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Introduction Industrial context

Two common pathologies of the cardio-vascular system

Suprarenal
aneurysm

Normal Artery
artery narrowed by
atherosclerosis
—Plaque

[ ,‘\ \

& Healthwise, Incorporated
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Introduction Industrial context

Industrial context

Cardiatis®: conception and comercialisation of metallic wired multi-layer
stents

@ A new technology
One controls

- The # of layers
- Their connectivity

@ In vivo experiments

© on mini-pigs show :no thrombus up to 6 months
@ on humans :

@ Multi-Scale phenomenon lying on:
- Hemodynamics

- Chemical reactions between blood flow and the surrounding wires and
tissues

Theoretical & numerical study of hemodynamics
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Introduction Industrial context

Problem description

o Geometrical properties
- Femoral artery diameter:(l = 6mm
- Total thickness of the stent : € = 0.25mm
- Thickness of a single wire: ¢ = 0.04mm

- Red blood cell diameter: grc = 0.008mm
€ 0.25

_ 0
=6 " 4%
stent ~ periodic rugous wall in a straight cilindrical geometry
@ The blood flow is composed of
- Steady state part: Poiseuille profile
- Plus a pulsatile periodic perturbation: Womersley profile

@ We consider here the Poiseuille profile
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Introduction Industrial context

Objectives and references

-We aim to
@ understand the dynamics of flows in rugous channels
== Boundary layer correctors
o Avoid heavy discretisations related to the rugous wall
= Wall laws
@ Include the micro scales in the macro Poiseuille profile
— Multi-scale aspects

Use of assymptotic expansions adapted for
the perturbed boundaries.

Main references

D N. Neuss, M. Neuss-Radu, and A. Mikelié.

Effective laws for the poisson equation on domains with curved oscillating
boundaries.

Applicable Analysis, 2006.

B Y. Achdou, P. Le Tallec, F. Valentin, and O. Pironneau,
Constructing wall laws with domain decomposition or asymptotic expansion
techniques
Comput. Methods Appl. Mech. Eng. 1998
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Deriving Navier-Stokes equations

© Deriving Navier-Stokes equations
@ The continuity equation
@ The momentum equation
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Derivation of the Navier Stokes equations

The continuity equation

@ wp subdomain of €, v boundary of wg

@ p density

@ Mass balance
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Derivation of the Navier Stokes equations

The continuity equation

@ wp subdomain of €, v boundary of wg
@ p density

@ decrease of mass per time unit:

@ Mass balance

d
-S| pd
dt/wOpX
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Derivation of the Navier Stokes equations

The continuity equation

wo subdomain of €2, 4o boundary of wq

p density

decrease of mass per time unit:

total mass exiting from wqg through ~o: f% pu - ndyp
n outward normal vector

u flow's velocity

Mass balance
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Derivation of the Navier Stokes equations

The continuity equation

@ wp subdomain of €, v boundary of wy
@ p density

@ decrease of mass per time unit:

@ total mass exiting from wq through ~o: f% pu - ndyg
@ n outward normal vector

@ u flow's velocity

o

Mass balance d
pdx = / pu - ndyp
dt Yo

From the divergence theorem

Otp + div (pu)dx = 0

wo
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Derivation of the Navier Stokes equations

The continuity equation

@ wp subdomain of €, v boundary of wg
p density
decrease of mass per time unit:

total mass exiting from wq through ~o: f% pu - ndyg

°
°
°
@ n outward normal vector
@ u flow's velocity

°

“alre= ]
pdx = pu - ndyg
de Yo

Otp + div (pu) =0

Mass balance

Since wy is arbitrary
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Derivation of the Navier Stokes equations

The momentum equation

@ Newton's law to a moving element of volume w

d
dt/pudx:/pfdx—i—/qu/
w w 0%

f denotes a density of volume forces
S a density of surface forces per surface unit
At=1t —t

1
% / pudx = AlitgoA—t <//pu(x’, t)dx' — / pu(x, t)dx)

@ a material point x” at time t’ corresponding to (x, t)

x' = x + Atu(x, t) + 0(At?).

change of variables

/ pu(x’, t')dx = /(pu)(x + Atu, t + At) [det V,x'| dx
’
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Derivation of the Navier Stokes equations

The momentum equation

@ Newton's law to a moving element of volume w

d
dt/pudx:/pfdx—i—/qu/
w w 0%

f denotes a density of volume forces
S a density of surface forces per surface unit
At =1t —t

T /pUdX_AlltmOAlt </ pu(x’, t/)dx’—/pu(x, t)dx)

@ a material point x” at time t’ corresponding to (x, t)

x' = x + Atu(x, t) + 0(At?).

change of variables

/ pu(x', t')dx" = /(pu)(x + Atu, t + At) |det(Id + AtVu) |dx

w
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Derivation of the Navier Stokes equations

The momentum equation

@ Newton's law to a moving element of volume w

d
dt/pudx:/pfdx—i—/qu/
w w 0%

f denotes a density of volume forces
S a density of surface forces per surface unit
At =1t —t

T /pUdX_AlltmOAlt </ pu(x’, t/)dx’—/pu(x, t)dx)

@ a material point x” at time t’ corresponding to (x, t)

x' = x + Atu(x, t) + 0(At?).

change of variables

/ pu(x’, t')dx = /(pu)(x+Atu,t+At)(1+Atdivu)dx
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Derivation of the Navier Stokes equations

The momentum equation I
o first order Taylor expansion in At, and At — 0

d%/wpudx:/w[E)t(pu)+(divu)pu+(u.v)pu] dx
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Derivation of the Navier Stokes equations

The momentum equation I
o first order Taylor expansion in At, and At — 0

T pudx = / [0¢(pu) + div (pu ® u)] dx
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Derivation of the Navier Stokes equations

The momentum equation I

o first order Taylor expansion in At, and At — 0

T pudx = / [0¢(pu) + div (pu ® u)] dx

@ Taking into account the continuity equation

Ciit/pud><—/p[8tu+(u~V)u] dx

where

N
6jW,'
=Y,
j=1
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Derivation of the Navier Stokes equations

