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Introduction Industrial context

Two common pathologies of the cardio-vascular system
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Introduction Industrial context

Industrial context

Cardiatis R©: conception and comercialisation of metallic wired multi-layer
stents Image 3D

A new technology
One controls

- The # of layers
- Their connectivity

In vivo experiments
1 on mini-pigs show :no thrombus up to 6 months Dissection pictures

2 on humans : Microscopy pictures

Multi-Scale phenomenon lying on:

- Hemodynamics
- Chemical reactions between blood flow and the surrounding wires and

tissues

Theoretical & numerical study of hemodynamics
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Introduction Industrial context

Problem description

Geometrical properties

- Femoral artery diameter:∅A = 6mm
- Total thickness of the stent : ε = 0.25mm
- Thickness of a single wire: ε = 0.04mm
- Red blood cell diameter: ∅RC = 0.008mm

ε

∅A
=

0.25

6
∼ 4%

stent ∼ periodic rugous wall in a straight cilindrical geometry

The blood flow is composed of

- Steady state part: Poiseuille profile
- Plus a pulsatile periodic perturbation: Womersley profile

We consider here the Poiseuille profile
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Introduction Industrial context

Objectives and references

-We aim to

understand the dynamics of flows in rugous channels
=⇒ Boundary layer correctors
Avoid heavy discretisations related to the rugous wall
=⇒ Wall laws
Include the micro scales in the macro Poiseuille profile
=⇒ Multi-scale aspects

Use of assymptotic expansions adapted for
the perturbed boundaries.

Main references

N. Neuss, M. Neuss-Radu, and A. Mikelić.

Effective laws for the poisson equation on domains with curved oscillating
boundaries.

Applicable Analysis, 2006.

Y. Achdou, P. Le Tallec, F. Valentin, and O. Pironneau,

Constructing wall laws with domain decomposition or asymptotic expansion
techniques

Comput. Methods Appl. Mech. Eng. 1998
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Deriving Navier-Stokes equations
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Deriving Navier-Stokes equations The continuity equation

Derivation of the Navier Stokes equations
The continuity equation

ω0 subdomain of Ω, γ0 boundary of ω0

ρ density

decrease of mass per time unit:

total mass exiting from ω0 through γ0:
∫
γ0
ρu · ndγ0

n outward normal vector

u flow’s velocity

Mass balance

− d
dt

∫
ω0

ρdx =

∫
γ0

ρu · ndγ0

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 8 / 89



Deriving Navier-Stokes equations The continuity equation

Derivation of the Navier Stokes equations
The continuity equation

ω0 subdomain of Ω, γ0 boundary of ω0

ρ density

decrease of mass per time unit:

total mass exiting from ω0 through γ0:
∫
γ0
ρu · ndγ0

n outward normal vector

u flow’s velocity

Mass balance

− d
dt

∫
ω0

ρdx

=

∫
γ0

ρu · ndγ0

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 8 / 89



Deriving Navier-Stokes equations The continuity equation

Derivation of the Navier Stokes equations
The continuity equation

ω0 subdomain of Ω, γ0 boundary of ω0

ρ density

decrease of mass per time unit:

total mass exiting from ω0 through γ0:
∫
γ0
ρu · ndγ0

n outward normal vector

u flow’s velocity

Mass balance

− d
dt

∫
ω0

ρdx =

∫
γ0

ρu · ndγ0

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 8 / 89



Deriving Navier-Stokes equations The continuity equation

Derivation of the Navier Stokes equations
The continuity equation

ω0 subdomain of Ω, γ0 boundary of ω0

ρ density

decrease of mass per time unit:

total mass exiting from ω0 through γ0:
∫
γ0
ρu · ndγ0
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Mass balance
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From the divergence theorem∫
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∂tρ+ div (ρu)dx = 0

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 8 / 89



Deriving Navier-Stokes equations The continuity equation

Derivation of the Navier Stokes equations
The continuity equation
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ρ density

decrease of mass per time unit:

total mass exiting from ω0 through γ0:
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ρu · ndγ0

n outward normal vector
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∂tρ+ div (ρu) = 0

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 8 / 89



Deriving Navier-Stokes equations The continuity equation

Derivation of the Navier Stokes equations
The momentum equation

Newton’s law to a moving element of volume ω

d
dt

∫
ω
ρudx =

∫
ω
ρfdx +

∫
γ
Sdγ

f denotes a density of volume forces
S a density of surface forces per surface unit
∆t = t ′ − t

d
dt

∫
ω
ρudx = lim

∆t→0

1

∆t

(∫
ω′
ρu(x ′, t ′)dx ′ −

∫
ω
ρu(x , t)dx

)
a material point x ′ at time t ′ corresponding to (x , t)

x ′ = x + ∆tu(x , t) + 0(∆t2).

