Multi-scale blood flow modelling for stented arteries: theoretical and numerical results

Vuk Milisic

Wolfgang Pauli Institute UMI CNRS Wien-Austria

July 23, 2009

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 1 / 89

Outline

Introduction

- 2 Deriving Navier-Stokes equations
- 3 The Stokes system
- 4 The rough problem
- 5 The colateral artery
- 6 Sacular aneurysm

< 🗇 🕨 < 🖃 🕨

Two common pathologies of the cardio-vascular system

Industrial context

Cardiatis[®]: conception and comercialisation of metallic wired multi-layer stents • Image 3D

- A new technology One controls
 - The # of layers
 - Their connectivity
- In vivo experiments
 - I on mini-pigs show :no thrombus up to 6 months Dissection pictures
 - On humans : Microscopy pictures
- Multi-Scale phenomenon lying on:
 - Hemodynamics
 - Chemical reactions between blood flow and the surrounding wires and tissues

Theoretical & numerical study of hemodynamics

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 4 / 89

(日) (周) (三) (三)

Problem description

- Geometrical properties
 - Femoral artery diameter: $\emptyset_{\rm A} = 6mm$
 - Total thickness of the stent : $\epsilon=0.25mm$
 - Thickness of a single wire: $\epsilon = 0.04 mm$
 - Red blood cell diameter: $\emptyset_{\mathrm{RC}} = 0.008 \textit{mm}$

$$\frac{\epsilon}{\emptyset_A} = \frac{0.25}{6} \sim 4\%$$

stent \sim periodic rugous wall in a straight cilindrical geometry

- The blood flow is composed of
 - Steady state part: Poiseuille profile
 - Plus a pulsatile periodic perturbation: Womersley profile
- We consider here the Poiseuille profile

- 4 同 6 4 日 6 4 日 6

Objectives and references

-We aim to

- understand the dynamics of flows in rugous channels
 - \implies Boundary layer correctors
- Avoid heavy discretisations related to the rugous wall
 - \implies Wall laws
- Include the micro scales in the macro Poiseuille profile
 - \implies Multi-scale aspects

Use of assymptotic expansions adapted for the perturbed boundaries.

Main references

N. Neuss, M. Neuss-Radu, and A. Mikelić.

Effective laws for the poisson equation on domains with curved oscillating boundaries.

Applicable Analysis, 2006.

Y. Achdou, P. Le Tallec, F. Valentin, and O. Pironneau,

Constructing wall laws with domain decomposition or asymptotic expansion techniques

Comput. Methods Appl. Mech. Eng. 1998

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 6 / 89

(日) (同) (三) (三)

Introduction

- Industrial context
- Deriving Navier-Stokes equations
 - The continuity equation
 - The momentum equation
- 3 The Stokes system
 - The abstract formalism
 - Application to the Stokes equations
- The rough problem
 - Boundary layer theory for rough domains
 - Homogenized first order terms
- The colateral artery
 - The modelling approach
 - Boundary layer theory for rough boundaries
 - Homogenized first order terms
 - Numerical evidence
- Sacular aneurysm
 - The problem

Vuk Milisic (WPI)

The continuity equation

- ω_0 subdomain of Ω , γ_0 boundary of ω_0
- ρ density
- decrease of mass per time unit:
- total mass exiting from ω_0 through $\gamma_0:\;\int_{\gamma_0}
 ho{f u}\cdot{f n} d\gamma_0$
- n outward normal vector
- **u** flow's velocity
- Mass balance

The continuity equation

- ω_0 subdomain of Ω , γ_0 boundary of ω_0
- ρ density
- decrease of mass per time unit:
- total mass exiting from ω_0 through $\gamma_0: \int_{\gamma_0} \rho \mathbf{u} \cdot \mathbf{n} d\gamma_0$
- n outward normal vector
- u flow's velocity
- Mass balance

$$-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega_0}\rho dx$$

- 4 個 ト - 4 三 ト - 4 三 ト

The continuity equation

- ω_0 subdomain of Ω , γ_0 boundary of ω_0
- ρ density
- decrease of mass per time unit:
- total mass exiting from ω_0 through $\gamma_0: \int_{\gamma_0} \rho \mathbf{u} \cdot \mathbf{n} d\gamma_0$
- n outward normal vector
- u flow's velocity
- Mass balance

$$-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega_0}\rho d\mathsf{x} = \int_{\gamma_0}\rho \mathbf{u}\cdot\mathbf{n}d\gamma_0$$

The continuity equation

- ω_0 subdomain of Ω , γ_0 boundary of ω_0
- ρ density
- decrease of mass per time unit:
- total mass exiting from ω_0 through $\gamma_0: \int_{\gamma_0} \rho \mathbf{u} \cdot \mathbf{n} d\gamma_0$
- n outward normal vector
- u flow's velocity
- Mass balance

$$-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega_0}\rho d\mathbf{x} = \int_{\gamma_0}\rho \mathbf{u}\cdot\mathbf{n}d\gamma_0$$

• From the divergence theorem

$$\int_{\omega_0} \partial_t \rho + \operatorname{div} \left(\rho \mathbf{u} \right) dx = 0$$

The continuity equation

- ω_0 subdomain of Ω , γ_0 boundary of ω_0
- ρ density
- decrease of mass per time unit:
- total mass exiting from ω_0 through $\gamma_0: \int_{\gamma_0} \rho \mathbf{u} \cdot \mathbf{n} d\gamma_0$
- n outward normal vector
- u flow's velocity
- Mass balance

$$-\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega_0}\rho d\mathbf{x} = \int_{\gamma_0}\rho \mathbf{u}\cdot\mathbf{n}d\gamma_0$$

• Since ω_0 is arbitrary

$$\partial_t \rho + \operatorname{div}\left(\rho \mathbf{u}\right) = \mathbf{0}$$

The momentum equation

• Newton's law to a moving element of volume ω

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\rho\mathbf{f}dx+\int_{\gamma}\mathbf{S}d\gamma$$

- **f** denotes a density of volume forces
- S a density of surface forces per surface unit

•
$$\Delta t = t' - t$$

 $\frac{\mathrm{d}}{\mathrm{d}t} \int_{\omega} \rho \mathbf{u} dx = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\int_{\omega'} \rho \mathbf{u}(x', t') dx' - \int_{\omega} \rho \mathbf{u}(x, t) dx \right)$

• a material point x' at time t' corresponding to (x, t)

$$x' = x + \Delta t \mathbf{u}(x, t) + \mathbf{0}(\Delta t^2).$$

change of variables

$$\int_{\omega'} \rho \mathbf{u}(x', t') dx' = \int_{\omega} (\rho \mathbf{u})(x + \Delta t \mathbf{u}, t + \Delta t) \left| \det \nabla_x x' \right| dx$$
(if (WP))
Blood flow in stented arteries
July 23, 2009 9 / 89

Vuk Milisic (WPI)

Blood flow in stented arteries

The momentum equation

• Newton's law to a moving element of volume ω

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\rho\mathbf{f}dx+\int_{\gamma}\mathbf{S}d\gamma$$

- **f** denotes a density of volume forces
- S a density of surface forces per surface unit

•
$$\Delta t = t' - t$$

 $\frac{\mathrm{d}}{\mathrm{d}t} \int_{\omega} \rho \mathbf{u} dx = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\int_{\omega'} \rho \mathbf{u}(x', t') dx' - \int_{\omega} \rho \mathbf{u}(x, t) dx \right)$

• a material point x' at time t' corresponding to (x, t)

$$x' = x + \Delta t \mathbf{u}(x, t) + \mathbf{0}(\Delta t^2).$$

change of variables

$$\int_{\omega'} \rho \mathbf{u}(x',t') dx' = \int_{\omega} (\rho \mathbf{u})(x + \Delta t \mathbf{u}, t + \Delta t) \left| \det(\operatorname{Id} + \Delta t \nabla \mathbf{u}) \right| dx$$

$$\lim_{k \text{ Millisic (WPI)}} Blood flow in stented arteries July 23, 2009 9 / 1000 (WPI)$$

Vuk Milisic (WPI)

Blood flow in stented arteries

The momentum equation

 \bullet Newton's law to a moving element of volume ω

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\rho\mathbf{f}dx+\int_{\gamma}\mathbf{S}d\gamma$$

- f denotes a density of volume forces
- S a density of surface forces per surface unit

•
$$\Delta t = t' - t$$

 $\frac{\mathrm{d}}{\mathrm{d}t} \int_{\omega} \rho \mathbf{u} dx = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\int_{\omega'} \rho \mathbf{u}(x', t') dx' - \int_{\omega} \rho \mathbf{u}(x, t) dx \right)$

• a material point x' at time t' corresponding to (x, t)

$$x' = x + \Delta t \mathbf{u}(x, t) + \mathbf{0}(\Delta t^2).$$

change of variables

$$\int_{\omega'} \rho \mathbf{u}(x',t') dx' = \int_{\omega} (\rho \mathbf{u})(x + \Delta t \mathbf{u}, t + \Delta t)(1 + \Delta t \operatorname{div} \mathbf{u}) dx$$
(like (WP))
Blood flow in stanted atteries
but 23,2009, 9/

Vuk Milisic (WPI

The momentum equation II

• first order Taylor expansion in Δt , and $\Delta t
ightarrow 0$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\left[\partial_t(\rho\mathbf{u})+(\mathrm{div}\,u)\rho\mathbf{u}+(\mathbf{u}\cdot\nabla)\rho\mathbf{u}\right]dx$$

Taking into account the continuity equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}d\mathbf{x}=\int_{\omega}\rho\left[\partial_{t}\mathbf{u}+(\mathbf{u}\cdot\nabla)\mathbf{u}\right]d\mathbf{x}$$

where

$$v \cdot \nabla w = \sum_{j=1}^{N} v_j \frac{\partial_j w_i}{x_j}$$

• ω arbitrary, eqs become pointwise:

$$\rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) - \operatorname{div} \boldsymbol{\sigma} = \rho \mathbf{f}$$

Viscous stresses,

$$\sigma := -\rho \mathrm{Id} + \sigma', \quad \sigma' := 2\mu \left| \mathsf{D}(\mathsf{u}) - \frac{1}{2} \mathrm{div} \, \mathsf{u} \mathrm{Id} \right|, \quad 2\mathsf{D}(\mathsf{u}) := \nabla \mathsf{u} + \nabla \mathsf{u}^2$$

VUK IVIIIISIC (VVI I)	Vuk	Milisic	(W	'PI)
-----------------------	-----	---------	----	------

The momentum equation II

• first order Taylor expansion in Δt , and $\Delta t
ightarrow 0$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\left[\partial_{t}(\rho\mathbf{u})+\mathrm{div}\left(\rho\mathbf{u}\otimes\mathbf{u}\right)\right]dx$$

• Taking into account the continuity equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}d\mathbf{x}=\int_{\omega}\rho\left[\partial_{t}\mathbf{u}+(\mathbf{u}\cdot\nabla)\mathbf{u}\right]d\mathbf{x}$$

where

$$v \cdot \nabla w = \sum_{j=1}^{N} v_j \frac{\partial_j w_i}{x_j}$$

• ω arbitrary, eqs become pointwise:

$$\rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) - \operatorname{div} \boldsymbol{\sigma} = \rho \mathbf{f}$$

• Viscous stresses,

$$\sigma := -\rho \mathrm{Id} + \sigma', \quad \sigma' := 2\mu \left| \mathsf{D}(\mathsf{u}) - \frac{1}{3} \mathrm{div} \, \mathsf{u} \mathrm{Id} \right|, \quad 2\mathsf{D}(\mathsf{u}) := \nabla \mathsf{u} + \nabla \mathsf{u}^{\mathsf{T}}$$

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 10 / 89

The momentum equation II

• first order Taylor expansion in Δt , and $\Delta t
ightarrow 0$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\left[\partial_t(\rho\mathbf{u})+\mathrm{div}\left(\rho\mathbf{u}\otimes\mathbf{u}\right)\right]dx$$

• Taking into account the continuity equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\rho\left[\partial_{t}\mathbf{u}+(\mathbf{u}\cdot\nabla)\mathbf{u}\right]dx$$

where

$$v \cdot \nabla w = \sum_{j=1}^{N} v_j \frac{\partial_j w_i}{xj}$$

ω arbitrary, eqs become pointwise:

$$\rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) - \operatorname{div} \boldsymbol{\sigma} = \rho \mathbf{f}$$

• Viscous stresses,

$$\boldsymbol{\sigma} := -\boldsymbol{p} \mathrm{Id} + \boldsymbol{\sigma}', \quad \boldsymbol{\sigma}' := 2\mu \left[\mathsf{D}(\mathsf{u}) - \frac{1}{3} \mathrm{div} \, \mathsf{u} \mathrm{Id} \right], \quad 2\mathsf{D}(\mathsf{u}) := \nabla \mathsf{u} + \nabla \mathsf{u}^{\mathsf{T}}$$

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 10 / 89

The momentum equation II

• first order Taylor expansion in Δt , and $\Delta t
ightarrow 0$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\left[\partial_t(\rho\mathbf{u})+\mathrm{div}\left(\rho\mathbf{u}\otimes\mathbf{u}\right)\right]dx$$

• Taking into account the continuity equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\rho\left[\partial_{t}\mathbf{u}+(\mathbf{u}\cdot\nabla)\mathbf{u}\right]dx$$

where

$$\mathbf{v} \cdot \nabla \mathbf{w} = \sum_{j=1}^{N} \mathbf{v}_j \frac{\partial_j \mathbf{w}_i}{\mathbf{x}_j}$$

• ω arbitrary, eqs become pointwise:

$$\rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) - \operatorname{div} \boldsymbol{\sigma} = \rho \mathbf{f}$$

• Viscous stresses,

$$\boldsymbol{\sigma} := -\boldsymbol{\rho} \mathrm{Id} + \boldsymbol{\sigma}', \quad \boldsymbol{\sigma}' := 2\mu \left[\mathbf{D}(\mathbf{u}) - \frac{1}{3} \mathrm{div} \, \mathbf{u} \mathrm{Id} \right], \quad 2\mathbf{D}(\mathbf{u}) := \nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{T}}$$

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 10 / 89

(日) (周) (三) (三)

The momentum equation II

• first order Taylor expansion in Δt , and $\Delta t
ightarrow 0$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\left[\partial_t(\rho\mathbf{u})+\mathrm{div}\left(\rho\mathbf{u}\otimes\mathbf{u}\right)\right]dx$$

• Taking into account the continuity equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\omega}\rho\mathbf{u}dx=\int_{\omega}\rho\left[\partial_{t}\mathbf{u}+(\mathbf{u}\cdot\nabla)\mathbf{u}\right]dx$$

where

$$\mathbf{v} \cdot \nabla \mathbf{w} = \sum_{j=1}^{N} \mathbf{v}_j \frac{\partial_j \mathbf{w}_i}{\mathbf{x}_j}$$