The momentum equation I

o first order Taylor expansion in At, and At — 0

T pudx = / [0¢(pu) + div (pu ® u)] dx

@ Taking into account the continuity equation

Ciit/pud><—/p[8tu+(u~V)u] dx

where

N ojw;
=2
=Y
@ w arbitrary, eqs become pointwise:

p(0ru + (u- V)u) — dive = pf
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Derivation of the Navier Stokes equations

The momentum equation I

o first order Taylor expansion in At, and At — 0

T pudx = / [0¢(pu) + div (pu ® u)] dx

@ Taking into account the continuity equation

Ciit/pud><—/p[8tu+(u~V)u] dx

where

N 6jW,'
=2 v
=
@ w arbitrary, eqs become pointwise:
p(0ru + (u- V)u) — dive = pf

@ Viscous stresses,

g:=—pld+a, o :=2u {D(u) - %div uld] , 2D(u):=Vu+Vu'
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The full Navier-Stokes system

Newtonian incompressible viscous fluids with constant density

@ Incompressibility: fixed volume the contiuity equation reduces to
divu=0
@ momentun equation reduces to
p(Ou +u-Vu) — pAu+ Vp = pf
@ Dimensionless formulation of the Navier-Stokes equations

setting

p
X' =x/Lt' =(U/L)t,d =u/U,p = W,f’ = (L/UPf

gives
O +u' - Vu' — %Au’ +Vp=f
dive’ =0

where R is the Reynolds number

RN:=p—
P u
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The full Navier-Stokes system

Newtonian incompressible viscous fluids with constant density

@ Incompressibility: fixed volume the contiuity equation reduces to
divu =0
@ momentun equation reduces to
p(Ou +u-Vu) — pAu+ Vp = pf

@ Dimensionless formulation of the Navier-Stokes equations

setting
X =x/Lt' = (U/L)tu =u/U,p = %,f’ = (L/UP)f
p
gives
1
Btu+u-Vuf§Au+Vp:f
divu=20
where R is the Reynolds number
UL
R:=p—
I
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DTV M\ EWVIISS T SRS IEYI I  The momentum equation

The stokes system

Consider a flow:

6tu+u-Vu—%Au+Vp =f
=0

divu
July 23, 2009 12 /89
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DTV M\ EWVIISS T SRS IEYI I  The momentum equation

The stokes system

Consider a flow:

@ steady

1
u-Vu—§Au+Vp =f
=0

divu
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DTV M\ EWVIISS T SRS IEYI I  The momentum equation

The stokes system

Consider a flow:

@ steady
@ linearized around u =0
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The stokes system

Consider a flow:
@ steady
@ linearized around u =0

@ low reynolds number ® ~ 1

—Au+Vp =f
divu =0
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The stokes system

Consider a flow:
@ steady
@ linearized around u =0
@ low reynolds number ® ~ 1
o

you obtain The Stokes system

—Au+Vp =f
divu =0
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The stokes system

Consider a flow:
@ steady
linearized around u =0
low reynolds number & ~ 1
you obtain The Stokes system

complement with boundary conditions

U=8p;, Oup N=E8yp,

—Au+Vp =f
divu =0
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Variations on boundary conditions

e variational form Yv € D(Q):

/Vu : Vvdx—/pdivvdx
Q Q

—i—/aQ((pId—Vu)-n,v)ds:/Qf-v
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Variations on boundary conditions

e variational form Vv € D(Q):

/Vu:Vvdx—/pdivvdx
Q Q

+/m(p— Onu -n)(v-n)ds—/m(anu -T)(v~'r)ds:/ﬂf-v
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Variations on boundary conditions

e variational form Vv € D(Q):

/Vu:Vvdx—/pdivvdx
Q Q

@ Complete Dirichlet: test space v =10
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Variations on boundary conditions

e variational form Vv € D(Q):

/Vu:Vvdx—/pdivvdx
Q Q

—/89(8.1u -T)(v~7')ds:/ﬂf-v

@ Complete Dirichlet: test space v =10
@ Partial dirichlet
@ Dirichlet on normal velocity

v-n=0, O T+ pu(u-T)y=g, pu>0
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Variations on boundary conditions

e variational form Vv € D(Q):

/Vu:Vvdx—/pdivvdx
Q Q

+ [ (o o mivmyas AR

@ Complete Dirichlet: test space v =10
@ Partial dirichlet
@ Dirichlet on normal velocity

v-n=0, Ogu -T+pu-t)=g, >0
@ Dirichlet on tangent velocity
v-T=0, p—@nu'n—ﬂ(uwl):g, p=0
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Deriving Navier-Stokes equations The momentum equation

Variations on boundary conditions

e variational form Vv € D(Q):

/Vu:Vvdx—/pdivvdx
Q Q

+ /m(p — Ogu -n)(v - n)ds — /89(8.1u -T)(v-T)ds = /

Q
@ Complete Dirichlet: test space v =10
@ Partial dirichlet

@ Dirichlet on normal velocity

v-n=0, Ogu -T+pu-t)=g, >0
@ Dirichlet on tangent velocity

v-T =0, p—Ou-n—pu-n)=g, pu>0

o Natural boundary conditions

—(Vu—pld)-n=Mu+g, VM e M;,(R)
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The Stokes system

© The Stokes system
@ The abstract formalism
@ Application to the Stokes equations
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Abstract problem

Define

@ the Banach spaces
X, Y

@ the operators
A:X—=Y, B:X—=Y

@ solve the problem, find u, p s.t.