change of variables∫
ω′
ρu(x ′, t ′)dx ′ =

∫
ω
(ρu)(x + ∆tu, t + ∆t)

∣∣det∇xx
′∣∣ dx
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Deriving Navier-Stokes equations The momentum equation

Derivation of the Navier Stokes equations
The momentum equation II

first order Taylor expansion in ∆t, and ∆t → 0

d
dt

∫
ω
ρudx =

∫
ω

[∂t(ρu) + (div u)ρu + (u · ∇)ρu] dx

Taking into account the continuity equation

d
dt

∫
ω
ρudx =

∫
ω
ρ [∂tu + (u · ∇)u] dx

where

v · ∇w =
N∑

j=1

vj
∂jwi

xj

ω arbitrary, eqs become pointwise:

ρ(∂tu + (u · ∇)u)− div σ = ρf

Viscous stresses,

σ := −pId + σ′, σ′ := 2µ

[
D(u)− 1

3
div uId

]
, 2D(u) := ∇u +∇uT
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Deriving Navier-Stokes equations The momentum equation

The full Navier-Stokes system
Newtonian incompressible viscous fluids with constant density

Incompressibility: fixed volume the contiuity equation reduces to

div u = 0

momentun equation reduces to

ρ(∂tu + u · ∇u)− µ∆u +∇p = ρf

Dimensionless formulation of the Navier-Stokes equations
setting

x ′ = x/L, t ′ = (U/L)t,u′ = u/U, p′ =
p

ρU2
, f ′ = (L/U2)f

gives  ∂tu
′ + u′ · ∇u′ − 1

<
∆u′ +∇p = f

div u′ = 0

where < is the Reynolds number

< := ρ
UL

µ
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Deriving Navier-Stokes equations The momentum equation

The stokes system

Consider a flow:

steady

linearized around u ≡ 0

low reynolds number < ∼ 1

you obtain The Stokes system

complement with boundary conditions

u = gD , σu,p · n = gN ,

 ∂tu + u · ∇u− 1

<
∆u +∇p = f

div u = 0
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Deriving Navier-Stokes equations The momentum equation

Variations on boundary conditions

variational form ∀v ∈ D(Ω):∫
Ω
∇u : ∇vdx −

∫
Ω

pdiv vdx

+

∫
∂Ω

((pId−∇u) · n, v)ds =

∫
Ω

f · v
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∫
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Natural boundary conditions

−(∇u− pId) · n = Mu + g, ∀M ∈M+
2,2(R)
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The Stokes system The abstract formalism

Abstract problem

Define

the Banach spaces
X ,Y

the operators
A : X → Y ′, B : X → Y

solve the problem, find u, p s.t.{
Au + BTp = f

Bu = g

We study in an abstract formalism

1 the well-posednes

2 the continuity wrt data
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The Stokes system The abstract formalism

Framework

fundamental results for linear bijective operators in Banach spaces

classical

Brezis. H
Analyse fonctionnelle
Masson

Yosida
Functional analysis
Springer

A. Ern and J.-L. Guermond.
Theory and Practice of Finite Elements, volume 159 of Applied
Mathematical Series.
Springer-Verlag
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The Stokes system The abstract formalism

Preliminary results

V and W Banach spaces

A an application A ∈ L(V ,W )

N (A) kernel

R(A) rank

V /R(A) quotiented space

v ≡ w ⇔ v − w ∈ N (A), ‖v‖V /N (A) ≤ infw∈N (A)‖v + w‖V

Theorem 1.1

V /N (A) is a Banach space

A : V /N (A) → R(A) s.t.
Av = Av

A bijective

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 18 / 89



The Stokes system The abstract formalism

Kernels Ranks and Adjoint operators

V Banach space

M ⊂ V ,N ⊂ V ′

M⊥ :=
{
v ′ ∈ V ′; ∀m ∈ M, < v ′,m >V ′,V = 0

}
N⊥ :=

{
v ∈ V ; ∀n′ ∈ N, < n′, v >V ′,V = 0

}
Theorem 1.2

For A ∈ L(V ;W ), the following properties hold

1 N (A) = (R(AT ))⊥

2 N (AT ) = (R(A))⊥

3 R(A) = (N (AT ))⊥

4 R(AT ) ⊂ (N (A))⊥
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The Stokes system The abstract formalism

Kernels Ranks and Adjoint operators

closure

R(AT )