 $\bullet \ \omega$ arbitrary, eqs become pointwise:

$$\rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) - \operatorname{div} \boldsymbol{\sigma} = \rho \mathbf{f}$$

• Viscous stresses,

$$\boldsymbol{\sigma} := -\boldsymbol{\rho} \mathrm{Id} + \boldsymbol{\sigma}', \quad \boldsymbol{\sigma}' := 2\mu \left[\mathbf{D}(\mathbf{u}) - \frac{1}{3} \mathrm{div} \, \mathbf{u} \mathrm{Id} \right], \quad 2\mathbf{D}(\mathbf{u}) := \nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{T}}$$

(日) (同) (三) (三)

The full Navier-Stokes system

Newtonian incompressible viscous fluids with constant density

• Incompressibility: fixed volume the contiuity equation reduces to

$$\operatorname{div} \mathbf{u} = \mathbf{0}$$

momentun equation reduces to

 $\rho(\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}) - \mu \Delta \mathbf{u} + \nabla p = \rho \mathbf{f}$

Dimensionless formulation of the Navier-Stokes equations setting

$$\mathbf{x}' = \mathbf{x}/L, t' = (U/L)t, \mathbf{u}' = \mathbf{u}/U, \mathbf{p}' = \frac{p}{\rho U^2}, \mathbf{f}' = (L/U^2)\mathbf{f}$$

gives

$$\begin{cases} \partial_t \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{u}' - \frac{1}{\Re} \Delta \mathbf{u}' + \nabla p = \mathbf{f} \\ \operatorname{div} \mathbf{u}' = \mathbf{0} \end{cases}$$

where \Re is the Reynolds number

$$\Re := \rho \frac{UL}{\mu}$$

Vuk Milisic (WPI)

July 23, 2009 11 / 89

イロト イポト イヨト イヨト

The full Navier-Stokes system

Newtonian incompressible viscous fluids with constant density

• Incompressibility: fixed volume the contiuity equation reduces to

$$\operatorname{div} \mathbf{u} = \mathbf{0}$$

momentun equation reduces to

 $\rho(\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}) - \mu \Delta \mathbf{u} + \nabla p = \rho \mathbf{f}$

Dimensionless formulation of the Navier-Stokes equations setting

$$\mathbf{x}' = \mathbf{x}/L, t' = (U/L)t, \mathbf{u}' = \mathbf{u}/U, p' = \frac{p}{\rho U^2}, \mathbf{f}' = (L/U^2)\mathbf{f}$$

gives

$$\begin{cases} \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} - \frac{1}{\Re} \Delta \mathbf{u} + \nabla p = \mathbf{f} \\ \operatorname{div} \mathbf{u} = \mathbf{0} \end{cases}$$

where \Re is the Reynolds number

$$\Re := \rho \frac{UL}{\mu}$$

Vuk Milisic (WPI)

July 23, 2009 11 / 89

イロト イポト イヨト イヨト

Consider a flow:

- steady
- linearized around $\mathbf{u} \equiv \mathbf{0}$
- ullet low reynolds number $\Re \sim 1$
- you obtain The Stokes system
- complement with boundary conditions

 $\mathbf{u} = \mathbf{g}_D, \quad \sigma_{\mathbf{u},\rho} \cdot \mathbf{n} = \mathbf{g}_N,$

$$\begin{cases} \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} - \frac{1}{\Re} \Delta \mathbf{u} + \nabla \rho &= \mathbf{f} \\ \operatorname{div} \mathbf{u} &= \mathbf{0} \end{cases}$$

3

(日) (周) (三) (三)

Consider a flow:

steady

- linearized around $\mathbf{u} \equiv \mathbf{0}$
- low reynolds number $\Re \sim 1$
- you obtain The Stokes system
- complement with boundary conditions

 $\mathbf{u} = \mathbf{g}_D, \quad \sigma_{\mathbf{u},p} \cdot \mathbf{n} = \mathbf{g}_N,$

$$\begin{cases} \mathbf{u} \cdot \nabla \mathbf{u} - \frac{1}{\Re} \Delta \mathbf{u} + \nabla p &= \mathbf{f} \\ \operatorname{div} \mathbf{u} &= \mathbf{0} \end{cases}$$

3

(日) (同) (三) (三)

Consider a flow:

- steady
- linearized around $\mathbf{u} \equiv \mathbf{0}$
- ullet low reynolds number $\Re\sim 1$
- you obtain The Stokes system
- complement with boundary conditions

$$\mathbf{u} = \mathbf{g}_D, \quad \sigma_{\mathbf{u},p} \cdot \mathbf{n} = \mathbf{g}_N,$$

$$\begin{cases} -\frac{1}{\Re}\Delta \mathbf{u} + \nabla p &= \mathbf{f} \\ \operatorname{div} \mathbf{u} &= 0 \end{cases}$$

3

- 4 回 ト - 4 回 ト

Consider a flow:

- steady
- linearized around $\mathbf{u} \equiv \mathbf{0}$
- low reynolds number $\Re \sim 1$
- you obtain The Stokes system
- complement with boundary conditions

$$\mathbf{u} = \mathbf{g}_D, \quad \sigma_{\mathbf{u},p} \cdot \mathbf{n} = \mathbf{g}_N,$$

$$\begin{cases} -\Delta \mathbf{u} + \nabla p &= \mathbf{f} \\ \operatorname{div} \mathbf{u} &= \mathbf{0} \end{cases}$$

Vuk Milisic (WPI)

3

A B A A B A

47 ▶

Consider a flow:

- steady
- linearized around $\mathbf{u} \equiv \mathbf{0}$
- low reynolds number $\Re \sim 1$
- you obtain The Stokes system
- complement with boundary conditions

$$\mathbf{u} = \mathbf{g}_D, \quad \sigma_{\mathbf{u},p} \cdot \mathbf{n} = \mathbf{g}_N,$$

$$\begin{cases} -\Delta \mathbf{u} + \nabla p &= \mathbf{f} \\ \operatorname{div} \mathbf{u} &= \mathbf{0} \end{cases}$$

Vuk Milisic (WPI)

3

Consider a flow:

- steady
- linearized around $\mathbf{u} \equiv \mathbf{0}$
- \bullet low reynolds number $\Re \sim 1$
- you obtain The Stokes system
- complement with boundary conditions

$$\mathbf{u} = \mathbf{g}_D, \quad \sigma_{\mathbf{u},p} \cdot \mathbf{n} = \mathbf{g}_N,$$

$$\begin{cases} -\Delta \mathbf{u} + \nabla p &= \mathbf{f} \\ \operatorname{div} \mathbf{u} &= \mathbf{0} \end{cases}$$

Vuk Milisic (WPI)

• variational form $\forall \mathbf{v} \in \mathcal{D}(\overline{\Omega})$:

$$\begin{split} &\int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v} dx - \int_{\Omega} p \operatorname{div} \mathbf{v} dx \\ &+ \int_{\partial \Omega} ((p \operatorname{Id} - \nabla \mathbf{u}) \cdot \mathbf{n}, \mathbf{v}) ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \end{split}$$

(日) (同) (三) (三)

• variational form $\forall \mathbf{v} \in \mathcal{D}(\overline{\Omega})$:

$$\begin{split} &\int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v} dx - \int_{\Omega} p \operatorname{div} \mathbf{v} dx \\ &+ \int_{\partial \Omega} (p - \partial_{\mathbf{n}} \mathbf{u} \cdot \mathbf{n}) (\mathbf{v} \cdot \mathbf{n}) ds - \int_{\partial \Omega} (\partial_{\mathbf{n}} \mathbf{u} \cdot \boldsymbol{\tau}) (\mathbf{v} \cdot \boldsymbol{\tau}) ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \end{split}$$

• Complete Dirichlet: test space $\mathbf{v} = \mathbf{0}$

Partial dirichlet

Dirichlet on normal velocity

 $oldsymbol{v}\cdotoldsymbol{n}=0,\qquad \partial_{oldsymbol{n}}oldsymbol{u}\cdotoldsymbol{ au}+\mu(oldsymbol{u}\cdotoldsymbol{ au})=g,\quad \mu\geq 0$

Dirichlet on tangent velocity

 $\mathbf{v} \cdot \boldsymbol{\tau} = 0, \qquad p = \partial_n \mathbf{u} \cdot \mathbf{n} - \mu(\mathbf{u} \cdot \mathbf{n}) = \mathbf{g}, \quad \mu \ge 0.$

Natural boundary conditions

Vuk Milisic (WPI)

• variational form
$$\forall \mathbf{v} \in \mathcal{D}(\overline{\Omega})$$
:

$$\int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v} dx - \int_{\Omega} p \mathrm{div} \, \mathbf{v} dx$$

• Complete Dirichlet: test space $\mathbf{v} = \mathbf{0}$

Partial dirichlet

Dirichlet on normal velocity

 $oldsymbol{
u}\cdot \mathbf{n}=0,\qquad \partial_{\mathbf{n}}\mathbf{u}\cdotoldsymbol{ au}+\mu(\mathbf{u}\cdotoldsymbol{ au})=g,\quad \mu\geq 0.$

Dirichlet on tangent velocity

 $\mathbf{v}\cdot oldsymbol{ au} = \mathbf{0}, \qquad p - \,\partial_{\mathbf{n}} \mathbf{u}\,\cdot \mathbf{n} - \mu(\mathbf{u}\cdot \mathbf{n}) = g, \quad \mu \geq \mathbf{0},$

 $-(\nabla \mathbf{u} - \rho \mathrm{Id}) \cdot \mathbf{n} = \mathrm{M}\mathbf{u} + \mathbf{g}, \quad \forall \mathrm{M} \in \mathcal{A}(\mathbf{z}^+, \mathbb{R}), \mathbf{z}$

Natural boundary conditions

Vuk Milisic (WPI)

• variational form $\forall \mathbf{v} \in \mathcal{D}(\overline{\Omega})$:

$$\int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v} dx - \int_{\Omega} p \operatorname{div} \mathbf{v} dx$$
$$- \int_{\partial \Omega} (\partial_{\mathbf{n}} \mathbf{u} \cdot \boldsymbol{\tau}) (\mathbf{v} \cdot \boldsymbol{\tau}) ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}$$

- Complete Dirichlet: test space $\mathbf{v} = \mathbf{0}$
- Partial dirichlet

Dirichlet on normal velocity

$$\mathbf{v}\cdot\mathbf{n}=\mathbf{0},\qquad\partial_{\mathbf{n}}\mathbf{u}\cdot\boldsymbol{ au}+\mu(\mathbf{u}\cdot\boldsymbol{ au})=g,\quad\mu\geq\mathbf{0}$$

Dirichlet on tangent velocity

$$\mathbf{v}\cdot oldsymbol{ au} = \mathsf{0}, \qquad p - \,\partial_{\mathbf{n}}\mathbf{u}\,\cdot\mathbf{n} - \mu(\mathbf{u}\cdot\mathbf{n}) = g, \quad \mu \geq \mathsf{0}$$

Natural boundary conditions

 $-(\nabla \mathbf{u} - p\mathrm{Id}) \cdot \mathbf{n} = \mathbb{M}\mathbf{u} + \mathbf{g}, \quad \forall \mathbb{M} \in \mathcal{M}_{2,2}^+(\mathbb{R}), \quad \mathbf{h} \in \mathcal{M}_{2,2}^+(\mathbb{R$

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 14 / 89

• variational form $\forall \mathbf{v} \in \mathcal{D}(\overline{\Omega})$:

$$\int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v} dx - \int_{\Omega} p \operatorname{div} \mathbf{v} dx$$
$$+ \int_{\partial \Omega} (p - \partial_{\mathbf{n}} \mathbf{u} \cdot \mathbf{n}) (\mathbf{v} \cdot \mathbf{n}) ds$$

- Complete Dirichlet: test space $\mathbf{v} = \mathbf{0}$
- Partial dirichlet
 - Dirichlet on normal velocity

$$\mathbf{v} \cdot \mathbf{n} = \mathbf{0}, \qquad \partial_{\mathbf{n}} \mathbf{u} \cdot \boldsymbol{\tau} + \mu(\mathbf{u} \cdot \boldsymbol{\tau}) = g, \quad \mu \ge \mathbf{0}$$

2 Dirichlet on tangent velocity

$$\mathbf{v} \cdot \boldsymbol{\tau} = \mathbf{0}, \qquad p - \partial_{\mathbf{n}} \mathbf{u} \cdot \mathbf{n} - \mu(\mathbf{u} \cdot \mathbf{n}) = g, \quad \mu \ge \mathbf{0}$$

• Natural boundary conditions

 $-(\nabla \mathbf{u} - p\mathrm{Id}) \cdot \mathbf{n} = \mathbb{M}\mathbf{u} + \mathbf{g}, \quad \forall \mathbb{M} \in \mathcal{M}_{2,2}(\mathbb{R}), \quad \mathbf{h} \in \mathcal{M}_{2,2}(\mathbb{R}),$

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 14 / 89

• variational form $\forall \mathbf{v} \in \mathcal{D}(\overline{\Omega})$:

$$\begin{split} &\int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{v} dx - \int_{\Omega} p \operatorname{div} \mathbf{v} dx \\ &+ \int_{\partial \Omega} (p - \partial_{\mathbf{n}} \mathbf{u} \cdot \mathbf{n}) (\mathbf{v} \cdot \mathbf{n}) ds - \int_{\partial \Omega} (\partial_{\mathbf{n}} \mathbf{u} \cdot \boldsymbol{\tau}) (\mathbf{v} \cdot \boldsymbol{\tau}) ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \end{split}$$

- Complete Dirichlet: test space $\mathbf{v} = \mathbf{0}$
- Partial dirichlet

Dirichlet on normal velocity

$$\mathbf{v} \cdot \mathbf{n} = \mathbf{0}, \qquad \partial_{\mathbf{n}} \mathbf{u} \cdot \boldsymbol{\tau} + \mu(\mathbf{u} \cdot \boldsymbol{\tau}) = g, \quad \mu \ge \mathbf{0}$$

2 Dirichlet on tangent velocity

$$\mathbf{v} \cdot \boldsymbol{\tau} = \mathbf{0}, \qquad p - \partial_{\mathbf{n}} \mathbf{u} \cdot \mathbf{n} - \mu(\mathbf{u} \cdot \mathbf{n}) = g, \quad \mu \ge \mathbf{0}$$

Natural boundary conditions

$$-(\nabla \mathbf{u} - p\mathrm{Id}) \cdot \mathbf{n} = \mathbb{M}\mathbf{u} + \mathbf{g}, \quad \forall \mathbb{M} \in \mathcal{M}^+_{2,2}(\mathbb{R}) = \mathbf{s}$$