Au+BTp =f
Bu =g

We study in an abstract formalism
© the well-posednes
© the continuity wrt data

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009

16 / 89



Ul alsias: el
Framework

o fundamental results for linear bijective operators in Banach spaces
@ classical

[3] Brezis. H
Analyse fonctionnelle
Masson

[ Yosida
Functional analysis
Springer
[{ A.Ern and J.-L. Guermond.
Theory and Practice of Finite Elements, volume 159 of Applied

Mathematical Series.
Springer-Verlag
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Ul alsias: el
Preliminary results

@ V and W Banach spaces

@ A an application A€ L(V, W)
o N(A) kernel

e R(A) rank

e V/R(A) quotiented space

Theorem 1.1
e V/N(A) is a Banach space
e A: V/N(A) — R(A) s.t.
Av = Av

A bijective

v
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Ul alsias: el
Kernels Ranks and Adjoint operators

@ V Banach space
e MCcV,NcV

Mt ={VeVVme M, <V ,m>y y=0}
Nt = {v eV, vneN,<nv>yy= O}

Theorem 1.2

For A € L(V; W), the following properties hold
@ N(A) = (R(AT))*
@ N(AT) = (R(A)*

@ R(A) = (N(AT))*-

@ R(AT) C (W(A)*
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The Stokes system The abstract formalism

Kernels Ranks and Adjoint operators

A

77777 closure

W/

V/ AT
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Ul alsias: el
Closed range

Theorem 1.2
For A € L(V; W), the following properties are equivalent
Q@ R(A) is closed
@ R(AT) is closed
9 R(A) = (N(AT)*
Q@ R(AT) = (N(A)*
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The Stokes system The abstract formalism

Closed range

77777 closure

7
V/ AT w
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The Stokes system The abstract formalism

Closed range

77777 closure

V/ AT
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The Stokes system The abstract formalism
Also

Lemma 1.1

If A€ L(V; W), the following propositions are equivalent
e R(A) closed
e Ja>0s.t. Vw € R(A), vy, € V sit.

Av = w,  allvlly < [[wlly

Proof.

R(A) closed = A:V — R(A) surjective.
Then apply the open mapping theorem on A: V — R(A)
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The Stokes system The abstract formalism
Also

Theorem 1.2 (Petree Tartar)
Hypotheses:
e X,Y,Z Banach spaces
o Ae L(X,Y) injective
o T € L(X,Z) compact

@ There exists ¢ > 0 s.t.
clixllx < IAx|ly + I Tx]l
Conclusion : there exists « s.t.

Vx e X, allx|lx < |IAx|y

Proof.
By contradiction: suppose Ix, € X s.t. |[xp/|x =1 and [|Ax|| — 0 O
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The Stokes system The abstract formalism

The inf-sup condition

Surjectivity sometimes tedious instead possible characterisation
Lemma 1.1

Hypotheses:

e V and W Banach spaces
o V reflexive

then the following claim are ~

(i) Ja e Ry sit. Vw e W, 3w, € V sit. Avy, = w and aflvy ||y < W]y
(i) The inf-sup condition

. <ATW, v>
inf sup ——— >«
wew ey [vwllvliwlly )
Proof.
(i) = (i) easy , reverse cf Ern-Guermond O
Vuk Milisic (WPI)
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Ul alsias: el
Surjective operators

Lemma 1.2

A€ L(V, W) then the following assertions are ~
@ AT surjective
@ A injective and R(A) closed
Q Ja>0st VveValv|, <|Av]w

Lemma 1.3

A€ L(V, W) then the following assertions are ~
© A surjective
@ AT injective and R(AT) closed
Q Ja>0st Ywe W alw|,, < ||ATW’HV,
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Ul alsias: el
Onto mappings

Theorem 1.3
A€ L(V,W) bijective iff

AT - W' = V' injective
VeV |vly<alAv|y

Proof.

A surjective < AT injective and R(AT) closed
R(AT) closed < R(A) closed
R(A) closed and A injective & Ja > 0s.t. Vv e V a|v|, < ||Av]w

Note

A bijective Banach operator iff
@ A injective
@ R(A) closed
e AT injective

v
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Ul alsias: el
Saddle point problems

e X, M Banachs

e A: X - X

e B: X—-M

@ Given (f,g) € X’ x M) find (u, p) € X x M’ solving

Au+BTp =f
Bu =g

o N(B) kernel of B
o TA: N(B) — N(B) st.

< mAu,v >=< Au,v >, VYu,v e N(B)

Theorem 1.4

Problem (1) is well-posed iff
Q@ 7A: N(B) — N(B) isom
Q@ B : X — M surjective
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Proof of theorem 1.4

Necessary conditions pbm well posed = 1 and 2 (part I)

@ B surjective ?
h € M denote (u, p) solution of (1) with data (0, h). B surjective ok.
@ 7A surjective ?
Let h € N(B)', Hahn-Banach theorem there exists h € X' extension
of hs.t. (cf Yosida p.102 and 106.)

< hv>=<hv> VYveN(B)
|7

= ||h ,
= lls)
Let (u, p) solution pbm (1) with data (h,0) = u € N(B) as
<BTp,v>=<p,Bv>=0, YveN(B)

one has
< mwAu,v >=< h,v >, Vv e N(B)

thus 3u € N(B) s.t. TAu=h
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The Stokes system The abstract formalism

Proof of theorem 1.4
Necessary conditions pbm well posed = 1 and 2 (part II)

@ 7A injective 7
Hypothesis: < mAu,v >=0, Vv € N(B)
then TAu € N(B)* = R(BT) (because B surjective)
dpe M st. Au=—-BTp
thus (u, p) satisfy

Au+BTp =0
Bu =0

pbm well posed — (u, p) = (0,0)
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Proof of theorem 1.4

Sufficient conditions 1 and 2 = pbm well posed (part I)

o Existence 7
Given (f, g) show that 3(u, p) solving pbm (1)

©Q B surjective = dJug st. Bug =g
@ Question: 3¢ € N(B) s.t. A® =f — Aug in N(B)' ?
Answer: yes if faug € N(B)' but f — Au, € X' C N(B)'
Set u = ug + ®, one then has:
Au—f e N(B)*
As B surjective N(B)t = R(BT) and 3p € M’ s.t.
Au—f=—-BTp, andBu=g

existence ok
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Ul alsias: el
Proof of theorem 1.4

Sufficient conditions 1 and 2 = pbm well posed (part II)

@ Uniqueness ?
(f,g) := (0,0) Above gives there exists (u, p) s.t.
Au+BTp =0
Bu =0
then u e N(B) and TAu=0 = u=0

B surjective = BT injective = p=0
ok
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Ul alsias: el
A priori estimates

Lemma 1.4
Conditions (i) and (ii) satisfied then

dei(a, 8), i€1,...,4 independent on f,g,u,p s.t.

lullx < allflx + cllglv
1Pl < esllfllxe + callglln
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Ul alsias: el
A priori estimates

Proof.