R(AT )

N (AT )

N (A)

⊥

⊥

⊥ ⊥

V ′ W ′

WV

A

AT
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The Stokes system The abstract formalism

Closed range

Theorem 1.2

For A ∈ L(V ;W ), the following properties are equivalent

1 R(A) is closed

2 R(AT ) is closed

3 R(A) = (N (AT ))⊥

4 R(AT ) = (N (A))⊥
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The Stokes system The abstract formalism

Also

Lemma 1.1

If A ∈ L(V ;W ), the following propositions are equivalent

R(A) closed

∃α > 0 s.t. ∀w ∈ R(A), ∃vw ∈ V s.t.

Avw = w , α‖vw‖V ≤ ‖w‖W

Proof.

R(A) closed =⇒ A : V → R(A) surjective.
Then apply the open mapping theorem on A : V → R(A)
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The Stokes system The abstract formalism

Also

Theorem 1.2 (Petree Tartar)

Hypotheses:

X ,Y ,Z Banach spaces

A ∈ L(X ,Y ) injective

T ∈ L(X ,Z ) compact

There exists c > 0 s.t.

c‖x‖X ≤ ‖Ax‖Y + ‖Tx‖Z

Conclusion : there exists α s.t.

∀x ∈ X , α‖x‖X ≤ ‖Ax‖Y

Proof.

By contradiction: suppose ∃xn ∈ X s.t. ‖xn‖X = 1 and ‖Ax‖ → 0
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The Stokes system The abstract formalism

The inf-sup condition

Surjectivity sometimes tedious instead possible characterisation:

Lemma 1.1

Hypotheses:

V and W Banach spaces
V reflexive

then the following claim are ∼
(i) ∃α ∈ R+ s.t. ∀w ∈ W, ∃vw ∈ V s.t. Avw = w and α‖vw‖V ≤ ‖w‖W
(ii) The inf-sup condition

inf
w ′∈W ′

sup
v∈V

< ATw ′, v >

‖vw‖V ‖w‖W
≥ α

Proof.

(i) =⇒ (ii) easy , reverse cf Ern-Guermond
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The Stokes system The abstract formalism

Surjective operators

Lemma 1.2

A ∈ L(V ,W ) then the following assertions are ∼
1 AT surjective

2 A injective and R(A) closed

3 ∃α > 0 s.t. ∀v ∈ V α‖v‖V ≤ ‖Av‖W

Lemma 1.3

A ∈ L(V ,W ) then the following assertions are ∼
1 A surjective

2 AT injective and R(AT ) closed

3 ∃α > 0 s.t. ∀w ∈ W ′ α‖w ′‖W ′ ≤
∥∥ATw ′∥∥

V ′
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The Stokes system The abstract formalism

Onto mappings

Theorem 1.3

A ∈ L(V ,W ) bijective iff {
AT : W ′ → V ′ injective

∀v ∈ V ‖v‖V ≤ α‖Av‖W

Proof.

A surjective ⇔ AT injective and R(AT ) closed
R(AT ) closed ⇔ R(A) closed
R(A) closed and A injective ⇔ ∃α > 0 s.t. ∀v ∈ V α‖v‖V ≤ ‖Av‖W

Note

A bijective Banach operator iff

A injective
R(A) closed
AT injective
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The Stokes system The abstract formalism

Saddle point problems

X ,M Banachs
A : X → X ′

B : X → M
Given (f , g) ∈ X ′ ×M) find (u, p) ∈ X ×M ′ solving{

Au + BTp = f

Bu = g
(1)

N (B) kernel of B
πA : N (B) → N (B)′ s.t.

< πAu, v >=< Au, v >, ∀u, v ∈ N (B)

Theorem 1.4

Problem (1) is well-posed iff

1 πA : N (B) → N (B)′ isom
2 B : X → M surjective

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 25 / 89



The Stokes system The abstract formalism

Proof of theorem 1.4
Necessary conditions pbm well posed =⇒ 1 and 2 (part I)

B surjective ?
h ∈ M denote (u, p) solution of (1) with data (0, h). B surjective ok.
πA surjective ?
Let h ∈ N (B)′, Hahn-Banach theorem there exists h̃ ∈ X ′ extension
of h s.t. (cf Yosida p.102 and 106.) < h̃, v >=< h, v >, ∀v ∈ N (B)∥∥∥h̃