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 14 / 89

Introduction

- Industrial context
- 2 Deriving Navier-Stokes equations
 - The continuity equation
 - The momentum equation
- 3 The Stokes system
 - The abstract formalism
 - Application to the Stokes equations
 - The rough problem
 - Boundary layer theory for rough domains
 - Homogenized first order terms
 - The colateral artery
 - The modelling approach
 - Boundary layer theory for rough boundaries
 - Homogenized first order terms
 - Numerical evidence
 - Sacular aneurysm
 - The problem

Vuk Milisic (WPI)

Abstract problem

Define

• the Banach spaces

X, Y

the operators

$$A: X \to Y', \quad B: X \to Y$$

• solve the problem, find *u*, *p* s.t.

$$\begin{cases} Au + B^T p = f \\ Bu = g \end{cases}$$

We study in an abstract formalism

- the well-posednes
- the continuity wrt data
Framework

- fundamental results for linear bijective operators in Banach spaces
- classical
 - 🔋 Brezis. H

Analyse fonctionnelle Masson

Yosida Functional analysis Springer

A. Ern and J.-L. Guermond.

Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Series. Springer-Verlag

The abstract formalism

Preliminary results

- V and W Banach spaces
- A an application $A \in \mathcal{L}(V, W)$
- $\mathcal{N}(A)$ kernel
- $\mathcal{R}(A)$ rank
- $V/\mathcal{R}(A)$ quotiented space

$$v \equiv w \Leftrightarrow v - w \in \mathcal{N}(A), \quad \|v\|_{V/\mathcal{N}(A)} \leq \inf_{w \in \mathcal{N}(A)} \|v + w\|_{V}$$

Theorem 1.1

- $V/\mathcal{N}(A)$ is a Banach space
- $\overline{A}: V/\mathcal{N}(A) \to \mathcal{R}(A)$ s.t.

$$\overline{A}\overline{v} = Av$$

\overline{A} bijective

Vuk Milisic (WPI)

Kernels Ranks and Adjoint operators

- V Banach space
- $M \subset V, N \subset V'$

$$M^{\perp} := \left\{ v' \in V'; \ \forall m \in M, < v', m >_{V',V} = 0 \right\}$$
$$N^{\perp} := \left\{ v \in V; \ \forall n' \in N, < n', v >_{V',V} = 0 \right\}$$

Theorem 1.2

For $A \in \mathcal{L}(V; W)$, the following properties hold

$$\mathcal{N}(A) = (\mathcal{R}(A^T))^{\perp}$$
 $\mathcal{N}(A^T) = (\mathcal{R}(A))^{\perp}$
 $\overline{\mathcal{R}(A)} = (\mathcal{N}(A^T))^{\perp}$

$$\ \bullet \ \ \overline{\mathcal{R}(A^{\mathcal{T}})} \subset (\mathcal{N}(A))^{\perp}$$

- ∢ ∃ ▶

Kernels Ranks and Adjoint operators

Closed range

Theorem 1.2

For $A \in \mathcal{L}(V; W)$, the following properties are equivalent

- **1** $\mathcal{R}(A)$ is closed
- **2** $\mathcal{R}(A^T)$ is closed

•
$$\mathcal{R}(A^T) = (\mathcal{N}(A))^{\perp}$$

(日) (同) (三) (三)

Closed range

Closed range

Also

Lemma 1.1

If $A \in \mathcal{L}(V; W)$, the following propositions are equivalent

- $\mathcal{R}(A)$ closed
- $\exists \alpha > 0 \text{ s.t. } \forall w \in \mathcal{R}(A), \exists v_w \in V \text{ s.t.}$

$$Av_{w} = w, \quad \alpha \|v_{w}\|_{V} \leq \|w\|_{W}$$

Proof.

 $\mathcal{R}(A)$ closed $\implies A: V \to \mathcal{R}(A)$ surjective. Then apply the open mapping theorem on $A: V \to \mathcal{R}(A)$

(日) (周) (三) (三)

Also

Theorem 1.2 (Petree Tartar)

Hypotheses:

- X, Y, Z Banach spaces
- $A \in \mathcal{L}(X, Y)$ injective
- $T \in \mathcal{L}(X, Z)$ compact
- There exists c > 0 s.t.

$$c \|x\|_{X} \le \|Ax\|_{Y} + \|Tx\|_{Z}$$

Conclusion : there exists α s.t.

$$\forall x \in X, \quad \alpha \|x\|_X \le \|Ax\|_Y$$

Proof.

By contradiction: suppose $\exists x_n \in X$ s.t. $\|x_n\|_X = 1$ and $\|Ax\| \to 0$

The abstract formalism

The inf-sup condition

Surjectivity sometimes tedious instead possible characterisation:

Lemma 1.1

Hypotheses:

- V and W Banach spaces
- V reflexive

then the following claim are \sim

- (i) $\exists \alpha \in \mathbb{R}_+$ s.t. $\forall w \in W$, $\exists v_w \in V$ s.t. $Av_w = w$ and $\alpha \|v_w\|_V \leq \|w\|_W$
- (ii) The inf-sup condition

$$\inf_{w' \in W'} \sup_{v \in V} \frac{\langle A^{\mathsf{T}} w', v \rangle}{\|v_w\|_V \|w\|_W} \geq \alpha$$

Proof.

$$(i) \implies (ii)$$
 easy , reverse cf Ern-Guermond

July 23, 2009 22 / 89

Surjective operators

Lemma 1.2

${\it A} \in {\cal L}(V,W)$ then the following assertions are \sim

- A^T surjective
- **2** A injective and $\mathcal{R}(A)$ closed
- $\exists \alpha > 0 \ s.t. \ \forall v \in V \ \alpha \|v\|_{V} \leq \|Av\|_{W}$

Lemma 1.3

- $A \in \mathcal{L}(V, W)$ then the following assertions are \sim
 - A surjective
 - **2** A^T injective and $\mathcal{R}(A^T)$ closed

$$\exists \alpha > 0 \text{ s.t. } \forall w \in W' \alpha \|w'\|_{W'} \le \|A^T w'\|_{V'}$$

・ロン ・聞と ・ほと ・ほと

Onto mappings

Theorem 1.3 $A \in \mathcal{L}(V, W)$ bijective iff

 $\begin{cases} A^{T} : W' \to V' \text{ injective} \\ \forall v \in V \quad \|v\|_{V} \le \alpha \|Av\|_{W} \end{cases}$

Proof.

A surjective $\Leftrightarrow A^T$ injective and $\mathcal{R}(A^T)$ closed $\mathcal{R}(A^T)$ closed $\Leftrightarrow \mathcal{R}(A)$ closed $\mathcal{R}(A)$ closed and A injective $\Leftrightarrow \exists \alpha > 0$ s.t. $\forall v \in V \ \alpha \|v\|_V \le \|Av\|_W$

Note

A bijective Banach operator iff

- A injective
- *R*(*A*) closed
- A^T injective

Saddle point problems

- X, M Banachs
- $A: X \to X'$
- $B: X \to M$
- Given $(f,g) \in X' \times M$ find $(u,p) \in X \times M'$ solving

$$\begin{cases} Au + B^{\mathsf{T}}p &= f\\ Bu &= g \end{cases}$$
(1)

•
$$\mathcal{N}(B)$$
 kernel of B
• $\pi A : \mathcal{N}(B) \to \mathcal{N}(B)'$ s.t.

$$<\pi Au, v>=, \quad \forall u, v \in \mathcal{N}(B)$$

Theorem 1.4

Problem (1) is well-posed iff • $\pi A : \mathcal{N}(B) \to \mathcal{N}(B)'$ isom • $B : X \to M$ surjective

July 23, 2009 25 / 89

Proof of theorem 1.4

Necessary conditions pbm well posed \implies 1 and 2 (part I)

• B surjective ?

 $h \in M$ denote (u, p) solution of (1) with data (0, h). B surjective ok.

• πA surjective ? Let $h \in \mathcal{N}(B)'$, Hahn-Banach theorem there exists $\tilde{h} \in X'$ extension of h s.t. (cf Yosida p.102 and 106.)

$$\begin{cases} < \tilde{h}, v > = < h, v >, \quad \forall v \in \mathcal{N}(B) \\ \left\| \tilde{h} \right\|_{X'} = \|h\|_{\mathcal{N}(B)'} \end{cases}$$

Let (u, p) solution pbm (1) with data $(\tilde{h}, 0) \implies u \in \mathcal{N}(B)$ as $\langle B^T p, v \rangle = \langle p, Bv \rangle = 0, \quad \forall v \in \mathcal{N}(B)$

one has

$$<\pi Au, v>=< h, v>, \quad \forall v \in \mathcal{N}(B)$$

thus $\exists u \in \mathcal{N}(B)$ s.t. $\pi A u = h$

Vuk Milisic (WPI)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで July 23, 2009

26 / 89

Proof of theorem 1.4

Necessary conditions pbm well posed \implies 1 and 2 (part II)

• πA injective ? Hypothesis: $\langle \pi Au, v \rangle = 0$, $\forall v \in \mathcal{N}(B)$ then $\pi Au \in \mathcal{N}(B)^{\perp} = \mathcal{R}(B^{T})$ (because B surjective) $\exists p \in M' \text{ s.t. } Au = -B^{T}p$ thus (u, p) satisfy $\begin{cases} Au + B^{T}p = 0\\ Bu = 0 \end{cases}$

pbm well posed \implies (u, p) = (0, 0)

Proof of theorem 1.4

Sufficient conditions 1 and 2 \implies pbm well posed (part I)

$$Au - f \in \mathcal{N}(B)^{\perp}$$

As B surjective $\mathcal{N}(B)^{\perp} = \mathcal{R}(B^{T})$ and $\exists p \in M'$ s.t.

$$Au - f = -B^T p$$
, and $Bu = g$

existence ok

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

The abstract formalism

Proof of theorem 1.4

Sufficient conditions 1 and 2 \implies pbm well posed (part II)

Uniqueness ?
 (f,g) := (0,0) Above gives there exists (u, p) s.t.

$$\begin{cases} Au + B^T p = 0\\ Bu = 0 \end{cases}$$

then
$$u \in \mathcal{N}(B)$$
 and $\pi Au = 0 \implies u \equiv 0$
B surjective $\implies B^T$ injective $\implies p \equiv 0$
ok

イロト 不得下 イヨト イヨト 二日

A priori estimates

Lemma 1.4 Conditions (i) and (ii) satisfied then

 $\begin{aligned} \exists c_i(\alpha, \beta), & i \in 1, \dots, 4 \text{ independent on } f, g, u, p \text{ s.t.} \\ \|u\|_X &\leq c_1 \|f\|_{X'} + c_2 \|g\|_M \\ \|p\|_{M'} &\leq c_3 \|f\|_{X'} + c_4 \|g\|_M \end{aligned}$

(日) (周) (三) (三)

A priori estimates

Proof.

$$\begin{array}{c|c} \exists u_g \ / \ B u_g = g \\ B \ \text{surjective} \\ X \ \text{reflexive} \end{array} \end{array} \implies \exists \beta > 0 \ \text{s.t} \ \beta \| u_g \|_X \le \| g \|_M$$

Then solve $A\Phi = f - Au_g$ in $\mathcal{N}(B)'$, A surjective \implies

$$\exists \alpha > 0 \text{ s.t. } \alpha \|\Phi\|_X \le \|f\|_{X'} + \|A\|_{\mathcal{L}(X;X')} \|u_g\|_X$$

As we set $u := \Phi + u_g$

$$||u||_X \le ||\Phi||_X + ||u_g||_X$$

B surjective

$$\beta \|\boldsymbol{p}\|_{\boldsymbol{M}'} \le \left\|\boldsymbol{B}^{\mathsf{T}} \boldsymbol{p}\right\|_{\boldsymbol{X}'}$$

also for p s.t. $B^T p = f - Au$. ok

Image: A matched block of the second seco

Surjectivity of the $\operatorname{div}\,$ operator

Set

$$\mathbf{W}^{1,q}_0(\Omega):=\{v\in L^q(\Omega) ext{ s.t. } D^lpha v\in L^q(\Omega), \quad v=0 ext{ on } \partial\Omega\}$$

Theorem 1.5

Hypothesis: let

• Ω a bounded domain of \mathbb{R}^n s.t.

$$\Omega = \cup_{k=1}^{N} \Omega_k, \quad N \ge 1$$

where Ω_k star shaped wrt B_k s.t. $\overline{B}_k \subset \Omega_k$ • $f \in L^q(\Omega)$ s.t. $\int_{\Omega} f dx = 0$ Conclusion: \exists a vector $\mathbf{v} \in \mathbf{W}_0^{1,q}(\Omega)$ s.t.

$$\operatorname{div} \mathbf{v} = f, \quad |\mathbf{v}|_{\mathbf{W}_0^{1,q}(\Omega)} \le c \|f\|_{L^q(\Omega)}$$

Idea of the proof

cf p.115-125 in

🔋 Giovanni P. Galdi,

An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I.