Jug /Bug =g
B surjective = 36> 0s.t Bluglly < llglly

X reflexive
Then solve A® = f — Aug in N(B)', A surjective =
Ja >0 st al|®lx < [[fllx + Al o llugllx

As we set u 1= d 4 ug
lullx < 19l + llugllx

B surjective
Bllellue < ||BTp|

also for ps.t. BTp=f — Au. ok ]

X/
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The Stokes system Application to the Stokes equations

Surjectivity of the div operator

Set
W;9(Q) := {v e LY(Q) st. DY e LI(Q), v =0on N}

Theorem 1.5
Hypothesis: let
o Q a bounded domain of R" s.t.

Q=Ur Q, N>1

where S star shaped wrt By s.t. B, C Qy
o feli)st [ofdx=0

Conclusion: 3 a vector v € Wy9(Q) s.t.

divv = f, ’V’w})*q(n) < cllfllo(q)
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Apiieztion i@ e Sisltes cnedpie
|dea of the proof

cf p.115-125 in

[§] Giovanni P. Galdi,
An introduction to the mathematical theory of the Navier-Stokes
equations. Vol. I.
Springer-Verlag,
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Idea of the proof

© rescale Q wrt radius, center in in 0
@ This domain is star-like wrt V point of B(0,1) C 2 set

Vw € C3°(R") s.t. suppw C B(0,1), / w(y)dy =1
B
one has an explicit formula if f € C5°(Q)

v(X):/Qf(Y) [’;__;],, /:y|w<y+f’i:§’>fn—ld§] dy

© check that rescaled again it satisfies

diVV = f, ‘V‘Wl’q(Q) S C’f‘Lq(Q)
Q approximate f by {fn} € C5°(Q2) and set

f,;;;:fm—so/fmdy, merithweCS"(Q),/@zl
Q Q

extract v,,, — v in Wh9(Q)
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Apiieztion i@ e Sisltes cnedpie
Idea of the proof

Q As Q=UY_ Q4 3 N functions f s.t. for k € {1,..., N}
(i) fi € LY(Q)
(") supp(fic) € Qi
(i) fq, fudx =0
)
)

(iV f = Zk fk
(V HC(Qk) s.t.

1fill Loy < ClIfll o

proof: contructive, explicit form wrt f and ka fdx
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The Stokes system Application to the Stokes equations

Conclusion

Set
@ ) bounded Lipshitz domain
o (F.g) € H1(Q) x L2(2) 1,
@ solve the problem: find (u, p) solving

—Au+Vp =0inQ
divu =0 (2)
u=20 on 0N

Theorem 1.6
3! pair (u, p) € HY(Q) x L2(Q)/R solving (2). Moreover one has

lullvsgy + 1Pl 2g@ym < €l B) {IFlu-s(qy + lgl 2
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The rough problem

@ The rough problem
@ Boundary layer theory for rough domains
@ Homogenized first order terms
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Notations and Methodology

M

i Qe

I e |
OO0OO0O00O0OOO0OO0O!

Mo

Fo

@ Construction of a complete boundary layer corrector: €,

@ Derivation of wall laws: Qg

We denote:

- P=0Q, Q a body isomorphic to an open ball, regular

- Q the “smooth domain”, % the fictitious interface,

- x the slow space variable , y = % the fast one.
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The problem

@ One aims to solve

( — Au, + Vp. =0in Q.
divu, =0
u=0onl1UT,

u.-7=0on T, UlNow

Pe = Pin ON [in,  pe =0 o0n [y,
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Bk (Evar idieay (27 o donenE
The limit solution when € — 0

@ The Poiseuille flow
—Aug+Vpy=0inQ
divug =0
up=0onT1Ul,
ug -7 =0on Ny Uy,
Po = Pin 0N Tin,  po=0o0n Mo
ug #0on .

@ (ug, po) is explicit and reads:

Pin
2
po(x) = pin(1 — x1)

u(x) = (1 — x2)x0e1, Vxe€Q

Theorem 1.7

[Jue = uollpz(q,y2 + 1P = Poll 2,y < kv/e

where the constant k does not depend on e.
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The rough problem Boundary layer theory for rough domains

Proof.
@ set v :=u, —up, q := p — po they solve

—Av+Vg=0inQ
divv=20
v=0onTiUl>
v-1T=0o0n I, U,
g=0on i, Ulyu
vQ0onTl,

o lift the Dirichlet data on I'c set R(v) := upyp(x2/€)
@ use a priori estimates

e compute |[VR(v)l|;2(q,) and conclude
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The rough problem Boundary layer theory for rough domains

So where does the error come from ?

@ Taylor expansion of u around (xi,0)

Oug 1
Oxo

uO71(X) = UO71(X1, 0) + (X1, 0)X2
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The rough problem Boundary layer theory for rough domains

So where does the error come from ?

@ Taylor expansion of u around (xi,0)

X2

0
0.1 (x1,0) -

O0xo

UO71(X) = U071(X1, 0) +e
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The rough problem Boundary layer theory for rough domains

So where does the error come from ?

@ Taylor expansion of u around (xi,0)

X2

0
0.1 (x1,0) -

O0xo

UO71(X) = U071(X1, 0) +e

@ The error is € times a microscopic oscilation of first order
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The rough problem Boundary layer theory for rough domains

So where does the error come from ?
@ Taylor expansion of u around (xi,0)

X2

ou
up1(x) = up1(x1,0) + ¢ 8071 (x1,0)
X2

@ The error is € times a microscopic oscilation of first order

@ This is corrected by a micorscopic periodic boundary layer

M A7 P /

| L

rin: Qe Z+

I !

| e RN

OOO00O0O0O00OOO!
To e .
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Bk (Evar idieay (27 o donenE
Horizontal correctors

@ Microscopic corrector a la Mikeli¢
—AB+Vr=0in$§S
divg=0
B=—ye on PUL
@ Properties
Proposition 1
3!(B, ), 7 defined up to a constant, s.t.
VB e LX) (B-B() € LX(S), e Li(S)
Moreover, one has: B
Bly) — Byer, y2— 400
cvg exponential and

