ρnε,· although the convergence order is
similar.

More interestingly (cf Fig. 2), when considering the discrete time derivative i.e. D∆
t ρ

n
ε,· := ((ρn+1

ε,i − ρnε,i)/∆t
)(i,n)∈N2 , one obtains explosion of D∆

t

(
ρnε,· − ρn0,·

)
in the L∞ norm for small values of ε, which shows how
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the time derivative behaves close to the origin. This also shows that one cannot expect better results from
theoretical estimates then the convergences exhibited above. When including the initial layer, in Proposition
3.2, H[Dτ

t (ρε − ρ0 − ρ̃0,ε)] is bounded in the L∞(0, T ) norm by oε(1)/ε. As in this numerical test βε = β0,
ζε = ζ0, in fact, we only consider the error due to the initial layer which is of order ε. This leads to the uniform
boundedness of H[Dτ

t (ρε − ρ0 − ρ̃0,ε)] wrt ε (cf fig. 2 right).
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Figure 1. Error estimates approximating ρε by either ρ0 or by ρ0 + ρ̃0,ε in different norms.
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Figure 2. Error estimates approximating Dτ
t ρε by either Dτ

t ρ0 or Dτ
t (ρ0 + ρ̃0,ε) in different

norms. Here τ = ∆t.

4.2.2. Perturbing the on and off rates
While in the second set of simulations, we perturb the data in order to test the accuracy of our estimates.{

βε(t) = βmin + (sin(2πt))+ +
√
ε(cos(2kπt))+

ζε(a, t) = (1 + a)(1 + t) +
√
ε(cos(2kπt))+

while the initial data is still ρI(a) := exp(−a).
When the initial layer is not part of the asymptotic expansion, the errors related to the layer dominate the

perturbation. At the contrary, when the initial layer is included, the
√
ε perturbation becomes perceptible in

the error estimates (cf figs. 3 and 4).
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Figure 3. Error estimates approximating ρε by either ρ0 or by ρ0 + ρ̃0,ε in different norms.
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