Springer-Verlag,

(日) (同) (三) (三)

Idea of the proof

1 rescale Ω wrt radius, center in in 0

2 This domain is star-like wrt \forall point of $B(0,1) \subset \Omega$ set

$$\forall \omega \in C_0^\infty(\mathbb{R}^n) \text{ s.t. supp } \omega \subset B(0,1), \quad \int_B \omega(y) dy = 1$$

one has an explicit formula if $f \in C_0^{\infty}(\Omega)$

$$\mathbf{v}(x) = \int_{\Omega} f(y) \left[\frac{x - y}{|x - y|^n} \int_{|x - y|}^{\infty} \omega \left(y + \xi \frac{x - y}{|x - y|} \right) \xi^{n - 1} d\xi \right] dy$$

Ocheck that rescaled again it satisfies

$$\operatorname{div} \mathbf{v} = f, \quad |\mathbf{v}|_{\mathbf{W}^{1,q}(\Omega)} \le c|f|_{L^q(\Omega)}$$

(approximate f by $\{f_m\} \in C_0^\infty(\Omega)$ and set

$$f_m^* := f_m - \varphi \int_\Omega f_m dy, \quad m \in \mathbb{N} \text{ with } \varphi \in C_0^\infty(\Omega), \int_\Omega \varphi = 1$$

extract $\mathbf{v}_{m_k} \rightarrow \mathbf{v}$ in $\mathbf{W}^{1,q}(\Omega)$ Vuk Milisic (WPI) Blood f

July 23, 2009

32 / 89

Idea of the proof

• As $\Omega = \bigcup_{k=1}^{N} \Omega_k$, $\exists N$ functions f_k s.t. for $k \in \{1, ..., N\}$ (i) $f_k \in L^q(\Omega)$ (ii) $\operatorname{supp}(f_k) \in \overline{\Omega}_k$ (iii) $\int_{\Omega_k} f_k dx = 0$ (iv) $f = \sum_k f_k$ (v) $\exists C(\Omega_k)$ s.t. $\|f_k\|_{L^q(\Omega)} \leq C \|f\|_{L^q(\Omega)}$

proof: contructive, explicit form wrt f and $\int_{\Omega_{\mu}} f dx$

Conclusion

Set

- Ω bounded Lipshitz domain
- $(\mathbf{f},g) \in \mathbf{H}^{-1}(\Omega) \times L^2(\Omega)_{\int=0}$
- solve the problem: find (\mathbf{u}, p) solving

$$\begin{cases} -\Delta \mathbf{u} + \nabla p &= 0 \text{ in } \Omega \\ \operatorname{div} \mathbf{u} &= 0 \\ \mathbf{u} = 0 & \text{ on } \partial \Omega \end{cases}$$

Theorem 1.6

 $\exists! \text{ pair } (\mathbf{u}, p) \in \mathbf{H}^1_0(\Omega) \times L^2(\Omega) / \mathbb{R} \text{ solving } (2).$ Moreover one has

$$\|\mathbf{u}\|_{\mathbf{H}^{1}(\Omega)}+\|\boldsymbol{p}\|_{L^{2}(\Omega)/\mathbb{R}}\leq C(\alpha,\beta)\left\{\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)}+\|\boldsymbol{g}\|_{L^{2}(\Omega)}\right\}$$

(2)

The rough problem

Introduction

- Industrial context
- 2 Deriving Navier-Stokes equations
 - The continuity equation
 - The momentum equation
- 3 The Stokes system
 - The abstract formalism
 - Application to the Stokes equations
- 4 The rough problem
 - Boundary layer theory for rough domains
 - Homogenized first order terms
 - The colateral artery
 - The modelling approach
 - Boundary layer theory for rough boundaries
 - Homogenized first order terms
 - Numerical evidence
 - Sacular aneurysm
 - The problem

Vuk Milisic (WPI)

Bibliography

W. Jäger and A. Mikelić.

On the boundary conditions at the contact interface between a porous medium and a free fluid,

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1996

W. Jäger and A. Mikelić.

On the interface boundary condition of Beavers, Joseph, and Saffman. *SIAM J. Appl. Math.*, 60(4):1111–1127, 2000.

W. Jäger and A. Mikelić.

Couette flows over a rough boundary and drag reduction. *Commun. Math. Phys.*, 232(3):429–455, 2003.

V. M.

Blood flow along and trough a metallic multi-wired stent preprint

イロト イポト イヨト イヨト 二日

Notations and Methodology

() Construction of a complete boundary layer corrector: Ω_ϵ

2 Derivation of wall laws: Ω_0

We denote:

- $P = \partial Q$, Q a body isomorphic to an open ball, regular
- Ω the "smooth domain", Γ^0 the fictitious interface,
- x the slow space variable , $y = \frac{x}{\epsilon}$ the fast one.

The problem

• One aims to solve

$$\begin{cases} -\Delta \mathbf{u}_{\epsilon} + \nabla p_{\epsilon} = 0 \text{ in } \Omega_{\epsilon} \\ \operatorname{div} \mathbf{u}_{\epsilon} = 0 \\ \mathbf{u}_{\epsilon} = 0 \text{ on } \Gamma_{1} \cup \Gamma_{\epsilon} \\ \mathbf{u}_{\epsilon} \cdot \boldsymbol{\tau} = 0 \text{ on } \Gamma_{\operatorname{in}} \cup \Gamma_{\operatorname{out}} \\ p_{\epsilon} = p_{\operatorname{in}} \text{ on } \Gamma_{\operatorname{in}}, \quad p_{\epsilon} = 0 \text{ on } \Gamma_{\operatorname{out}}, \end{cases}$$

3

<ロ> (日) (日) (日) (日) (日)

The limit solution when $\epsilon \rightarrow 0$

• The Poiseuille flow

$$\begin{split} & (-\Delta \mathbf{u}_0 + \nabla p_0 = 0 \text{ in } \Omega \\ & \operatorname{div} \mathbf{u}_0 = 0 \\ & \mathbf{u}_0 = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \\ & \mathbf{u}_0 \cdot \boldsymbol{\tau} = 0 \text{ on } \Gamma_{\operatorname{in}} \cup \Gamma_{\operatorname{out}}, \\ & p_0 = p_{\operatorname{in}} \text{ on } \Gamma_{\operatorname{in}}, \quad p_0 = 0 \text{ on } \Gamma_{\operatorname{out}} \\ & \mathbf{u}_0 \neq 0 \text{ on } \Gamma_{\epsilon} \end{split}$$

• (**u**₀, *p*₀) is explicit and reads:

$$\begin{cases} \mathbf{u}_0(x) = \frac{p_{\text{in}}}{2}(1-x_2)x_2\mathbf{e}_1, & \forall x \in \Omega\\ p_0(x) = p_{\text{in}}(1-x_1) \end{cases}$$

Theorem 1.7

$$\|\mathbf{u}_{\epsilon} - \mathbf{u}_{0}\|_{\mathbf{H}^{1}(\Omega_{\epsilon})^{2}} + \|p_{\epsilon} - p_{0}\|_{L^{2}(\Omega_{\epsilon})} \leq k\sqrt{\epsilon}$$

where the constant k does not depend on ϵ .

Vuk Milisic (WPI)

July 23, 2009 39 / 89

Proof.

• set $v := \mathbf{u}_{\epsilon} - \mathbf{u}_0, q := p_{\epsilon} - p_0$ they solve

$$\begin{cases} -\Delta \mathbf{v} + \nabla q = 0 \text{ in } \Omega \\ \operatorname{div} \mathbf{v} = 0 \\ \mathbf{v} = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \\ \mathbf{v} \cdot \boldsymbol{\tau} = 0 \text{ on } \Gamma_{\operatorname{in}} \cup \Gamma_{\operatorname{out}}, \\ q = 0 \text{ on } \Gamma_{\operatorname{in}} \cup \Gamma_{\operatorname{out}} \\ \mathbf{v} \neq 0 \text{ on } \Gamma_{\epsilon} \end{cases}$$

- lift the Dirichlet data on Γ_{ϵ} set $\mathcal{R}(v) := \mathbf{u}_0 \psi(x_2/\epsilon)$
- use a priori estimates
- compute $\|
 abla \mathcal{R}(v) \|_{L^2(\Omega_\epsilon)}$ and conclude

• Taylor expansion of **u** around $(x_1, 0)$

• Taylor expansion of **u** around $(x_1, 0)$

$$u_{0,1}(x) = u_{0,1}(x_1,0) + \frac{\partial u_{0,1}}{\partial x_2}(x_1,0)x_2$$

The error is ε times a microscopic oscilation of first order
This is corrected by a micorscopic periodic boundary layer

• Taylor expansion of **u** around $(x_1, 0)$

$$u_{0,1}(x) = u_{0,1}(x_1, 0) + \epsilon \frac{\partial u_{0,1}}{\partial x_2}(x_1, 0) \quad \frac{x_2}{\epsilon}$$

The error is \epsilon times a microscopic oscilation of first order
This is corrected by a micorscopic periodic boundary layer

Image: A 1 → A

• Taylor expansion of **u** around $(x_1, 0)$

$$u_{0,1}(x) = u_{0,1}(x_1, 0) + \epsilon \frac{\partial u_{0,1}}{\partial x_2}(x_1, 0) \quad \frac{x_2}{\epsilon}$$

The error is \(\epsilon\) times a microscopic oscilation of first order
This is corrected by a micorscopic periodic boundary layer

• Taylor expansion of **u** around $(x_1, 0)$

$$u_{0,1}(x) = u_{0,1}(x_1, 0) + \epsilon \frac{\partial u_{0,1}}{\partial x_2}(x_1, 0) \quad \frac{x_2}{\epsilon}$$

- The error is ϵ times a microscopic oscilation of first order
- This is corrected by a micorscopic periodic boundary layer

Horizontal correctors

• Microscopic corrector à la Mikelić

$$\begin{cases} -\Delta\beta + \nabla\pi = 0 \text{ in } S \\ \operatorname{div} \beta = 0 \\ \beta = -y_2 \mathbf{e}_1 \text{ on } P \cup \Sigma \end{cases}$$

Properties

Proposition 1

 $\exists ! (\beta, \pi), \pi$ defined up to a constant, s.t.

$$ablaeta\in L^2(S)^4,\quad (eta-\overlineeta(\cdot))\in L^2(S),\quad \pi\in L^2_{\mathrm{loc}}(S)$$

Moreover, one has:

$$\beta(\mathbf{y}) \rightarrow \overline{\beta}_+ \mathbf{e}_1, \quad \mathbf{y}_2 \rightarrow +\infty$$

cvg exponential and

$$\begin{cases} \overline{\beta}_2(y_2) = 0, & \forall y_2 \in \mathbb{R} \\ \overline{\beta}_1(y_2) = -\mu(Q) - |\nabla\beta|^2_{L^2(S)} & y_2 > y_{2,P}, \end{cases}$$

where $y_{2,P} := max_{y \in P}y_2$ and $\mu(Q)$ is the volume of the body Q.

イロト イポト イヨト イヨト

Proof Solve the velocity

• Define the test space:

$$X:=\{\mathbf{v}\in \mathbf{L}^2_{\mathrm{loc}}(S), ext{ s.t. }
abla \mathbf{v}\in L^2(S)^4, \quad \mathbf{v}=0 ext{ on } \Sigma\cup P\}$$

• lift the Dirichlet boundary $ilde{oldsymbol{eta}} := eta - \mathcal{R}(oldsymbol{eta})$

• then $\forall \boldsymbol{\varphi} \in \mathcal{N}(\operatorname{div}) \cap X$ one has

$$\int_{\mathcal{S}}
abla ilde{oldsymbol{eta}} :
abla arphi dy = \int_{\mathcal{S}}
abla \mathcal{R}(eta) \cdot
abla arphi dy$$

• by Lax-Milgram $\exists ! \hat{\boldsymbol{\beta}} \in \mathcal{N}(\operatorname{div}) \cap X$

(日) (同) (三) (三)
Proof Solve the velocity

• Define the test space:

$$X:=\{\mathbf{v}\in \mathbf{L}^2_{\mathrm{loc}}(S), ext{ s.t. }
abla \mathbf{v}\in L^2(S)^4, \quad \mathbf{v}=0 ext{ on } \Sigma\cup P\}$$

- lift the Dirichlet boundary $ilde{oldsymbol{eta}} := eta \mathcal{R}(oldsymbol{eta})$
- then $orall arphi \in \mathcal{N}(\mathrm{div}\,) \cap X$ one has

$$\int_{\mathcal{S}}
abla ilde{oldsymbol{eta}} :
abla arphi dy = \int_{\mathcal{S}}
abla \mathcal{R}(oldsymbol{eta}) \cdot
abla arphi dy$$

• by Lax-Milgram $\exists ! \tilde{\boldsymbol{\beta}} \in \mathcal{N}(\operatorname{div}) \cap X$

3

(日) (同) (三) (三)

Proof Solve the velocity

• Define the test space:

$$X:=\{\mathbf{v}\in \mathbf{L}^2_{\mathrm{loc}}(S), ext{ s.t. }
abla \mathbf{v}\in L^2(S)^4, \quad \mathbf{v}=0 ext{ on } \Sigma\cup P\}$$

- lift the Dirichlet boundary $ilde{oldsymbol{eta}} := eta \mathcal{R}(oldsymbol{eta})$
- then $\forall oldsymbol{arphi} \in \mathcal{N}(\mathrm{div}\,) \cap X$ one has

$$\int_{\mathcal{S}}
abla ilde{oldsymbol{eta}} :
abla arphi ext{dy} = \int_{\mathcal{S}}
abla \mathcal{R}(oldsymbol{eta}) \cdot
abla arphi ext{dy}$$

• by Lax-Milgram $\exists ! ilde{oldsymbol{eta}} \in \mathcal{N}(\mathrm{div}\,) \cap X$

- **(())) (())) ())**

Recover the pressure

- $\bullet\,$ To our knoledge no results of surjectivity of ${\rm div}\,$ on the undounded strips
- On bounded restrictions $S_k := S \cap]0, 1[x]0, k[$ solve
 - find p solving

$$\begin{cases} -\Delta p = g, & \text{in } S_l \\ \partial_n p = 0, & \text{on } P \cup \partial S_k \end{cases}$$

for any g in

$$M = \left\{g \in L^2(S_k), \text{ s.t. } \int_{S_k} g dy = 0
ight\}$$

2 and **w** lifts ∇p on P

$$\left\{ egin{array}{ll} \operatorname{div} \mathbf{w} = \mathbf{0}, & \operatorname{in} \, S_k \ \mathbf{w} =
abla p, & \operatorname{on} \, P \end{array}
ight.$$

• $\nabla: L^2(S_k)/\mathbb{R} \to \mathsf{H}^{-1}_{\Sigma \cup P \cup \{y_2=k\}}(S_k)$ injective

Recover the pressure II

- $S = \cup_k S_k$
- Let $\mathbf{f} \in X'$ such that $<\mathbf{f}, arphi>=$ 0 $\forall arphi \in \mathcal{N}(\mathrm{div})$, let

let $\mathbf{v} \in \mathcal{N}(\operatorname{div}_k)$, set $\tilde{\mathbf{v}}$ extension of \mathbf{v} on S by 0

then $\tilde{\mathbf{v}} \in \mathcal{N}(\operatorname{div})$

$$<\mathbf{f}, \widetilde{\mathbf{v}}>=0, \implies \mathbf{f}|_{\mathcal{S}_k} \in \mathcal{N}(\operatorname{div}_k)^{\perp}=\mathcal{R}(\nabla_k)$$

• thus $\exists p \in L^2(S_k)/\mathbb{R}$ s.t.

$$\mathbf{f} = \nabla p_k$$
, on S_k

S_k increasing sets p_{k+1} − p_k = Cst on S_k, choose p_{k+1} s.t. Cst = 0.
finally letting k → ∞

$$\mathbf{f} =
abla \mathbf{p}, \quad \mathbf{p} \in L^2_{\mathrm{loc}}(S)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Exponential decrease

- So far we proved $\exists ! (eta, \pi) \in X imes L^2_{
 m loc}$
- At $\{y_2 = L\}$ there exists $\beta(y_1, L) \in H^{\frac{1}{2}}(\{y_2 = L\})$ set $\xi := \mathrm{rot}\beta$

$$\Delta \xi = 0 ext{ on } y_2 > L, \quad \xi = \mathrm{rot} eta$$

use the y_1 Fourier transform

$$\xi = \sum_{k=1}^{+\infty} (C_{1,n} \sin(2\pi k y_1) + C_{1,n} \sin(2\pi k y_1)) e^{-2\pi k y_2}$$

recover the velocity

$$\Delta\beta = (\nabla\zeta)^{\perp}$$

which gives

$$\beta = \sum_{k=1}^{\infty} ((\mathbf{D}_{1,n} + \mathbf{C}_{1,n}y_2) \sin(2\pi ky_1) + (\mathbf{D}_{2,n} + \mathbf{C}_{2,n}y_2) \cos(2\pi ky_1))e^{-2\pi ky_2}$$