Baly2) =0, Vy2 €R
Baly2) = —n(Q) = [VBlE(s) v2 > yap,

where y, p := maxycpy> and 1(Q) is the volume of the body Q.
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The rough problem Boundary layer theory for rough domains
Proof

Solve the velocity

@ Define the test space:
X={vell(S), st. Vve L2(S)*, v=0onTUP}

o lift the Dirichlet boundary 3 := 5 — R(3)
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The rough problem Boundary layer theory for rough domains
Proof

Solve the velocity

@ Define the test space:
X={vell(S), st. Vve L2(S)*, v=0onTUP}

o lift the Dirichlet boundary 3 := 5 — R(3)
e then Vo € N(div) N X one has

/SVB:VW)/=/SVR(5)'Vsody
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The rough problem Boundary layer theory for rough domains
Proof

Solve the velocity

@ Define the test space:
X={vell(S), st. Vve L2(S)*, v=0onTUP}

o lift the Dirichlet boundary 3 := 5 — R(3)
e then Vo € N(div) N X one has

/SVB:VW)/=/SVR(5)'Vsody

e by Lax-Milgram 313 € NV(div) N X
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The rough problem Boundary layer theory for rough domains

Recover the pressure

@ To our knoledge no results of surjectivity of div on the undounded
strips

@ On bounded restrictions Sy := SNJ0, 1[x]0, k[ solve

@ find p solving
{ 7Ap =8, in 5/

Oap =0, on PUOS,
for any g in

M = {g € L%(Sy), st. / gdy = 0}
Sk

@ and w lifts Vp on P

divw =0, in S5
w=Vp, onP
o V:L(Sk)/R —Hglp o 5 (Sk) injective
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Recover the pressure |l

S = USk
@ Let f € X’ such that < f, o >= 0 Vp € N(div), let

let v e N(divg), set v extension of v.on S by 0
then v € NV (div)
<f,i>=0, = fls, € N(divk)!t = R(Vy)

thus Ip € L?(Sk)/R s.t.

f = Vpk, on 5

Sk increasing sets pxir1 — px = Cf on Si, choose pii1 s.t. CF = 0.

finaly letting kK — oo
f=Vp, peLi(S)
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The rough problem Boundary layer theory for rough domains

Exponential decrease
e So far we proved 3!(3,7) € X x L?

loc

o At {y» = L} there exists 5(y1,L) € H%({}Q = L}) set £ :=rotf
AL =0ony, > L, ¢&=rotp

use the y; Fourier transform
“+oo
£ = (Cunsin(2mkyr) + Cypsin(2mky;))e™ ™
k=1
@ recover the velocity

AB = (V()*

which gives

oo
B="> ((D1,,+C1ny2) sin(2mky1)+(D2,n+Ca ny2) cos(2mky1))e 2™
k=1
+ compatibility condition on D; ,,C; , in order to satisfy div 3 =0
@ same story for the pressure
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The rough problem Boundary layer theory for rough domains

Constants at infinity
e For (3, integrate the div equation on S, ¢ := SNJ0, 1[x]0,w][

/ div Bdy = 0 = f,(w) — / y2€1 - nds — 35(0)
S P

W,y
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The rough problem Boundary layer theory for rough domains

Constants at infinity
e For (3, integrate the div equation on S, ¢ := SNJ0, 1[x]0,w][

/S div Bdy = 0 = By(w)

W,y
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The rough problem Boundary layer theory for rough domains

Constants at infinity
e For (3, integrate the div equation on S, ¢ := SNJ0, 1[x]0,w][
[ divsdy =0=F(w)
Suy
e For 3,: set the “Fundamental solution”
—AlLL+VJ, = _5{y2:1/} inS
divl, =0
reads 1
/,, = §]y2—1/|e1, J,/:O
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The rough problem Boundary layer theory for rough domains

Constants at infinity

e For (3, integrate the div equation on S, ¢ := SNJ0, 1[x]0,w][

/S div Bdy = 0 = ()

W,y

e For 3,: set the “Fundamental solution”

—AlLL+VJ, = _5{y2:1/} inS
divl, =0
reads

1
/,, = §|y2—1/|e1, J,/:O
o Apply the Green formula on S, o

(_AIB + Vm, /V)SW,O - (_AI + VJ:/B)SW,O = Bl(y)

= (=0 -0 L)os, o + (01,5, -1 B)as, o

1 1 L5
— —§|Vﬁ|%2(5)4 + E(any2e17.y2e1) + Eﬁl(w)
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The rough problem Boundary layer theory for rough domains

Vertical correctors

@ Microscopic corrector
—AWg-f—VQg:O in T
divwg =0
wg=0on DUB

B
COO0O0000000Q
D

Wﬁ T = ,62
Og=m
@ the usual weighted Sobolev space :

on N

a+|A|—m

WmP(Q) = {v €D/(Q) st. |DM|(1+p2) >

@ Properties

Theorem 1.8
3t (w, 6) € WE2(M)2 x W23(N) if

a<l

Vuk Milisic (WPI) Blood flow in stented arteries
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Proof |

o lift the tangent component of the data
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The rough problem Boundary layer theory for rough domains
Proof |

o lift the tangent component of the data
@ then the problem reads

—Awg + Vg =finTl
divwg =g
wg=0on DUB

=0
e T }onN

63 = h

with the spaces:
A WE(N) — (W22(m))’
B - W (M) — Wo(M)
BT - Wo3(N) — (W22(m))’

the div and V do not map in duality
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The rough problem Boundary layer theory for rough domains
Proof |

o lift the tangent component of the data
@ transform the problem setting
pi=(1+IyP):, Ui=pows, Pi=p0,
~A U+ BIP = p in
B, U= p%g
U=0on B

IU-T:O}
on N

P=p“h
where

1 1
AU := —AF — 2p°VF - V— — p*A—F
pe pe
1
B,U :=divU + p*V < ) -U

e
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Proof Il

In the new variables the operators act on
Ao - Wg(1) — WoM%()
Ba s Wo (M) — Wg(M)
B We (M) — Wo (M)
new change of variables B, acts in duality. Check
@ coercivity on the kernel YU € Wé’z(l_l) NN (div)
U

(AU, 0) > [[VU| 2y — @7 p

12()

use weighted Poincare-Wirtinger and conclude

@ surjection of div follows define a sequence C, covering 1 where

Co={yeNst ifx=(r,d) re2" 12"}, n>1,

Co = B(O, l) N Tl

on each of them use Galdi's candidate, and conclude
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Localizing

@ The corner cut-of Set 1 := t)(x) and 12 := 9(x — (0, 1)), where 1

s.t.
1if |x| <

0if [x| >

WIN W[+~

NB: Ont0 =0 on Mip U Mous.
@ The “far from the corner” cut-off
® complementary on I, U Ty U s.t.