∥∥∥
X ′

= ‖h‖N (B)′

Let (u, p) solution pbm (1) with data (h̃, 0) =⇒ u ∈ N (B) as

< BTp, v >=< p,Bv >= 0, ∀v ∈ N (B)

one has
< πAu, v >=< h, v >, ∀v ∈ N (B)

thus ∃u ∈ N (B) s.t. πAu = h
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The Stokes system The abstract formalism

Proof of theorem 1.4
Necessary conditions pbm well posed =⇒ 1 and 2 (part II)

πA injective ?
Hypothesis: < πAu, v >= 0, ∀v ∈ N (B)
then πAu ∈ N (B)⊥ = R(BT ) (because B surjective)
∃p ∈ M ′ s.t. Au = −BTp
thus (u, p) satisfy {

Au + BTp = 0

Bu = 0

pbm well posed =⇒ (u, p) = (0, 0)
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The Stokes system The abstract formalism

Proof of theorem 1.4
Sufficient conditions 1 and 2 =⇒ pbm well posed (part I)

Existence ?
Given (f , g) show that ∃(u, p) solving pbm (1)

1 B surjective =⇒ ∃ug s.t. Bug = g
2 Question: ∃Φ ∈ N (B) s.t. AΦ = f − Aug in N (B)′ ?

Answer: yes if fAug ∈ N (B)′ but f − Aug ∈ X ′ ⊂ N (B)′

Set u = ug + Φ, one then has:

Au − f ∈ N (B)⊥

As B surjective N (B)⊥ = R(BT ) and ∃p ∈ M ′ s.t.

Au − f = −BTp, and Bu = g

existence ok
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The Stokes system The abstract formalism

Proof of theorem 1.4
Sufficient conditions 1 and 2 =⇒ pbm well posed (part II)

Uniqueness ?
(f , g) := (0, 0) Above gives there exists (u, p) s.t.{

Au + BTp = 0

Bu = 0

then u ∈ N (B) and πAu = 0 =⇒ u ≡ 0
B surjective =⇒ BT injective =⇒ p ≡ 0
ok
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The Stokes system The abstract formalism

A priori estimates

Lemma 1.4

Conditions (i) and (ii) satisfied then

∃ci (α, β), i ∈ 1, . . . , 4 independent on f , g , u, p s.t.

‖u‖X ≤ c1‖f ‖X ′ + c2‖g‖M
‖p‖M′ ≤ c3‖f ‖X ′ + c4‖g‖M
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The Stokes system The abstract formalism

A priori estimates

Proof.

∃ug /Bug = g

B surjective

X reflexive

∣∣∣∣∣∣∣ =⇒ ∃β > 0 s.t β‖ug‖X ≤ ‖g‖M

Then solve AΦ = f − Aug in N (B)′, A surjective =⇒

∃α > 0 s.t. α‖Φ‖X ≤ ‖f ‖X ′ + ‖A‖L(X ;X ′)‖ug‖X

As we set u := Φ + ug

‖u‖X ≤ ‖Φ‖X + ‖ug‖X
B surjective

β‖p‖M′ ≤
∥∥∥BTp

∥∥∥
X ′

also for p s.t. BTp = f − Au. ok
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The Stokes system Application to the Stokes equations

Surjectivity of the div operator

Set

W1,q
0 (Ω) := {v ∈ Lq(Ω) s.t. Dαv ∈ Lq(Ω), v = 0 on ∂Ω}

Theorem 1.5

Hypothesis: let

Ω a bounded domain of Rn s.t.

Ω = ∪N
k=1Ωk , N ≥ 1

where Ωk star shaped wrt Bk s.t. Bk ⊂ Ωk

f ∈ Lq(Ω) s.t.
∫
Ω fdx = 0

Conclusion: ∃ a vector v ∈ W1,q
0 (Ω) s.t.

div v = f , |v|W1,q
0 (Ω)

≤ c‖f ‖Lq(Ω)
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The Stokes system Application to the Stokes equations

Idea of the proof

cf p.115-125 in

Giovanni P. Galdi,
An introduction to the mathematical theory of the Navier-Stokes
equations. Vol. I.
Springer-Verlag,
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The Stokes system Application to the Stokes equations

Idea of the proof

1 rescale Ω wrt radius, center in in 0
2 This domain is star-like wrt ∀ point of B(0, 1) ⊂ Ω set

∀ω ∈ C∞
0 (Rn) s.t. suppω ⊂ B(0, 1),

∫
B
ω(y)dy = 1

one has an explicit formula if f ∈ C∞
0 (Ω)

v(x) =

∫
Ω

f (y)