- + compatibility condition on $\mathbf{D}_{i,n}, \mathbf{C}_{i,n}$ in order to satisfy $\operatorname{div} \beta = 0$
- same story for the pressure

Vuk Milisic (WPI)

• For $\overline{\beta}_2$ integrate the div equation on $S_{\omega,0} := S \cap]0, 1[\times]0, \omega[$ $\int_{S_{\omega,\gamma}} \operatorname{div} \beta dy = 0 = \overline{\beta}_2(\omega) - \int_P y_2 \mathbf{e}_1 \cdot \mathbf{n} ds - \overline{\beta}_2(0)$

• For $\overline{\beta}_2$: set the "Fundamental solution"

$$\begin{cases} -\Delta I_{\nu} + \nabla J_{\nu} = -\delta_{\{y_2 = \nu\}} \text{ in } S \\ \operatorname{div} I_{\nu} = 0 \end{cases}$$

reads

$$I_{\nu} := \frac{1}{2} |y_2 - \nu| \mathbf{e}_1, \quad J_{\nu} = 0$$

• Apply the Green formula on $S_{\omega,0}$

$$(-\Delta\beta + \nabla\pi, l_{\nu})_{S_{\omega,0}} - (-\Delta l + \nabla J, \beta)_{S_{\omega,0}} = \overline{\beta}_{1}(\nu)$$

= $(-\sigma_{\beta,\pi} \cdot \mathbf{n}, l_{\nu})_{\partial S_{\omega,0}} + (\sigma_{l_{\nu},J_{\nu}} \cdot \mathbf{n}, \beta)_{\partial S_{\omega,0}}$
= $-\frac{1}{2} |\nabla\beta|^{2}_{L^{2}(S)^{4}} + \frac{1}{2} (\partial_{\mathbf{n}} y_{2} \mathbf{e}_{1}, y_{2} \mathbf{e}_{1}) + \frac{1}{2} \overline{\beta}_{1}(\omega)$

Vuk Milisic (WPI)

• For $\overline{\beta}_2$ integrate the div equation on $S_{\omega,0} := S \cap]0, 1[\times]0, \omega[$ $\int_{S_{\omega,0}} \operatorname{div} \beta dy = 0 = \overline{\beta}_2(\omega)$

• For $\overline{\beta}_2$: set the "Fundamental solution"

$$\begin{cases} -\Delta I_{\nu} + \nabla J_{\nu} = -\delta_{\{y_2 = \nu\}} \text{ in } S \\ \operatorname{div} I_{\nu} = 0 \end{cases}$$

reads

$$I_{\nu} := \frac{1}{2} |y_2 - \nu| \mathbf{e}_1, \quad J_{\nu} = 0$$

• Apply the Green formula on $S_{\omega,0}$

$$(-\Delta\beta + \nabla\pi, l_{\nu})_{S_{\omega,0}} - (-\Delta l + \nabla J, \beta)_{S_{\omega,0}} = \overline{\beta}_{1}(\nu)$$

$$= (-\sigma_{\beta,\pi} \cdot \mathbf{n}, l_{\nu})_{\partial S_{\omega,0}} + (\sigma_{l_{\nu},J_{\nu}} \cdot \mathbf{n}, \beta)_{\partial S_{\omega,0}}$$

$$= -\frac{1}{2} |\nabla\beta|^{2}_{L^{2}(S)^{4}} + \frac{1}{2} (\partial_{\mathbf{n}} y_{2} \mathbf{e}_{1}, y_{2} \mathbf{e}_{1}) + \frac{1}{2} \overline{\beta}_{1}(\omega)$$

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 46 / 89

• For $\overline{\beta}_2$ integrate the div equation on $S_{\omega,0} := S \cap]0, 1[\times]0, \omega[$ $\int_{S_{\omega,0}} \operatorname{div} \beta dy = 0 = \overline{\beta}_2(\omega)$

• For $\overline{\beta}_2$: set the "Fundamental solution"

$$\begin{cases} -\Delta I_{\nu} + \nabla J_{\nu} = -\delta_{\{y_2 = \nu\}} \text{ in } S\\ \operatorname{div} I_{\nu} = 0 \end{cases}$$

reads

$$I_{\nu} := \frac{1}{2} |y_2 - \nu| \mathbf{e}_1, \quad J_{\nu} = 0$$

• Apply the Green formula on $S_{\omega,0}$

$$(-\Delta\beta + \nabla\pi, I_{\nu})_{S_{\omega,0}} - (-\Delta I + \nabla J, \beta)_{S_{\omega,0}} = \overline{\beta}_{1}(\nu)$$

= $(-\sigma_{\beta,\pi} \cdot \mathbf{n}, I_{\nu})_{\partial S_{\omega,0}} + (\sigma_{I_{\nu},J_{\nu}} \cdot \mathbf{n}, \beta)_{\partial S_{\omega,0}}$
= $-\frac{1}{2} |\nabla\beta|^{2}_{L^{2}(S)^{4}} + \frac{1}{2} (\partial_{\mathbf{n}} y_{2} \mathbf{e}_{1}, y_{2} \mathbf{e}_{1}) + \frac{1}{2} \overline{\beta}_{1}(\omega)$

• For $\overline{\beta}_2$ integrate the div equation on $S_{\omega,0} := S \cap]0, 1[\times]0, \omega[$ $\int_{S_{\omega,0}} \operatorname{div} \beta dy = 0 = \overline{\beta}_2(\omega)$

• For $\overline{\beta}_2$: set the "Fundamental solution"

$$\begin{cases} -\Delta I_{\nu} + \nabla J_{\nu} = -\delta_{\{y_2 = \nu\}} \text{ in } S\\ \operatorname{div} I_{\nu} = 0 \end{cases}$$

reads

$$I_{\nu} := rac{1}{2} |y_2 - \nu| \mathbf{e}_1, \quad J_{\nu} = 0$$

• Apply the Green formula on $S_{\omega,0}$

$$(-\Delta\beta + \nabla\pi, I_{\nu})_{S_{\omega,0}} - (-\Delta I + \nabla J, \beta)_{S_{\omega,0}} = \overline{\beta}_{1}(\nu)$$

= $(-\sigma_{\beta,\pi} \cdot \mathbf{n}, I_{\nu})_{\partial S_{\omega,0}} + (\sigma_{I_{\nu},J_{\nu}} \cdot \mathbf{n}, \beta)_{\partial S_{\omega,0}}$
= $-\frac{1}{2} |\nabla\beta|^{2}_{L^{2}(S)^{4}} + \frac{1}{2} (\partial_{\mathbf{n}} y_{2} \mathbf{e}_{1}, y_{2} \mathbf{e}_{1}) + \frac{1}{2} \overline{\beta}_{1}(\omega)$

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 46 / 89

Vertical correctors

Microscopic corrector

$$\begin{cases} -\Delta w_{\beta} + \nabla \theta_{\beta} = 0 \text{ in } \Pi \\ \operatorname{div} w_{\beta} = 0 \\ w_{\beta} = 0 \text{ on } D \cup B \\ w_{\beta} \cdot \boldsymbol{\tau} = \beta_{2} \\ \theta_{\beta} = \pi \end{cases} \text{ on } N$$

• the usual weighted Sobolev space :

$$W^{m,p}_lpha(\Omega):=\left\{v\in\mathcal{D}'(\Omega) \;\; ext{s.t.} \;\; |D^\lambda v|(1+
ho^2)^{rac{lpha+|\lambda|-m}{2}}\;\in L^p(\Omega), \, 0\leq |\lambda|\leq m
ight\}$$

Properties

Theorem 1.8

$$\exists ! (\mathbf{w}, \theta) \in \mathbf{W}^{1,2}_{\alpha}(\Pi)^2 \times W^{0,2}_{\alpha}(\Pi)$$
 if

 $\alpha < 1$

Vuk Milisic (WPI)

July 23, 2009 47 / 89

Proof I

• lift the tangent component of the data

۰

3

イロト イヨト イヨト イヨト

Proof I

- lift the tangent component of the data
- then the problem reads

$$\begin{cases} -\Delta w_{\beta} + \nabla \theta_{\beta} = \mathbf{f} \text{ in } \Pi \\ \operatorname{div} w_{\beta} = g \\ w_{\beta} = 0 \text{ on } D \cup B \\ w_{\beta} \cdot \boldsymbol{\tau} = 0 \\ \theta_{\beta} = h \end{cases} \text{ on } N$$

with the spaces:

$$\begin{aligned} &A: \mathbf{W}^{1,2}_{\alpha}(\Pi) \to \left(\mathbf{W}^{1,2}_{-\alpha}(\Pi)\right)' \\ &B: \mathbf{W}^{1,2}_{\alpha}(\Pi) \to \mathbf{W}^{0,2}_{\alpha}(\Pi) \\ &B^{\mathcal{T}}: \mathbf{W}^{0,2}_{\alpha}(\Pi) \to \left(\mathbf{W}^{1,2}_{-\alpha}(\Pi)\right)' \end{aligned}$$

the div and ∇ do not map in duality Vuk Milisic (WPI)

Blood flow in stented arteries

3 July 23, 2009 48 / 89

Proof I

- lift the tangent component of the data
- transform the problem setting

$$\rho := (1 + |y|^2)^{\frac{1}{2}}, \quad \mathbb{U} := \rho^{\alpha} w_{\beta}, \quad \mathbb{P} := \rho^{\alpha} \theta_{\beta},$$
$$\begin{cases} -\mathcal{A}_{\alpha} \mathbb{U} + \mathcal{B}_{\alpha}^{T} \mathbb{P} = \rho^{\alpha} \mathbf{f} \text{ in } \Pi \\ \mathcal{B}_{\alpha} \mathbb{U} = \rho^{\alpha} g \\ \mathbb{U} = 0 \text{ on } B \\ \mathbb{U} \cdot \boldsymbol{\tau} = 0 \\ \mathbb{P} = \rho^{\alpha} h \end{cases} \text{ on } N$$

where

$$\begin{cases} \mathcal{A}_{\alpha}\mathbb{U} := -\Delta\mathbb{F} - 2\rho^{\alpha}\nabla\mathbb{F}\cdot\nabla\frac{1}{\rho^{\alpha}} - \rho^{\alpha}\Delta\frac{1}{\rho^{\alpha}}\mathbb{F}\\ \mathcal{B}_{\alpha}\mathbb{U} := \operatorname{div}\mathbb{U} + \rho^{\alpha}\nabla\left(\frac{1}{\rho^{\alpha}}\right)\cdot\mathbb{U} \end{cases}$$

3

(日) (同) (三) (三)

Proof II

In the new variables the operators act on

$$egin{aligned} &\mathcal{A}_lpha: \mathbf{W}_0^{1,2}(\Pi)
ightarrow \mathbf{W}_0^{-1,2}(\Pi) \ &\mathcal{B}_lpha: \mathbf{W}_0^{1,2}(\Pi)
ightarrow W_0^{0,2}(\Pi) \ &\mathcal{B}_lpha^{\mathcal{T}}: W_0^{0,2}(\Pi)
ightarrow \mathbf{W}_0^{-1,2}(\Pi) \end{aligned}$$

new change of variables \mathcal{B}_{α} acts in duality. Check • coercivity on the kernel $\forall \mathbb{U} \in \mathbf{W}_{0}^{1,2}(\Pi) \cap \mathcal{N}(\operatorname{div})$

$$(\mathcal{A}_{\alpha}\mathbb{U},\mathbb{U}) \geq \|\nabla\mathbb{U}\|_{L^{2}(\Pi)} - \alpha^{2} \left\|\frac{\mathbb{U}}{\rho}\right\|_{L^{2}(\Pi)}$$

use weighted Poincare-Wirtinger and conclude

2 surjection of div follows define a sequence C_n covering Π where

$$\begin{split} & C_n := \{ y \in \Pi \text{ s.t. if } x = (r, \tilde{\theta}) \quad r \in]2^{n-1}, 2^n[\}, \quad n \ge 1, \\ & C_0 := B(0, 1) \cap \Pi. \end{split}$$

on each of them use Galdi's candidate, and conclude

Vuk Milisic (WPI)

Localizing

• The corner cut-of Set $\psi_1 := \overline{\psi}(x)$ and $\psi_2 := \overline{\psi}(x - (0, 1))$, where $\overline{\psi}$ s.t.

$$\overline{\psi} := \begin{cases} 1 \text{ if } |x| \leq \frac{1}{3} \\ 0 \text{ if } |x| \geq \frac{2}{3} \end{cases}$$

NB: $\partial_{\mathbf{n}}\overline{\psi} = 0$ on $\Gamma_{\mathrm{in}} \cup \Gamma_{\mathrm{out}}$.