{¢+¢:1

Bad = 0, on My Ulgut Ul

for instance ®(x) := 1 — (0, x2) for all x € Q.

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009

50 / 89



Bk (Evar idieay (27 o donenE
Macro corrector

AW+VZ =0, inQ
divW =0
dug,1

W/\n:e{ o (ﬂﬁ—ﬁ)}/\nd)
-~ augyl‘
Z—{ 7% ,371'}4)
W=0onT,

w = e{a”“(m fﬁ)} ®ony

(9X2

on Iy UTout

Proposition 2
31 solution (W, Z) € HY(Q) x L%(£), moreover:

IWilhs(a,) + 12020,y < ke *

rate 7 and constant k do not depend on e.

define
We(x) = e {wl(x)w (f) +10((1,0) — x)w (%) } +W(x),
206) 1= {11090 (%) +a((1.0) =00 (B2 b+ 200,
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Full boundary layer approximation

Set 5 5
L Up,1 =3 Up,1
V, = uo+e{ D (e ﬁ)+u1}+ D W,
0 0
Pei=po+q oy epy b+ St Z,
0x> Ox2
where

—Au; +Vpr =0in Q
divu; =0
u; =0on 1l
up -7 =0on N, Ulout,
p1=0on [y Ulgut

auo’lfziel on lg
0x2

u; =
X

(uy, p1) give first order macroscopic approximation
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The rough problem Boundary layer theory for rough domains

Main convergence results

Theorem 1.9

First order error a priori estimates

||u€ - Ve”Hl(Qe) + ||pe - P€||L2(Q€) < ke

Very weak solutions a la Conca

.
[ue = Vel 20y + |Pe = Pell g1y /m < ke2

At this point the approximation (V,, P.) is multi-scale
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IlemegEnE:) s @l i
Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

U = ug + euy
Qe = po + €p1

Theorem 1.10
Very weak solutions a la Conca

3—
2

lue = Uell 2y + [1Pe = Qell y-1(0) < ke

Proof.
Use the triangular inequality

flue — Z/IEHLZ(Q) < lue = VEHLZ(Q) + Ve = Z/{EHLZ(Q)
mostly only remains to estimate oscillations

Ve = Uy < ]| 5 - B 0@ <6

+-
2(Q)

=)
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Very weak solutions

Q bounded set ,

—Av+Vqg=G, . —AP+Vw =g, .
in Q in Q
dive =10 and divep =0
v=2¢on 0 ® =0 on 0Q2

Suppose that (v, g) and (®, @) are regular enough (H? x H')
(Av—Vq,®)q — (A® — Vw,v) = (0v,q - N, Pog — (06, - N, V)on
use the rhs and the BC
—(G,®)a + (g,v)a = —(00,5 - n,{)on
if you can estimate ® as a function of the data g one obtains:

(g, v)al < [[Gllu-1(a)[®llnx ) + [€ll200) loe.=l200) < Cllgllizg)

> (v.)
v,8
IVl = s : < 1Gllu-1(e) + 1€l 2 (a0
gci2@) llgll 2
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IemegEned) i @i daie
Very weak solutions

Similarily
—Av+Vqg=G, —A®+Vw =g,
in Q in Q
dive=H and dived = h
v-T=§ oygn-n=yxondQ ®-7=0, 0pon-n=00n0N

Suppose that (v, g) and (®, @) are regular enough (H? x H?)

(Av —Vg,®)g — (A® — Vw,v) =(0v,q - 1, P)oa — (0o - N, V)on
+(q,div®)g — (w,divv)e

use the rhs and the BC
(G, ®)q — (H,®)a — ((g,V)a — (h,9)a) = (0o, - n,ET)an — (® - nx)an
if you can estimate ®, w as a function of the data g, h one obtains:
(g, v)a = (h. q)al < 1Glly-1q)l®lhya) + Hll2@)ll@l2@q)
+ HfHLZ(;}Q)HUG,w"THp(an) + 1l -1 02) |9 - 0T [l 1250
< Cligllz@) + CllAlln e
So
(v, g)l

(g, h)| /
< llqll = sup - <C
eci2@) 8l 2() H@

nerz@) 1hlliey ~

lIvll 20y =
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Wall law

e System of equations satisfied by (U, Q.) ?

—AU.+VQ.=0inQ
divid. =0
U.=0on Iy
U -7 =00n T Ul gy,
Qc=pmon Ty, Qc=0o0nToy

OU,
5% + O(€?) on Ig

UF:e/:ﬁ

Implicit boundary condition of mixed type
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The colateral artery

© The colateral artery
@ The modelling approach
@ Boundary layer theory for rough boundaries
@ Homogenized first order terms
@ Numerical evidence
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Notations and Methodology

M M
! 1 1 i Z+
Tin Qe1 Fout,1 Tig 4 Tout,1 P
| le | | |
00000000000 " . . . . ! g .
lo o
2 2 ) [ b [
Z_
lout,2 Fout,2

@ Construction of a complete boundary layer corrector: €.
@ Derivation of wall laws: Qg
We denote:
- P={ycR? st. y_r(cos(f),sin(6))},
- Q the “smooth domain”, 9 the fictitious interface,
- x the slow space variable , y = f the fast one.
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The colateral artery The modelling approach

The problem

@ The flow is laminar

— Au, +Vp. =0in Q.
divu. =0

u=0onl Ul UT,
Ue1 = OonTli,uU rout,l

Ue2 = 0 on rout,2

Pe = pm on lin, pe = Pout,1 ON rout,h Pe = Pout,2 ON rout,2:

@ Pressure imposed # Dirichlet velocity as in

@ C. Conca.
Etude d'un fluide traversant une paroi perforée. | & II.