[
x − y

|x − y |n

∫ ∞

|x−y |
ω

(
y + ξ

x − y

|x − y |

)
ξn−1dξ

]
dy

3 check that rescaled again it satisfies

div v = f , |v|W1,q(Ω) ≤ c |f |Lq(Ω)

4 approximate f by {fm} ∈ C∞
0 (Ω) and set

f ∗m := fm − ϕ

∫
Ω

fmdy , m ∈ N with ϕ ∈ C∞
0 (Ω),

∫
Ω
ϕ = 1

extract vmk
⇀ v in W1,q(Ω)
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The Stokes system Application to the Stokes equations

Idea of the proof

5 As Ω = ∪N
k=1Ωk , ∃ N functions fk s.t. for k ∈ {1, . . . ,N}

(i) fk ∈ Lq(Ω)
(ii) supp(fk) ∈ Ωk

(iii)
∫
Ωk

fkdx = 0

(iv) f =
∑

k fk
(v) ∃C (Ωk) s.t.

‖fk‖Lq(Ω) ≤ C‖f ‖Lq(Ω)

proof: contructive, explicit form wrt f and
∫
Ωk

fdx
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The Stokes system Application to the Stokes equations

Conclusion

Set

Ω bounded Lipshitz domain

(f, g) ∈ H−1(Ω)× L2(Ω)R
=0

solve the problem: find (u, p) solving
−∆u +∇p = 0 in Ω

div u = 0

u = 0 on ∂Ω

(2)

Theorem 1.6

∃! pair (u, p) ∈ H1
0(Ω)× L2(Ω)/R solving (2). Moreover one has

‖u‖H1(Ω) + ‖p‖L2(Ω)/R ≤ C (α, β)
{
‖f‖H−1(Ω) + ‖g‖L2(Ω)

}
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The rough problem
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The rough problem
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Couette flows over a rough boundary and drag reduction.
Commun. Math. Phys., 232(3):429–455, 2003.

V. M.
Blood flow along and trough a metallic multi-wired stent
preprint

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 36 / 89



The rough problem

Notations and Methodology

Γin

Γ1

Γ0

Ω0 ΓoutΓin

Γ1

Γε

Γ0

Ωε

Z+

P

Σ

Γout

1 Construction of a complete boundary layer corrector: Ωε

2 Derivation of wall laws: Ω0

We denote:

- P = ∂Q, Q a body isomorphic to an open ball, regular

- Ω the “smooth domain”, Γ0 the fictitious interface,

- x the slow space variable , y = x
ε the fast one.
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The rough problem

The problem

One aims to solve

−∆uε +∇pε = 0 in Ωε

div uε = 0

uε = 0 on Γ1 ∪ Γε

uε · τ = 0 on Γin ∪ Γout

pε = pin on Γin, pε = 0 on Γout,
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The rough problem Boundary layer theory for rough domains

The limit solution when ε → 0

The Poiseuille flow

−∆u0 +∇p0 = 0 in Ω

div u0 = 0

u0 = 0 on Γ1 ∪ Γ2

u0 · τ = 0 on Γin ∪ Γout,

p0 = pin on Γin, p0 = 0 on Γout

u0 6= 0 on Γε

(u0, p0) is explicit and reads:u0(x) =
pin

2
(1− x2)x2e1, ∀x ∈ Ω

p0(x) = pin(1− x1)

Theorem 1.7

‖uε − u0‖H1(Ωε)2
+ ‖pε − p0‖L2(Ωε)

≤ k
√
ε

where the constant k does not depend on ε.
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The rough problem Boundary layer theory for rough domains

Proof.

set v := uε − u0, q := pε − p0 they solve

−∆v +∇q = 0 in Ω

div v = 0

v = 0 on Γ1 ∪ Γ2

v · τ = 0 on Γin ∪ Γout,

q = 0 on Γin ∪ Γout

v 6= 0 on Γε

lift the Dirichlet data on Γε set R(v) := u0ψ(x2/ε)

use a priori estimates

compute ‖∇R(v)‖L2(Ωε)
and conclude

Taylor expansion of u around (x1, 0)

u0,1(x) = u0,1(x1, 0) +

ε

∂u0,1

∂x2
(x1, 0)

x2
x2

ε

The error is ε times a microscopic oscilation of first order
This is corrected by a micorscopic periodic boundary layer
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The rough problem Boundary layer theory for rough domains

So where does the error come from ?