Provide the term of the corner of the complementary on Γ_{in} ∪ Γ_{out} ∪ Γ₂ s.t.

$$\begin{cases} \psi + \Phi = 1 \\ \partial_{\mathbf{n}} \Phi = 0, \end{cases} \quad \text{ on } \mathsf{\Gamma}_{\mathrm{in}} \cup \mathsf{\Gamma}_{\mathrm{out}} \cup \mathsf{\Gamma}_{2} \end{cases}$$

for instance $\Phi(x) := 1 - \psi(0, x_2)$ for all $x \in \Omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Macro corrector

$$\begin{cases} \Delta \mathbf{W} + \nabla Z = 0, & \text{in } \Omega_{\epsilon} \\ \operatorname{div} \mathbf{W} = 0 \\ \mathbf{W} \wedge \mathbf{n} = \epsilon \left\{ \frac{\partial u_{0,1}}{\partial x_2} (\beta_{\epsilon} - \overline{\beta}) \right\} \wedge \mathbf{n} \Phi \\ Z = \left\{ \frac{\partial u_{0,1}}{\partial x_2} \beta \pi \right\} \Phi \end{cases} \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\text{out}} \\ \mathbf{W} = 0 \text{ on } \Gamma_{\epsilon} \\ \mathbf{W} = \epsilon \left\{ \frac{\partial u_{0,1}}{\partial x_2} (\beta_{\epsilon} - \overline{\beta}) \right\} \Phi \text{ on } \Gamma_{1} \end{cases}$$

Proposition 2

 \exists ! solution $(\mathbf{W}, Z) \in \mathbf{H}^1(\Omega_{\epsilon}) \times L^2(\Omega_{\epsilon})$, moreover:

$$\|\mathbf{W}\|_{\mathbf{H}^{1}(\Omega_{\epsilon})} + \|Z\|_{L^{2}(\Omega_{\epsilon})} \leq ke^{-\frac{\gamma}{\epsilon}}$$

rate γ and constant k do not depend on ϵ .

define

$$\begin{split} \mathcal{W}_{\epsilon}(x) &:= \epsilon \left\{ \psi_1(x) \mathbf{w} \left(\frac{x}{\epsilon}\right) + \psi_2((1,0) - x) \mathbf{w} \left(\frac{(1,0) - x}{\epsilon}\right) \right\} + \mathbf{W}(x), \\ \mathcal{Z}_{\epsilon}(x) &:= \left\{ \psi_1(x) \theta \left(\frac{x}{\epsilon}\right) + \psi_2((1,0) - x) \theta \left(\frac{(1,0) - x}{\epsilon}\right) \right\} + Z(x), \end{split}$$

Vuk Milisic (WPI)

July 23, 2009 51 / 89

3

イロト イポト イヨト イヨト

Full boundary layer approximation

Set

$$\begin{aligned} \mathcal{V}_{\epsilon} &:= \mathbf{u}_{0} + \epsilon \left\{ \frac{\partial u_{0,1}}{\partial x_{2}} (\beta_{\epsilon} - \overline{\beta}) + \mathbf{u}_{1} \right\} + \frac{\partial u_{0,1}}{\partial x_{2}} \mathcal{W}_{\epsilon} \\ \mathcal{P}_{\epsilon} &:= p_{0} + \left\{ \frac{\partial u_{0,1}}{\partial x_{2}} \pi_{\epsilon} + \epsilon p_{1} \right\} + \frac{\partial u_{0,1}}{\partial x_{2}} \mathcal{Z}_{\epsilon} \end{aligned}$$

where

$$\begin{cases} -\Delta \mathbf{u}_1 + \nabla p_1 = 0 \text{ in } \Omega \\ \text{div } \mathbf{u}_1 = 0 \\ \mathbf{u}_1 = 0 \text{ on } \Gamma_1 \\ \mathbf{u}_1 \cdot \boldsymbol{\tau} = 0 \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\text{out}}, \\ p_1 = 0 \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\text{out}} \\ \mathbf{u}_1 = \frac{\partial u_{0,1}}{\partial x_2} \overline{\beta} \mathbf{e}_1 \text{ on } \Gamma_0 \end{cases}$$

 (\mathbf{u}_1, p_1) give first order macroscopic approximation

Vuk Milisic (WPI)

July 23, 2009 52 / 89

3

Main convergence results

Theorem 1.9

First order error a priori estimates

$$\|\mathbf{u}_{\epsilon} - \mathcal{V}_{\epsilon}\|_{\mathbf{H}^{1}(\Omega_{\epsilon})} + \|p_{\epsilon} - \mathcal{P}_{\epsilon}\|_{L^{2}(\Omega_{\epsilon})} \leq k\epsilon$$

Very weak solutions à la Conca

$$\|\mathbf{u}_{\epsilon}-\mathcal{V}_{\epsilon}\|_{L^{2}(\Omega)}+\|p_{\epsilon}-\mathcal{P}_{\epsilon}\|_{H^{-1}(\Omega)/\mathbb{R}}\leq k\epsilon^{rac{3}{2}^{-1}}$$

At this point the approximation $(\mathcal{V}_{\epsilon}, \mathcal{P}_{\epsilon})$ is multi-scale

→ 3 → 4 3

Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

$$\mathcal{U}_{\epsilon} := \mathbf{u}_0 + \epsilon \mathbf{u}_1$$
$$\mathcal{Q}_{\epsilon} := p_0 + \epsilon p_1$$

Theorem 1.10

Very weak solutions à la Conca

$$\| \mathsf{u}_\epsilon - \mathcal{U}_\epsilon \|_{L^2(\Omega)} + \| \mathsf{p}_\epsilon - \mathcal{Q}_\epsilon \|_{H^{-1}(\Omega)} \leq k \epsilon^{rac{3}{2}}$$

Proof.

Use the triangular inequality

$$\|\mathbf{u}_{\epsilon} - \mathcal{U}_{\epsilon}\|_{L^{2}(\Omega)} \leq \|\mathbf{u}_{\epsilon} - \mathcal{V}_{\epsilon}\|_{L^{2}(\Omega)} + \|\mathcal{V}_{\epsilon} - \mathcal{U}_{\epsilon}\|_{L^{2}(\Omega)}$$

mostly only remains to estimate oscillations

$$\|\mathcal{V}_{\epsilon} - \mathcal{U}_{\epsilon}\|_{L^{2}(\Omega)} \leq \epsilon \left\|\beta - \overline{\overline{\beta}}\right\|_{L^{2}(\Omega)} + \dots + \mathcal{O}(\epsilon^{2}) \leq \epsilon^{\frac{3}{2}-1}$$

Very weak solutions

 $\boldsymbol{\Omega}$ bounded set ,

$$\begin{cases} -\Delta \mathbf{v} + \nabla q = G, \\ \operatorname{div} \mathbf{v} = 0 & \text{and} \\ \mathbf{v} = \xi \text{ on } \partial \Omega & \\ \end{cases} \begin{array}{l} -\Delta \mathbf{\Phi} + \nabla \varpi = g, \\ \operatorname{div} \mathbf{\Phi} = 0 \\ \mathbf{\Phi} = 0 \text{ on } \partial \Omega & \\ \end{cases}$$

Suppose that $({\bf v},q)$ and $({\bf \Phi},\varpi)$ are regular enough $({\bf H}^2\times {\cal H}^1)$

$$(\Delta \mathbf{v} - \nabla q, \mathbf{\Phi})_{\Omega} - (\Delta \mathbf{\Phi} - \nabla \varpi, \mathbf{v}) = (\sigma_{\mathbf{v},q} \cdot \mathbf{n}, \mathbf{\Phi})_{\partial \Omega} - (\sigma_{\mathbf{\Phi},\varpi} \cdot \mathbf{n}, \mathbf{v})_{\partial \Omega}$$

use the rhs and the BC

$$-(G, \mathbf{\Phi})_{\Omega} + (g, \mathbf{v})_{\Omega} = -(\sigma_{\mathbf{\Phi}, \varpi} \cdot \mathbf{n}, \xi)_{\partial \Omega}$$

if you can estimate Φ as a function of the data g one obtains:

$$|(g,\mathbf{v})_{\Omega}| \leq \|G\|_{\mathbf{H}^{-1}(\Omega)} \|\mathbf{\Phi}\|_{\mathbf{H}^{1}(\Omega)} + \|\xi\|_{L^{2}(\partial\Omega)} \|\sigma_{\mathbf{\Phi},\varpi}\|_{L^{2}(\partial\Omega)} \leq C \|g\|_{L^{2}(\Omega)}$$

So

$$\|\mathbf{v}\|_{L^{2}(\Omega)} = \sup_{g \in L^{2}(\Omega)} \frac{|(\mathbf{v}, g)|}{\|g\|_{L^{2}(\Omega)}} \le \|G\|_{\mathbf{H}^{-1}(\Omega)} + \|\xi\|_{L^{2}(\partial\Omega)}$$

Vuk Milisic (WPI)

July 23, 2009 55 / 89

3

Very weak solutions

Similarily

$$\begin{cases} -\Delta \mathbf{v} + \nabla q = G, & \text{in } \Omega \\ \operatorname{div} \mathbf{v} = H & \text{and} \\ \mathbf{v} \cdot \boldsymbol{\tau} = \xi, \quad \sigma_{\mathbf{v}, q} \mathbf{n} \cdot \mathbf{n} = \chi \text{ on } \partial\Omega \end{cases} \quad \text{and} \begin{cases} -\Delta \Phi + \nabla \varpi = g, & \text{in } \Omega \\ \operatorname{div} \Phi = h \\ \Phi \cdot \boldsymbol{\tau} = 0, \quad \sigma_{\Phi, \varpi} \mathbf{n} \cdot \mathbf{n} = 0 \text{ on } \partial\Omega \end{cases}$$

Suppose that (\mathbf{v}, q) and $(\mathbf{\Phi}, \varpi)$ are regular enough $(\mathbf{H}^2 imes H^1)$

$$\begin{aligned} (\Delta \mathbf{v} - \nabla q, \mathbf{\Phi})_{\Omega} - (\Delta \mathbf{\Phi} - \nabla \varpi, \mathbf{v}) = & (\sigma_{\mathbf{v}, q} \cdot \mathbf{n}, \mathbf{\Phi})_{\partial \Omega} - (\sigma_{\mathbf{\Phi}, \varpi} \cdot \mathbf{n}, \mathbf{v})_{\partial \Omega} \\ &+ (q, \operatorname{div} \mathbf{\Phi})_{\Omega} - (\varpi, \operatorname{div} \mathbf{v})_{\Omega} \end{aligned}$$

use the rhs and the BC

$$(G, \mathbf{\Phi})_{\Omega} - (H, \varpi)_{\Omega} - ((g, \mathbf{v})_{\Omega} - (h, q)_{\Omega}) = (\sigma_{\mathbf{\Phi}, \varpi} \cdot \mathbf{n}, \xi \boldsymbol{\tau})_{\partial \Omega} - (\mathbf{\Phi} \cdot \mathbf{n}\chi)_{\partial \Omega}$$

if you can estimate $\mathbf{\Phi}, arpi$ as a function of the data g, h one obtains:

$$\begin{split} |(g, \mathbf{v})_{\Omega} - (h, q)_{\Omega}| &\leq \|G\|_{\mathbf{H}^{-1}(\Omega)} \|\mathbf{\Phi}\|_{\mathbf{H}^{1}(\Omega)} + \|H\|_{L^{2}(\Omega)} \|\varpi\|_{L^{2}(\Omega)} \\ &+ \|\xi\|_{L^{2}(\partial\Omega)} \|\sigma_{\mathbf{\Phi}, \varpi} \mathbf{n}\tau\|_{L^{2}(\partial\Omega)} + \|\chi\|_{H^{-1}(\partial\Omega)} \|\mathbf{\Phi} \cdot \mathbf{n}\tau\|_{H^{1}(\partial\Omega)} \\ &\leq C \|g\|_{L^{2}(\Omega)} + C' \|h\|_{H^{1}(\Omega)} \end{split}$$

So

$$\|\mathbf{v}\|_{L^{2}(\Omega)} = \sup_{g \in L^{2}(\Omega)} \frac{|(\mathbf{v},g)|}{\|g\|_{L^{2}(\Omega)}} \leq C \qquad \|q\|_{H^{-1}(\Omega)} = \sup_{h \in L^{2}(\Omega)} \frac{|(q,h)|}{\|h\|_{H^{1}(\Omega)}} \leq C'$$

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 55 / 89

Wall law

• System of equations satisfied by $(\mathcal{U}_{\epsilon},\mathcal{Q}_{\epsilon})$?

$$\begin{cases} -\Delta \mathcal{U}_{\epsilon} + \nabla \mathcal{Q}_{\epsilon} = 0 \text{ in } \Omega \\ \operatorname{div} \mathcal{U}_{\epsilon} = 0 \\ \mathcal{U}_{\epsilon} = 0 \text{ on } \Gamma_{1} \\ \mathcal{U}_{\epsilon} \cdot \boldsymbol{\tau} = 0 \text{ on } \Gamma_{\operatorname{in}} \cup \Gamma_{\operatorname{out}}, \\ \mathcal{Q}_{\epsilon} = p_{\operatorname{in}} \text{ on } \Gamma_{\operatorname{in}}, \quad \mathcal{Q}_{\epsilon} = 0 \text{ on } \Gamma_{\operatorname{out}} \\ \mathcal{U}_{\epsilon} = \epsilon \overline{\beta} \frac{\partial \mathcal{U}_{\epsilon}}{\partial x_{2}} + O(\epsilon^{2}) \text{ on } \Gamma_{0} \end{cases}$$

Implicit boundary condition of mixed type

N / 1 N # 11 1	() (() (
Vilk Mille	
vulk ivillio	

æ

イロト イヨト イヨト イヨト

The colateral artery

Introduction

- Industrial context
- 2 Deriving Navier-Stokes equations
 - The continuity equation
 - The momentum equation
- 3 The Stokes system
 - The abstract formalism
 - Application to the Stokes equations
- The rough problem
 - Boundary layer theory for rough domains
 - Homogenized first order terms
- 5 The colateral artery
 - The modelling approach
 - Boundary layer theory for rough boundaries
 - Homogenized first order terms
 - Numerical evidence
 - Sacular aneurysm
 - The problem

Vuk Milisic (WPI)

Notations and Methodology

- **1** Construction of a complete boundary layer corrector: Ω_{ϵ}
- 2 Derivation of wall laws: Ω_0

We denote:

- $P = \{y \in \mathbb{R}^2 \text{ s.t. } y = r(\cos(\theta), \sin(\theta))\},\$
- Ω the "smooth domain", Γ^0 the fictitious interface,
- x the slow space variable , $y = \frac{x}{\epsilon}$ the fast one.

The problem

• The flow is laminar

$$\begin{cases} -\Delta \mathbf{u}_{\epsilon} + \nabla p_{\epsilon} = 0 \text{ in } \Omega_{\epsilon} \\ \operatorname{div} \mathbf{u}_{\epsilon} = 0 \\ \mathbf{u}_{\epsilon} = 0 \text{ on } \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{\epsilon} \\ u_{\epsilon,1} = 0 \text{ on } \Gamma_{\mathrm{in}} \cup \Gamma_{\mathrm{out},1} \\ u_{\epsilon,2} = 0 \text{ on } \Gamma_{\mathrm{out},2} \\ p_{\epsilon} = p_{\mathrm{in}} \text{ on } \Gamma_{\mathrm{in}}, \quad p_{\epsilon} = p_{\mathrm{out},1} \text{ on } \Gamma_{\mathrm{out},1}, p_{\epsilon} = p_{\mathrm{out},2} \text{ on } \Gamma_{\mathrm{out},2}, \end{cases}$$

• Pressure imposed \neq Dirichlet velocity as in

C. Conca. Étude d'un fluide traversant une paroi perforée. I & II. J. Math. Pures Appl. (9), 66(1):1–70, 1987.

(日) (同) (三) (三)

Expected behaviour

Image: A match a ma

Vuk	Milisic	(WPI)
vuit	with Sic	

The limit solution when $\epsilon \rightarrow 0$

• The Poiseuille flow

$$\begin{split} & (-\Delta \mathbf{u}_0 + \nabla p_0 = [\sigma_{\mathbf{u}_0, p_0}] \cdot \mathbf{n} \, \delta_{\Gamma_0} \text{ in } \Omega \\ & \text{div } \mathbf{u}_0 = 0 \\ & \mathbf{u}_0 = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \\ & u_{0,2} = 0 \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\text{out},1}, \quad u_{0,1} = 0 \text{ on } \Gamma_{\text{out},2} \\ & p_0 = p_{\text{in}} \text{ on } \Gamma_{\text{in}}, \quad p_0 = 0 \text{ on } \Gamma_{\text{out},1} \cup \Gamma_{\text{out},2} \\ & \mathbf{u}_0 \neq 0 \text{ on } \Gamma_\epsilon \end{split}$$

where $[\sigma_{\mathbf{u}_0,p_0}] \cdot \mathbf{n}$ is the jump across Γ_0 • (\mathbf{u}_0, p_0) is explicit and reads:

$$\begin{cases} \mathbf{u}_0(x) = \frac{p_{\mathrm{in}}}{2}(1-x_2)x_2\mathbf{e}_1\mathbf{1}_{\Omega_1}, & \forall x \in \Omega\\ p_0(x) = p_{\mathrm{in}}(1-x_1)\mathbf{1}_{\Omega_1} \end{cases}$$

Theorem 1.11

$$\|\mathbf{u}_{\epsilon} - \mathbf{u}_{0}\|_{H^{1}(\Omega_{\epsilon})^{2}} + \|p_{\epsilon} - p_{0}\|_{L^{2}(\Omega_{\epsilon})} \leq k\sqrt{\epsilon}$$

where the constant k does not depend on ϵ .