J. Math. Pures Appl. (9), 66(1):1-70, 1987.
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Ule meck i arppieze
Expected behaviour

sovalue sovalve

w22
[

Vec value I Vec vaue

Wozsoisa
WO 274538

Wo2a7424
o261ty
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The colateral artery Boundary layer theory for rough boundaries

The limit solution when € — 0

@ The Poiseuille flow
— Aug + Vpg = [0ug,po] - NOr, in Q
div Ug = 0
up=0onTUl;
up2 = 0 on Iy Uy 1,
po = pin on Fin,  po=0o0n out,1 U Mout,2
up#0onTl,

where [0y, 5] - 0 is the jump across g
@ (ug, po) is explicit and reads:
Pin
up(x) = 7(1 —x)xeilg,, VxeQ

po(x) = pin(1 — x1)1o,

Theorem 1.11
llue — uoll (o, )2 + 1P — Poll 20,y < ke

where the constant k does not depend on e.

Up,1 = 0on rout,?
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The colateral artery Boundary layer theory for rough boundaries

Higher order approximation 7

@ No flow at zeroth order through gy 2 !

@ Errors treefold
@ Dirichlet non homogeneous on I,
auo,l

@ Jumps at g of e
© Jumps at [ of pg

@ Use of two kind boundary layers

@ verical
@ horizontal
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The colateral artery Boundary layer theory for rough boundaries

Dirichlet correction

@ Microscopic corrector a la Mikeli¢
—AB+Vr=0inS$S
divg=0
B = —ye1onP
B2 =0, |yof = o0

@ Properties

Proposition 3

3I(B, ), w defined up to a constant, s.t.

Ve (S)(3-B) € X(S). me LE(S)

Moreover, one has: -~
Bly) — Bie1, y»— xoo

and
Baly2) =0,
B1(y2) = (On(y2€1).y201)p — |VBI72(s) + B(0)
Baly2) = 51(0),
7(y2) =0,

where yo p 1= maxycpya.

Vy, € R

Y2 > y2.p,

»<0
y2>yzpand y» <0
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The colateral artery Boundary layer theory for rough boundaries

Normal derivative horizontal velocity correction

@ Microscopic corrector a la Mikeli¢
— AT +Vw=4dye;inS
divT =0
T=0onP
To—0, |y — o0
o Properties
Proposition 4

(T, ), @ defined up to a constant, s.t.

VT e L2(S)%, (T =T) e LX(S), well.(S)

loc

Moreover, one has: -
T(y) = Tier, y»— +oo

and o
Tg(yz) =0, V}/z eR
Ti(y2) = T(0) + 5(0), ¥2 > yap,
Ti(y2) = T1(0), y2<0
w(y2) =0, y2>yspand y, <0

where y> p := max,cpy2.
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Bk (e deay (25 o bauiskie
Vertical correctors

@ Microscopic corrector a la Conca
—Ax+Vn=0in$S
divy =0
x=0onP
X2 — —1, ‘}/2‘ -
o Properties

Proposition 5
3!(x,n), n defined up to a constant, s.t.

Vx € ()", (x —X) € L3(S),  (n—1) € L},e(S)
Moreover, one has:
x(y) = —Xie2, y2 — £00
{ n(y) =7, Vy2 € R_x]yzp, +00],

|VXE2(5) =7t

where y» p := max,cpy>.
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Bk (e deay (25 o bauiskie
Vertical correctors

@ Microscopic corrector

—AWg-i—V@ﬁ:Oinn

N n
divwg =0 .
wg=0on DUB 0000000000
D
wg An=
g & on N
Og=m

@ the usual weighted Sobolev space :

a+|A[—

Wre(Q) = {v e D/(Q) st [DMVIL+ 2727 €LP(Q), 0=\ <m

@ Properties

Theorem 1.12
3l (w, 0) € WE(N)2 x W) if o< L J
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The colateral artery Boundary layer theory for rough boundaries
Localizing

@ The corner cut-of Set 1 := t)(x) and 12 := 9(x — (0, 1)), where 1

s.t.
1if |x| <

WIN W[+~

0if [x| >

NB: 9nt) =0 on Min U out 1.
@ The “far from the corner” cut-off
® complementary on I, U gy, U T2 st

{¢+¢:1

on inUTlou1 Ul
Fnd =0, R

for instance ®(x) := 1 — (0, x2) for all x € Q.
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Macro corrector

AW +VZ =0, inQ,

divW =0
Oug 1 = Oup,1

WANn=c¢ %(ﬁe—ﬁ) Anod, and Z=q—=0m, donlj Ul
0x> Oxo

W=0onT,

w=el2%15 Hleonr

- Oxp € !

Proposition 6
3! solution (W, Z) € HY(Q,) x L?(£.), moreover:

”WHHl(QE) + HZHLZ(Qe) < ke_%

rate v and constant k do not depend on e.
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Macro corrector

AW +VZ =0, inf,
divW =0
. {auOJ = } N {8’10,1 }
WANn=c¢ (Be—B)p And,  and Z = B ®on Iy UT,
X2 0x2

W=0onT,
W = 6{8“071(56 —5)} ®on Iy

0xo

define

W) = e Lt (%) + va((1.0) —w (022 b wio,
2i06) = {n(09 (%) + 020000 =08 (2225 ) 4 20,
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The colateral artery Boundary layer theory for rough boundaries

First order approximation

vzt e f 5005+ [ G2 (re - T4 Blo -9 b
+62{pin(%e

— %) +u} + W,

o Oup 1 Oup 1 [po] —
P. .—po+{ D e + [ D% } et =Me—7N)+em

[7]
+ epin(pe — 1) + €p2 + 2

@ multi-scale version of boundary layer correctors

=B (2), Tl0=T(3). xel0=x(3).