Taylor expansion of u around (x1, 0)

u0,1(x) = u0,1(x1, 0) +

ε

∂u0,1

∂x2
(x1, 0)x2

x2

ε

The error is ε times a microscopic oscilation of first order

This is corrected by a micorscopic periodic boundary layer
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The rough problem Boundary layer theory for rough domains

So where does the error come from ?

Taylor expansion of u around (x1, 0)

u0,1(x) = u0,1(x1, 0) + ε
∂u0,1

∂x2
(x1, 0)

x2

x2

ε

The error is ε times a microscopic oscilation of first order
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Γin

Γ1

Γε

Γ0

Ωε Γout

P

Σ

Z+

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 40 / 89



The rough problem Boundary layer theory for rough domains

Horizontal correctors

Microscopic corrector à la Mikelić
−∆β +∇π = 0 in S

div β = 0

β = −y2e1 on P ∪ Σ

Properties

Proposition 1

∃!(β, π), π defined up to a constant, s.t.

∇β ∈ L2(S)4, (β − β(·)) ∈ L2(S), π ∈ L2
loc(S)

Moreover, one has:
β(y) → β+e1, y2 → +∞

cvg exponential and{
β2(y2) = 0, ∀y2 ∈ R
β1(y2) = −µ(Q)− |∇β|2L2(S) y2 > y2,P ,

where y2,P := maxy∈Py2 and µ(Q) is the volume of the body Q.
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The rough problem Boundary layer theory for rough domains

Proof
Solve the velocity

Define the test space:

X := {v ∈ L2
loc(S), s.t. ∇v ∈ L2(S)4, v = 0 on Σ ∪ P}

lift the Dirichlet boundary β̃ := β −R(β)

then ∀ϕ ∈ N (div ) ∩ X one has∫
S
∇β̃ : ∇ϕdy =

∫
S
∇R(β) · ∇ϕdy

by Lax-Milgram ∃!β̃ ∈ N (div ) ∩ X
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The rough problem Boundary layer theory for rough domains

Recover the pressure

To our knoledge no results of surjectivity of div on the undounded
strips
On bounded restrictions Sk := S∩]0, 1[x ]0, k[ solve

1 find p solving {
−∆p = g , in Sl

∂np = 0, on P ∪ ∂Sk

for any g in

M =

{
g ∈ L2(Sk), s.t.

∫
Sk

gdy = 0

}
2 and w lifts ∇p on P {

div w = 0, in Sk

w = ∇p, on P

∇ : L2(Sk)/R → H−1
Σ∪P∪{y2=k}(Sk) injective
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The rough problem Boundary layer theory for rough domains

Recover the pressure II

S = ∪kSk

Let f ∈ X ′ such that < f, ϕ >= 0 ∀ϕ ∈ N (div ), let

let v ∈ N (div k), set ṽ extension of v on S by 0

then ṽ ∈ N (div )

< f, ṽ >= 0, =⇒ f|Sk
∈ N (div k)⊥ = R(∇k)

thus ∃p ∈ L2(Sk)/R s.t.

f = ∇pk , on Sk

Sk increasing sets pk+1 − pk = C st on Sk , choose pk+1 s.t. C st = 0.

finaly letting k →∞

f = ∇p, p ∈ L2
loc(S)
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The rough problem Boundary layer theory for rough domains

Exponential decrease
So far we proved ∃!(β, π) ∈ X × L2

loc

At {y2 = L} there exists β(y1, L) ∈ H
1
2 ({y2 = L}) set ξ := rotβ

∆ξ = 0 on y2 > L, ξ = rotβ

use the y1 Fourier transform

ξ =
+∞∑
k=1

(C1,nsin(2πky1) + C1,nsin(2πky1))e
−2πky2

recover the velocity
∆β = (∇ζ)⊥

which gives

β =
∞∑

k=1

((D1,n+C1,ny2) sin(2πky1)+(D2,n+C2,ny2) cos(2πky1))e
−2πky2

+ compatibility condition on Di ,n,Ci ,n in order to satisfy div β = 0

same story for the pressure

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 45 / 89



The rough problem Boundary layer theory for rough domains

Constants at infinity
For β2 integrate the div equation on Sω,0 := S∩]0, 1[×]0, ω[∫

Sω,γ

div βdy = 0 = β2(ω)−
∫

P
y2e1 · nds − β2(0)

For β2: set the “Fundamental solution”{
−∆Iν +∇Jν = −δ{y2=ν} in S

div Iν = 0

reads

Iν :=
1

2
|y2 − ν|e1, Jν = 0

Apply the Green formula on Sω,0

(−∆β +∇π, Iν)Sω,0 − (−∆I +∇J,β)Sω,0 = β1(ν)