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 61 / 89

Higher order approximation ?

- \bullet No flow at zeroth order through $\Gamma_{out,2}$!
- Errors treefold
 - **1** Dirichlet non homogeneous on Γ_{ϵ}
 - 2 Jumps at Γ_0 of $\frac{\partial u_{0,1}}{\partial x_2}$
 - 3 Jumps at Γ_0 of p_0
- Use of two kind boundary layers
 - verical
 - a horizontal

Dirichlet correction

• Microscopic corrector à la Mikelić

$$\begin{cases} -\Delta\beta + \nabla\pi = 0 \text{ in } S \\ \operatorname{div} \beta = 0 \\ \beta = -y_2 \mathbf{e}_1 \text{ on } P \\ \beta_2 \to 0, \quad |y_2| \to \infty \end{cases}$$

Properties

Proposition 3

 $\exists ! (\beta, \pi), \pi$ defined up to a constant, s.t.

$$ablaeta\in L^2(S)^4, (eta-\overlineeta)\in L^2(S), \quad \pi\in L^2_{\mathrm{loc}}(S)$$

Moreover, one has:

$$\beta(y) \rightarrow \overline{\beta}_{\pm} \mathbf{e}_1, \quad y_2 \rightarrow \pm \infty$$

and

$$\begin{cases} \overline{\beta}_2(y_2) = 0, & \forall y_2 \in \mathbb{R} \\ \overline{\beta}_1(y_2) = (\partial_{\mathbf{n}}(y_2\mathbf{e}_1).y_2\mathbf{e}_1)_{\mathcal{P}} - |\nabla\beta|^2_{L^2(5)} + \overline{\beta}(0), & y_2 > y_{2,\mathcal{P}}, \\ \overline{\beta}_1(y_2) = \overline{\beta}_1(0), & y_2 < 0 \\ \overline{\pi}(y_2) = 0, & y_2 > y_{2,\mathcal{P}} \text{ and } y_2 < 0 \end{cases}$$

where $y_{2,P} := max_{y \in P}y_2$.

(日) (四) (王) (王) (王)

Normal derivative horizontal velocity correction

• Microscopic corrector à la Mikelić

$$\begin{cases} -\Delta \Upsilon + \nabla \varpi = \delta_{\Sigma} \mathbf{e}_{1} \text{ in } S \\ \operatorname{div} \Upsilon = 0 \\ \Upsilon = 0 \text{ on } P \\ \Upsilon_{2} \to 0, \quad |y_{2}| \to \infty \end{cases}$$

Properties

Proposition 4

 $\exists !(\Upsilon, \varpi), \varpi$ defined up to a constant, s.t.

$$abla \Upsilon \in L^2(S)^4, (\Upsilon - \overline{\Upsilon}) \in L^2(S), \quad arpi \in L^2_{\mathrm{loc}}(S)$$

Moreover, one has:

$$\Upsilon(y) \to \overline{\Upsilon}_{\pm} \mathbf{e}_1, \quad y_2 \to \pm \infty$$

and

$$\begin{cases} \overline{\Upsilon}_2(y_2) = 0, & \forall y_2 \in \mathbb{R} \\ \overline{\Upsilon}_1(y_2) = \overline{\Upsilon}(0) + \overline{\beta}(0), & y_2 > y_{2,P}, \\ \overline{\Upsilon}_1(y_2) = \overline{\Upsilon}_1(0), & y_2 < 0 \\ \overline{\varpi}(y_2) = 0, & y_2 > y_{2,P} \text{ and } y_2 < 0 \end{cases}$$

where $y_{2,P} := max_{y \in P}y_2$.

Vertical correctors

• Microscopic corrector à la Conca

$$\begin{cases} -\Delta \chi + \nabla \eta = 0 \text{ in } S \\ \operatorname{div} \chi = 0 \\ \chi = 0 \text{ on } P \\ \chi_2 \to -1, \quad |y_2| \to \infty \end{cases}$$

Properties

Proposition 5

 $\exists !(\boldsymbol{\chi}, \eta), \eta$ defined up to a constant, s.t.

$$abla \chi \in L^2(S)^4, (\chi - \overline{\chi}) \in L^2(S), \quad (\eta - \overline{\eta}) \in L^2_{ ext{loc}}(S)$$

Moreover, one has:

$$\chi(y) \rightarrow -\overline{\chi}_{\pm} \mathbf{e}_2, \quad y_2 \rightarrow \pm \infty$$

and

$$\begin{cases} \eta(\mathbf{y}) = \overline{\eta}^{\pm}, \quad \forall \mathbf{y}_2 \in \mathbb{R}_- \times] \mathbf{y}_{2,P}, +\infty[, \\ |\nabla \chi|^2_{L^2(S)} = [\overline{\eta}]^+_- \end{cases}$$

where $y_{2,P} := max_{y \in P}y_2$.

(日) (四) (王) (王) (王)

Vertical correctors

Microscopic corrector

$$\begin{cases} -\Delta w_{\beta} + \nabla \theta_{\beta} = 0 \text{ in } \Pi \\ \operatorname{div} w_{\beta} = 0 \\ w_{\beta} = 0 \text{ on } D \cup B \\ w_{\beta} \wedge \mathbf{n} = \beta_{2} \\ \theta_{\beta} = \pi \end{cases} \text{ on } N \end{cases} \xrightarrow{N}$$

• the usual weighted Sobolev space :

$$W^{m,p}_{lpha}(\Omega):=\left\{v\in\mathcal{D}'(\Omega) \hspace{0.1 in} ext{s.t.} \hspace{0.1 in} |D^{\lambda}v|(1+
ho^2)^{rac{lpha+|\lambda|-m}{2}} \hspace{0.1 in} \in L^p(\Omega), \hspace{0.1 in} 0\leq |\lambda|\leq m
ight\}$$

Properties

Theorem 1.12

$$\exists! \ (\mathbf{w}, \theta) \in \mathbf{W}^{1,2}_{\alpha}(\Pi)^2 \times W^{0,2}_{\alpha}(\Pi) \ if \ \alpha < \frac{1}{2}$$

Vuk Milisic (WPI)

July 23, 2009 66 / 89

Localizing

• The corner cut-of Set $\psi_1 := \overline{\psi}(x)$ and $\psi_2 := \overline{\psi}(x - (0, 1))$, where $\overline{\psi}$ s.t.

$$\overline{\psi} := \begin{cases} 1 \text{ if } |x| \le \frac{1}{3} \\ 0 \text{ if } |x| \ge \frac{2}{3} \end{cases}$$

NB: $\partial_{\mathbf{n}}\overline{\psi} = 0$ on $\Gamma_{\mathrm{in}} \cup \Gamma_{\mathrm{out},1}$.

② The "far from the corner" cut-off Φ complementary on Γ_{in} ∪ Γ_{out,1} ∪ Γ₂ s.t.

$$\begin{cases} \psi + \Phi = 1 \\ \partial_{\mathbf{n}} \Phi = 0, \end{cases} \quad \text{ on } \mathsf{\Gamma}_{\mathrm{in}} \cup \mathsf{\Gamma}_{\mathrm{out},1} \cup \mathsf{\Gamma}_2 \end{cases}$$

for instance $\Phi(x) := 1 - \psi(0, x_2)$ for all $x \in \Omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Macro corrector

$$\begin{cases} \Delta \mathbf{W} + \nabla Z = 0, & \text{in } \Omega_{\epsilon} \\ \text{div } \mathbf{W} = 0 \\ \mathbf{W} \wedge \mathbf{n} = \epsilon \left\{ \frac{\partial u_{0,1}}{\partial x_2} (\beta_{\epsilon} - \overline{\beta}) \right\} \wedge \mathbf{n} \, \Phi, & \text{and } Z = \left\{ \frac{\partial u_{0,1}}{\partial x_2} \beta \pi \right\} \, \Phi \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\epsilon} \\ \mathbf{W} = 0 \text{ on } \Gamma_{\epsilon} \\ \mathbf{W} = \epsilon \left\{ \frac{\partial u_{0,1}}{\partial x_2} (\beta_{\epsilon} - \overline{\beta}) \right\} \Phi \text{ on } \Gamma_{1} \end{cases}$$

Proposition 6

 \exists ! solution $(\mathbf{W}, Z) \in \mathbf{H}^1(\Omega_{\epsilon}) \times L^2(\Omega_{\epsilon})$, moreover:

$$\|\mathbf{W}\|_{\mathbf{H}^{1}(\Omega_{\epsilon})}+\|Z\|_{L^{2}(\Omega_{\epsilon})}\leq ke^{-\frac{\gamma}{\epsilon}}$$

rate γ and constant k do not depend on ϵ .

Vuk Milisic (WPI)

Blood flow in stented arteries

Macro corrector

$$\begin{cases} \Delta \mathbf{W} + \nabla Z = 0, & \text{in } \Omega_{\epsilon} \\ \text{div } \mathbf{W} = 0 \\ \mathbf{W} \wedge \mathbf{n} = \epsilon \left\{ \frac{\partial u_{0,1}}{\partial x_2} (\beta_{\epsilon} - \overline{\beta}) \right\} \wedge \mathbf{n} \Phi, & \text{and } Z = \left\{ \frac{\partial u_{0,1}}{\partial x_2} \beta \pi \right\} \Phi \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\epsilon} \\ \mathbf{W} = 0 \text{ on } \Gamma_{\epsilon} \\ \mathbf{W} = \epsilon \left\{ \frac{\partial u_{0,1}}{\partial x_2} (\beta_{\epsilon} - \overline{\beta}) \right\} \Phi \text{ on } \Gamma_{1} \end{cases}$$

define

$$\mathcal{W}_{\epsilon}(x) := \epsilon \left\{ \psi_{1}(x) \mathbf{w}\left(\frac{x}{\epsilon}\right) + \psi_{2}((1,0)-x) \mathbf{w}\left(\frac{(1,0)-x}{\epsilon}\right) \right\} + \mathbf{W}(x),$$
$$\mathcal{Z}_{\epsilon}(x) := \left\{ \psi_{1}(x) \theta\left(\frac{x}{\epsilon}\right) + \psi_{2}((1,0)-x) \theta\left(\frac{(1,0)-x}{\epsilon}\right) \right\} + Z(x),$$

First order approximation

$$\begin{aligned} \mathcal{V}_{\epsilon} &:= \mathbf{u}_{0} + \epsilon \left\{ \frac{\partial u_{0,1}}{\partial x_{2}} (\beta_{\epsilon} - \overline{\overline{\beta}}) + \left[\frac{\partial u_{0,1}}{\partial x_{2}} \right] (\Upsilon_{\epsilon} - \overline{\overline{\Upsilon}}) + \frac{[p_{0}]}{[\overline{\eta}]} (\chi_{\epsilon} - \overline{\overline{\chi}}) + \mathbf{u}_{1} \right\} \\ &+ \epsilon^{2} \left\{ p_{\mathrm{in}} (\varkappa_{\epsilon} - \overline{\overline{\varkappa}}) + \mathbf{u}_{2} \right\} + \mathcal{W}_{\epsilon} \\ \mathcal{P}_{\epsilon} &:= p_{0} + \left\{ \frac{\partial u_{0,1}}{\partial x_{2}} \pi_{\epsilon} + \left[\frac{\partial u_{0,1}}{\partial x_{2}} \right] \varpi_{\epsilon} + \frac{[p_{0}]}{[\overline{\eta}]} (\eta_{\epsilon} - \overline{\overline{\eta}}) + \epsilon p_{1} \right\} \\ &+ \epsilon p_{\mathrm{in}} (\mu_{\epsilon} - \overline{\overline{\mu}}) + \epsilon^{2} p_{2} + \mathcal{Z}_{\epsilon} \end{aligned}$$

• multi-scale version of boundary layer correctors:

$$eta_\epsilon(x) := eta\left(rac{x}{\epsilon}
ight), \quad oldsymbol{\Upsilon}_\epsilon(x) := oldsymbol{\Upsilon}\left(rac{x}{\epsilon}
ight), \quad \chi_\epsilon(x) := \chi\left(rac{x}{\epsilon}
ight), \quad arkappa_\epsilon(x) := arkappa\left(rac{x}{\epsilon}
ight),$$

• • • • • • • • • • • •
Higher order macroscopic correctors

$$\begin{cases} -\Delta \mathbf{u}_{1} + \nabla p_{1} = 0 \text{ in } \Omega_{1} \cup \Omega_{2} \\ \text{div } \mathbf{u}_{1} = 0 \\ \mathbf{u}_{1} = 0 \text{ on } \Gamma_{1} \cup \Gamma_{2} \\ u_{1,2} = 0 \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\text{out},1}, \\ u_{1,1} = 0, \text{ on } \Gamma_{\text{out},2} \\ p_{1} = 0 \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\text{out},1} \cup \Gamma_{\text{out},2} \\ \mathbf{u}_{1} = \left\{ \frac{\partial u_{0,1}}{\partial x_{2}} \overline{\beta}^{\pm} + \left[\frac{\partial u_{0,1}}{\partial x_{2}} \right] \overline{\Upsilon}^{\pm} \right\} \mathbf{e}_{1} + \frac{[p_{0}]}{[\overline{\eta}]} \overline{\chi} \mathbf{e}_{2} \text{ on } \Gamma_{0}^{\pm} \end{cases}$$

 $(\boldsymbol{u}_1, \boldsymbol{p}_1)$ give first order flow-rate trough Γ_0

3

< ロ > < 同 > < 三 > < 三

Main convergence results

Theorem 1.13 Very weak solutions à la Conca

$$\| oldsymbol{u}_\epsilon - \mathcal{V}_\epsilon \|_{L^2(\Omega_1\cup\Omega_2)} + \| oldsymbol{p}_\epsilon - \mathcal{P}_\epsilon \|_{H^{-1}(\Omega_1\cup\Omega_2)/\mathbb{R}} \leq k\epsilon^{rac{3}{2}^-}$$