#e(x) = 5 (g) ,
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Boundary layer theory for rough boundaries
Higher order macroscopic correctors

\

—Au; +Vpr=0in QU
divu; =0
uy=0onT;Ul>
ur2 = 0on Iy Ulgut 1,
ur,1 =0, on Moyt 2
p1=0o0n Iy Ulgue1 Ul out,2

u; = {ayo7lﬁ + |:au0,1:| T } ey + @Yeﬁ on I_Oi
0xo 0xo [7]

(ug, p1) give first order flow-rate trough Iy

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009

70 / 89



Boundary layer theory for rough boundaries
Main convergence results

Theorem 1.13
Very weak solutions a la Conca

.
Jue — V6||L2(Qluﬂ2) + |lpe — PGHH*I(QNQQ)/R < kez

At this point the approximation (V,, P.) is multi-scale
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IemegEned) i @i daie
Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

U :=ug + eug
Qc :=po +€p1

—AUA4+VQ.=0in QU
divid, =0
U.=0on 1 Ul
Us An=0on Iy Ulgue1 Ul out,2,
Qc=pmon i, Qe=0o0n /1 UTlou2

B Oug 1 Oup1 | =+ u
Ue = {82ﬁ+[8x2:|rr} +€[]X620nr0
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IemegEned) i @i daie
Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

U :=ug + eug
Qc :=po +€p1

(—AU, +VO,=0in QU

divid. =0

U =0onl1 Ul

Us An=0on iy Ulgue,1 UNout,2,
Qc=pmnonlin, Qe=0o0n o1 UTlout2

T + + . -
= o T M U YT
- B +T B +7T
U on=u -n==(loup] nn)

[7]
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The colateral artery Homogenized first order terms

Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

U = ug + eug
Qe = po + €p1

Theorem 1.14
Very weak solutions a la Conca

.
[ue = Uell 2(0,00,) + 11Pe = Qell -1 (@qua,)/r < ke

Proof.

Use the triangular inequality

lue = Uell 2(000,) < lue = Vel 2(,uq,) + Ve = Uell 20,000

mostly only remains to estimate oscillations

_ .
Ve = Ul o) < |3~ B +o 4 0(@) <

L2(Q1UQ2)

=)

Vuk Milisic (WPI) Blood flow in stented arteries

July 23, 2009

72 / 89



Compute the first order flow rate

@ velocity profile normal direction to I
Ueo(x) = (uo2 + €ur2)(x) = —e—=(x)

@ Solve with a computer a cell problem (cheap even in 3D):

+ =
-7

3|

o First order flow rate

b
Qr, = % /a [po] dx1
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The colateral artery Numerical evidence

Numerical evidence

@ Compute the exact problem

@ Compute the boundary layers single # cell
- Extract the constants at infinity

o Compute the flow-rate
0.008 0.008
0.007 | 4 0.007 | 4
0.006 E 0.006 E
0.005 q 0.005 q
o o
&0004 - E &0004 - = 7
0.003 - 4 0.003 | L E
0.002 o E 0.002 | 2 E
0001f & B 0.001 | / B
E Rumerica —
ol v eoretica ol v eoretica
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
€ €
Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009

fu merica| —+—

74 / 89



Sacular aneurysm

© Sacular aneurysm
@ The problem
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Sacular aneurysm

Same problem
but ...

— Auc, +Vp.=0in
divu, =0

u=0on iUl UT,
ue1 = 0on Iy Ulgutn

u. =0 on MNyyt 2

The problem

M

B
rn‘; Qe,1 irout,l

| |
| Te |
000000000 00!

o
ry a, ry

r

Pe = Pin ON rinu Pe = Pout,1 ON rout717

Pressure imposed at inlet and outlet but not at [, 2
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Sacular aneurysm Ansatz

When € goes to 0

@ The Poiseuille flow
— Aug + Vpg = [04y,po] - N1, in Q
divug =0
u=00onT1 UM U2
up An=0on I, Ulgue1
Po = Pin 0N Tin,  po=0o0n Moug1
ug #0on e

@ (ug, po) is explicit and reads:

up(x) = %(1 —xo)xeilg,, VxeQ

po(x) = pin(1 — Xl)lﬂl +pola,, Vpp €R

Theorem 1.15

lue = uoll (g2 + 1P = Poll 2(, 1) + 1Pe = Poll 2,y m < ke

where the constant k does not depend on e.
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First order approximation

Again the same trick

Ve ::uo+e{6:;(?(ﬁe—ﬁ)+{8;£2’l}(7‘ 'Y‘)—i-[[po]]( e—X)+u1}
+ & {pim(see — ) + up} + W,
P = po + {aau)zz’lﬂ'e + [351)(;1} we + [EDO]]( 77)—|-6P1}

+ 6pin(/le - ﬁ) + €2P2 + 2.

@ multi-scale version of boundary layer correctors:

X

Be(x) =7 (Z) , Te(x)=T (E) , o Xe(X) = x (E) , o se(x) = (7)
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Pressure of the sac
The pressure in the sac
([ —Au; +Vpr =0in Q UQ
div u; = 0
u;=0onl;UlU rout,g
ur An=0on T, Uy,
p1 =0on 'y Ul oy 1
Oug1==* au =+ _
u; = { 0’1[)’ + [ 0’1} T }e1+[po]xe2 on Foi
9o % 7l

divergence condition and normal veolicty imposed on [g:

/divuldx:/ u1-nda:/u1-nda:0
Qs 082 lo

gives in the sac

Folpy = Jr, Po (x1,0)dxs
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Sacular aneurysm Numerics

Numerics

A numerical “pathological” case
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Sacular aneurysm Numerics

Numerics

A numerical “stented” case
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Sacular aneurysm Numerics

Numerics

A more realistic geometry: the “pathological’ case

0425718,

0475765
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Sacular aneurysm Numerics

Numerics

A more realistic geometry: the “stented” case

05099

0374807625316 5
' ) (o @
195 osisas2 osswasy OArirlR

0502887

050046
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Sacular aneurysm Numerics
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Sacular aneurysm Numerics

Conclusion & Perspectives

Conclusion

@ Our approach introduces the vertical correctors

- Not present in the literature
- General setting

Perspectives
@ Time dependent case: Womersley profile
@ Curved boundaries
@ Navier-Stokes

@ Cell growth
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Sacular aneurysm Numerics
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Sacular aneurysm Numerics
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Sacular aneurysm Numerics
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Sacular aneurysm Numerics
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