= (−σβ,π · n, Iν)∂Sω,0 + (σIν ,Jν · n, β)∂Sω,0

= −1

2
|∇β|2L2(S)4 +

1

2
( ∂n y2e1, y2e1) +

1

2
β1(ω)
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−∆Iν +∇Jν = −δ{y2=ν} in S

div Iν = 0

reads

Iν :=
1

2
|y2 − ν|e1, Jν = 0

Apply the Green formula on Sω,0

(−∆β +∇π, Iν)Sω,0 − (−∆I +∇J,β)Sω,0 = β1(ν)

= (−σβ,π · n, Iν)∂Sω,0 + (σIν ,Jν · n, β)∂Sω,0

= −1

2
|∇β|2L2(S)4 +

1

2
( ∂n y2e1, y2e1) +

1

2
β1(ω)
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The rough problem Boundary layer theory for rough domains

Vertical correctors

Microscopic corrector

−∆wβ +∇θβ = 0 in Π

div wβ = 0

wβ = 0 on D ∪ B

wβ · τ = β2

θβ = π

}
on N

N

B

D

Π

the usual weighted Sobolev space :

W m,p
α (Ω) :=

{
v ∈ D′(Ω) s.t. |Dλv |(1 + ρ2)

α+|λ|−m
2 ∈ Lp(Ω), 0 ≤ |λ| ≤ m

}
Properties

Theorem 1.8

∃! (w, θ) ∈ W1,2
α (Π)2 ×W 0,2

α (Π) if

α < 1

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 47 / 89



The rough problem Boundary layer theory for rough domains

Proof I

lift the tangent component of the data
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The rough problem Boundary layer theory for rough domains

Proof I

lift the tangent component of the data
then the problem reads

−∆wβ +∇θβ = f in Π

div wβ = g

wβ = 0 on D ∪ B

wβ · τ = 0

θβ = h

}
on N

with the spaces:

A : W1,2
α (Π) →

(
W1,2
−α(Π)

)′
B : W1,2

α (Π) → W0,2
α (Π)

BT : W0,2
α (Π) →

(
W1,2
−α(Π)

)′
the div and ∇ do not map in duality
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The rough problem Boundary layer theory for rough domains

Proof I

lift the tangent component of the data

transform the problem setting

ρ := (1 + |y |2)
1
2 , U := ραwβ, P := ραθβ,

−AαU + BT
α P = ραf in Π

BαU = ραg

U = 0 on B

U · τ = 0

P = ραh

}
on N

where 
AαU := −∆F− 2ρα∇F · ∇ 1

ρα
− ρα∆

1

ρα
F

BαU := div U + ρα∇
(

1

ρα

)
· U
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The rough problem Boundary layer theory for rough domains

Proof II
In the new variables the operators act on

Aα : W1,2
0 (Π) → W−1,2

0 (Π)

Bα : W1,2
0 (Π) → W 0,2

0 (Π)

BT
α : W 0,2

0 (Π) → W−1,2
0 (Π)

new change of variables Bα acts in duality. Check
1 coercivity on the kernel ∀U ∈ W1,2

0 (Π) ∩N (div )

(AαU,U) ≥ ‖∇U‖L2(Π) − α2

∥∥∥∥U
ρ

∥∥∥∥
L2(Π)

use weighted Poincare-Wirtinger and conclude
2 surjection of div follows define a sequence Cn covering Π where

Cn := {y ∈ Π s.t. if x = (r , θ̃) r ∈]2n−1, 2n[}, n ≥ 1,

C0 := B(0, 1) ∩ Π.

on each of them use Galdi’s candidate, and conclude
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The rough problem Boundary layer theory for rough domains

Localizing

1 The corner cut-of Set ψ1 := ψ(x) and ψ2 := ψ(x − (0, 1)), where ψ
s.t.

ψ :=


1 if |x | ≤ 1

3

0 if |x | ≥ 2

3

NB: ∂nψ = 0 on Γin ∪ Γout.