At this point the approximation $(\mathcal{V}_{\epsilon}, \mathcal{P}_{\epsilon})$ is multi-scale

Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

$$\begin{aligned} \mathcal{U}_{\epsilon} &:= \mathbf{u}_{0} + \epsilon \mathbf{u}_{1} \\ \mathcal{Q}_{\epsilon} &:= p_{0} + \epsilon p_{1} \end{aligned}$$
$$\begin{cases} -\Delta \mathcal{U}_{\epsilon} + \nabla \mathcal{Q}_{\epsilon} = 0 \text{ in } \Omega_{1} \cup \Omega_{2} \\ \operatorname{div} \mathcal{U}_{\epsilon} = 0 \\ \mathcal{U}_{\epsilon} = 0 \text{ on } \Gamma_{1} \cup \Gamma_{2} \\ \mathcal{U}_{\epsilon} \wedge \mathbf{n} = 0 \text{ on } \Gamma_{\mathrm{in}} \cup \Gamma_{\mathrm{out},1} \cup \Gamma_{\mathrm{out},2}, \\ \mathcal{Q}_{\epsilon} = p_{\mathrm{in}} \text{ on } \Gamma_{\mathrm{in}}, \quad \mathcal{Q}_{\epsilon} = 0 \text{ on } \Gamma_{\mathrm{out},1} \cup \Gamma_{\mathrm{out},2} \\ \mathcal{U}_{\epsilon} = \epsilon \left\{ \frac{\partial u_{0,1}}{\partial x_{2}} \overline{\beta}^{\pm} + \left[\frac{\partial u_{0,1}}{\partial x_{2}} \right] \overline{\Upsilon}^{\pm} \right\} \mathbf{e}_{1} + \epsilon \frac{[p_{0}]}{[\overline{\eta}]} \overline{\chi} \mathbf{e}_{2} \text{ on } \Gamma_{0}^{\pm} \end{aligned}$$

3

Image: A math a math

Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

$$\begin{aligned} \mathcal{U}_{\epsilon} &:= \mathbf{u}_{0} + \epsilon \mathbf{u}_{1} \\ \mathcal{Q}_{\epsilon} &:= p_{0} + \epsilon p_{1} \end{aligned}$$
$$\begin{cases} -\Delta \mathcal{U}_{\epsilon} + \nabla \mathcal{Q}_{\epsilon} = 0 \text{ in } \Omega_{1} \cup \Omega_{2} \\ \operatorname{div} \mathcal{U}_{\epsilon} = 0 \\ \mathcal{U}_{\epsilon} = 0 \text{ on } \Gamma_{1} \cup \Gamma_{2} \\ \mathcal{U}_{\epsilon} \wedge \mathbf{n} = 0 \text{ on } \Gamma_{\mathrm{in}} \cup \Gamma_{\mathrm{out},1} \cup \Gamma_{\mathrm{out},2}, \\ \mathcal{Q}_{\epsilon} = p_{\mathrm{in}} \text{ on } \Gamma_{\mathrm{in}}, \quad \mathcal{Q}_{\epsilon} = 0 \text{ on } \Gamma_{\mathrm{out},1} \cup \Gamma_{\mathrm{out},2} \\ \mathcal{U}_{\epsilon}^{+} \cdot \boldsymbol{\tau} = \epsilon (\overline{\beta}^{+} + \overline{\Upsilon}^{+}) \frac{\partial \mathcal{U}_{\epsilon,1}^{+}}{\partial x_{2}}, \quad \frac{\mathcal{U}_{\epsilon}^{+} \cdot \boldsymbol{\tau}}{\overline{\beta}^{+} + \overline{\Upsilon}^{+}} = \frac{\mathcal{U}_{\epsilon}^{-} \cdot \boldsymbol{\tau}}{\overline{\beta}^{-} + \overline{\Upsilon}^{-}} \\ \mathcal{U}_{\epsilon}^{+} \cdot \mathbf{n} = \mathcal{U}_{\epsilon}^{-} \cdot \mathbf{n} = \frac{\epsilon}{[\overline{\eta}]} ([\sigma_{\mathcal{U}_{\epsilon},\overline{p}_{\epsilon}}] \cdot \mathbf{n}, \mathbf{n}) \end{aligned}$$

3

72 / 89

Image: A match a ma

Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

$$\mathcal{U}_{\epsilon} := \mathbf{u}_0 + \epsilon \mathbf{u}_1$$
$$\mathcal{Q}_{\epsilon} := p_0 + \epsilon p_1$$

Theorem 1.14

Very weak solutions à la Conca

$$\|\mathbf{u}_{\epsilon} - \mathcal{U}_{\epsilon}\|_{L^{2}(\Omega_{1}\cup\Omega_{2})} + \|\boldsymbol{p}_{\epsilon} - \mathcal{Q}_{\epsilon}\|_{H^{-1}(\Omega_{1}^{\prime}\cup\Omega_{2})/\mathbb{R}} \leq k\epsilon^{\frac{3}{2}^{-}}$$

Proof.

Use the triangular inequality

$$\|\mathbf{u}_{\epsilon} - \mathcal{U}_{\epsilon}\|_{L^{2}(\Omega_{1} \cup \Omega_{2})} \leq \|\mathbf{u}_{\epsilon} - \mathcal{V}_{\epsilon}\|_{L^{2}(\Omega_{1} \cup \Omega_{2})} + \|\mathcal{V}_{\epsilon} - \mathcal{U}_{\epsilon}\|_{L^{2}(\Omega_{1} \cup \Omega_{2})}$$

mostly only remains to estimate oscillations

$$\|\mathcal{V}_{\epsilon} - \mathcal{U}_{\epsilon}\|_{L^{2}(\Omega_{1} \cup \Omega_{2})} \leq \epsilon \left\|\beta - \overline{\overline{\beta}}\right\|_{L^{2}(\Omega_{1} \cup \Omega_{2})} + \dots + \mathcal{O}(\epsilon^{2}) \leq \epsilon^{\frac{3}{2}}$$

Compute the first order flow rate

 \bullet velocity profile normal direction to Γ_0

$$\mathcal{U}_{\epsilon,2}(x) = (u_{0,2} + \epsilon u_{1,2})(x) \equiv -\epsilon \frac{[\rho_0]}{[\overline{\eta}]}(x)$$

• Solve with a computer a cell problem (cheap even in 3D):

$$[\overline{\overline{\eta}}] = \overline{\overline{\eta}}^+ - \overline{\overline{\eta}}^-$$

• First order flow rate

$$Q_{\Gamma_0} = \frac{\epsilon}{[\overline{\eta}]} \int_a^b [p_0] \, dx_1$$

(日) (同) (三) (三)

Numerical evidence

- Compute the exact problem
- Compute the boundary layers single # cell
 - Extract the constants at infinity

$$[\overline{\eta}] = 52.6961$$

• Compute the flow-rate

Sacular aneurysm

Introduction

- Industrial context
- 2 Deriving Navier-Stokes equations
 - The continuity equation
 - The momentum equation
- 3 The Stokes system
 - The abstract formalism
 - Application to the Stokes equations
- The rough problem
 - Boundary layer theory for rough domains
 - Homogenized first order terms
- The colateral artery
 - The modelling approach
 - Boundary layer theory for rough boundaries
 - Homogenized first order terms
 - Numerical evidence
 - Sacular aneurysm
 - The problem

Ancotz Vuk Milisic (WPI)

Same problem

$$\begin{cases}
-\Delta \mathbf{u}_{\epsilon} + \nabla p_{\epsilon} = 0 \text{ in } \Omega_{\epsilon} \\
\text{div } \mathbf{u}_{\epsilon} = 0 \\
\mathbf{u}_{\epsilon} = 0 \text{ on } \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{\epsilon} \\
u_{\epsilon,1} = 0 \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\text{out},1} \\
\mathbf{u}_{\epsilon} = 0 \text{ on } \Gamma_{\text{out},2} \\
p_{\epsilon} = p_{\text{in}} \text{ on } \Gamma_{\text{in}}, \quad p_{\epsilon} = p_{\text{out},1} \text{ on } \Gamma_{\text{out},1},
\end{cases}$$

Pressure imposed at inlet and outlet but not at $\Gamma_{out,2}$

3

(日) (同) (三) (三)

Fout,1

Γ2

When ϵ goes to 0

• The Poiseuille flow

$$\begin{cases} -\Delta \mathbf{u}_0 + \nabla p_0 = [\sigma_{\mathbf{u}_0, p_0}] \cdot \mathbf{n} \, \delta_{\Gamma_0} \text{ in } \Omega \\ \text{div } \mathbf{u}_0 = 0 \\ \mathbf{u}_0 = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_{\text{out}, 2} \\ \mathbf{u}_0 \wedge \mathbf{n} = 0 \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\text{out}, 1} \\ p_0 = p_{\text{in}} \text{ on } \Gamma_{\text{in}}, \quad p_0 = 0 \text{ on } \Gamma_{\text{out}, 1} \\ \mathbf{u}_0 \neq 0 \text{ on } \Gamma_{\epsilon} \end{cases}$$

• (\mathbf{u}_0, p_0) is explicit and reads:

$$\begin{cases} \mathbf{u}_0(x) = \frac{p_{\text{in}}}{2}(1-x_2)x_2\mathbf{e}_1\mathbf{1}_{\Omega_1}, & \forall x \in \Omega\\ p_0(x) = p_{\text{in}}(1-x_1)\mathbf{1}_{\Omega_1} + p_0^-\mathbf{1}_{\Omega_2}, & \forall p_0^- \in \mathbb{R} \end{cases}$$

Theorem 1.15

$$\|\mathbf{u}_{\epsilon} - \mathbf{u}_0\|_{H^1(\Omega_{\epsilon})^2} + \|\mathbf{p}_{\epsilon} - \mathbf{p}_0\|_{L^2(\Omega_{\epsilon,1})} + \|\mathbf{p}_{\epsilon} - \mathbf{p}_0\|_{L^2(\Omega_2)/\mathbb{R}} \le k\sqrt{\epsilon}$$

where the constant k does not depend on ϵ .

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 77 / 89

First order approximation

Again the same trick

$$\begin{split} \mathcal{V}_{\epsilon} &:= \mathbf{u}_{0} + \epsilon \left\{ \frac{\partial u_{0,1}}{\partial x_{2}} (\beta_{\epsilon} - \overline{\overline{\beta}}) + \left[\frac{\partial u_{0,1}}{\partial x_{2}} \right] (\Upsilon_{\epsilon} - \overline{\overline{\Upsilon}}) + \frac{[p_{0}]}{[\overline{\eta}]} (\chi_{\epsilon} - \overline{\overline{\chi}}) + \mathbf{u}_{1} \right\} \\ &+ \epsilon^{2} \left\{ p_{\mathrm{in}} (\varkappa_{\epsilon} - \overline{\overline{\varkappa}}) + \mathbf{u}_{2} \right\} + \mathcal{W}_{\epsilon} \\ \mathcal{P}_{\epsilon} &:= p_{0} + \left\{ \frac{\partial u_{0,1}}{\partial x_{2}} \pi_{\epsilon} + \left[\frac{\partial u_{0,1}}{\partial x_{2}} \right] \varpi_{\epsilon} + \frac{[p_{0}]}{[\overline{\eta}]} (\eta_{\epsilon} - \overline{\eta}) + \epsilon p_{1} \right\} \\ &+ \epsilon p_{\mathrm{in}} (\mu_{\epsilon} - \overline{\mu}) + \epsilon^{2} p_{2} + \mathcal{Z}_{\epsilon} \end{split}$$

• multi-scale version of boundary layer correctors:

$$eta_\epsilon(x) := eta\left(rac{x}{\epsilon}
ight), \quad \Upsilon_\epsilon(x) := \Upsilon\left(rac{x}{\epsilon}
ight), \quad \chi_\epsilon(x) := \chi\left(rac{x}{\epsilon}
ight), \quad arkappa_\epsilon(x) := arkappa\left(rac{x}{\epsilon}
ight)$$

3

(日) (同) (三) (三)

The pressure in the sac

$$\begin{cases} -\Delta \mathbf{u}_{1} + \nabla p_{1} = 0 \text{ in } \Omega_{1} \cup \Omega_{2} \\ \operatorname{div} \mathbf{u}_{1} = 0 \\ \mathbf{u}_{1} = 0 \text{ on } \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{\operatorname{out},2} \\ \mathbf{u}_{1} \wedge \mathbf{n} = 0 \text{ on } \Gamma_{\operatorname{in}} \cup \Gamma_{\operatorname{out},1}, \\ p_{1} = 0 \text{ on } \Gamma_{\operatorname{in}} \cup \Gamma_{\operatorname{out},1} \\ \mathbf{u}_{1} = \left\{ \frac{\partial u_{0,1}}{\partial x_{2}} \overline{\beta}^{\pm} + \left[\frac{\partial u_{0,1}}{\partial x_{2}} \right] \overline{\Upsilon}^{\pm} \right\} \mathbf{e}_{1} + \frac{[p_{0}]}{[\overline{\eta}]} \overline{\overline{\chi}} \mathbf{e}_{2} \text{ on } \Gamma_{0}^{\pm} \end{cases}$$

divergence condition and normal veolicty imposed on Γ_0 :

$$\int_{\Omega_2} \operatorname{div} \mathbf{u}_1 dx = \int_{\partial \Omega_2} \mathbf{u}_1 \cdot \mathbf{n} d\sigma = \int_{\Gamma_0} \mathbf{u}_1 \cdot \mathbf{n} d\sigma = 0$$

gives in the sac

$$|\Gamma_0|p_0^- = \int_{\Gamma_0} p_0^+(x_1, 0) dx_1$$

Vuk Milisic (WPI)

Blood flow in stented arteries

July 23, 2009 79 / 89

Numerics

Numerics A numerical "pathological" case

July 23, 2009 80 / 89

イロト イヨト イヨト イヨト

Numerical "stented" case

Vuk Milisic (WPI)

July 23, 2009 81 / 89

3

<ロ> (日) (日) (日) (日) (日)

Numerics

A more realistic geometry: the "pathological" case

Vuk	Milisic	(WPI)	

3

イロト イヨト イヨト イヨト

Numerics

A more realistic geometry: the "stented" case

VUK IVIIISIC (VVPI	Vuk	Milisic	(W	Pľ
--------------------	-----	---------	----	----

- 2

<ロ> (日) (日) (日) (日) (日)

Norma velocity acros Γ_0

Conclusion & Perspectives

Conclusion

- Our approach introduces the vertical correctors
 - Not present in the literature
 - General setting

Perspectives

- Time dependent case: Womersley profile
- Curved boundaries
- Navier-Stokes
- Cell growth

A B F A B F

Vuk Milisic (WPI)