2 The “far from the corner” cut-off
Φ complementary on Γin ∪ Γout ∪ Γ2 s.t.{

ψ + Φ = 1

∂nΦ = 0,
on Γin ∪ Γout ∪ Γ2

for instance Φ(x) := 1− ψ(0, x2) for all x ∈ Ω.
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The rough problem Boundary layer theory for rough domains

Macro corrector



∆W +∇Z = 0, in Ωε

div W = 0

W ∧ n = ε

{
∂u0,1

∂x2
(βε − β)

}
∧ nΦ

Z =

{
∂u0,1

∂x2
βπ

}
Φ

 on Γin ∪ Γout

W = 0 on Γε

W = ε

{
∂u0,1

∂x2
(βε − β)

}
Φ on Γ1

Proposition 2

∃ ! solution (W,Z ) ∈ H1(Ωε)× L2(Ωε), moreover:

‖W‖H1(Ωε)
+ ‖Z‖L2(Ωε)

≤ ke−
γ
ε

rate γ and constant k do not depend on ε.

define

Wε(x) := ε

{
ψ1(x)w

(x

ε

)
+ ψ2((1, 0)− x)w

(
(1, 0)− x

ε

)}
+ W(x),

Zε(x) :=

{
ψ1(x)θ

(x

ε

)
+ ψ2((1, 0)− x)θ

(
(1, 0)− x

ε

)}
+ Z (x),
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The rough problem Boundary layer theory for rough domains

Full boundary layer approximation

Set

Vε := u0 + ε

{
∂u0,1

∂x2
(βε − β) + u1

}
+
∂u0,1

∂x2
Wε

Pε := p0 +

{
∂u0,1

∂x2
πε + εp1

}
+
∂u0,1

∂x2
Zε

where 

−∆u1 +∇p1 = 0 in Ω

div u1 = 0

u1 = 0 on Γ1

u1 · τ = 0 on Γin ∪ Γout,

p1 = 0 on Γin ∪ Γout

u1 =
∂u0,1

∂x2
βe1 on Γ0

(u1, p1) give first order macroscopic approximation
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The rough problem Boundary layer theory for rough domains

Main convergence results

Theorem 1.9

First order error a priori estimates

‖uε − Vε‖H1(Ωε)
+ ‖pε − Pε‖L2(Ωε)

≤ kε

Very weak solutions à la Conca

‖uε − Vε‖L2(Ω) + ‖pε − Pε‖H−1(Ω)/R ≤ kε
3
2

−

At this point the approximation (Vε,Pε) is multi-scale
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The rough problem Homogenized first order terms

Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

Uε := u0 + εu1

Qε := p0 + εp1

Theorem 1.10

Very weak solutions à la Conca

‖uε − Uε‖L2(Ω) + ‖pε −Qε‖H−1(Ω) ≤ kε
3
2

−

Proof.

Use the triangular inequality

‖uε − Uε‖L2(Ω) ≤ ‖uε − Vε‖L2(Ω) + ‖Vε − Uε‖L2(Ω)

mostly only remains to estimate oscillations

‖Vε − Uε‖L2(Ω) ≤ ε
∥∥∥β − β

∥∥∥
L2(Ω)

+ · · ·+ O(ε2) ≤ ε
3
2

−
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The rough problem Homogenized first order terms

Very weak solutions

Ω bounded set ,
−∆v +∇q = G ,

div v = 0
in Ω

v = ξ on ∂Ω

and


−∆Φ +∇$ = g ,

div Φ = 0
in Ω

Φ = 0 on ∂Ω

Suppose that (v, q) and (Φ, $) are regular enough (H2 × H1)

(∆v −∇q,Φ)Ω − (∆Φ−∇$, v) = (σv,q · n,Φ)∂Ω − (σΦ,$ · n, v)∂Ω

use the rhs and the BC

−(G ,Φ)Ω + (g , v)Ω = −(σΦ,$ · n, ξ)∂Ω

if you can estimate Φ as a function of the data g one obtains:

|(g , v)Ω| ≤ ‖G‖H−1(Ω)‖Φ‖H1(Ω) + ‖ξ‖L2(∂Ω)‖σΦ,$‖L2(∂Ω) ≤ C‖g‖L2(Ω)

So

‖v‖L2(Ω) = sup
g∈L2(Ω)

|(v, g)|
‖g‖L2(Ω)

≤ ‖G‖H−1(Ω) + ‖ξ‖L2(∂Ω)
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The rough problem Homogenized first order terms

Very weak solutions

Similarily
−∆v +∇q = G ,

div v = H
in Ω

v · τ = ξ, σv,qn · n = χ on ∂Ω

and


−∆Φ +∇$ = g ,

div Φ = h
in Ω

Φ · τ = 0, σΦ,$n · n = 0 on ∂Ω

Suppose that (v, q) and (Φ, $) are regular enough (H2 × H1)

(∆v −∇q,Φ)Ω − (∆Φ−∇$, v) =(σv,q · n,Φ)∂Ω − (σΦ,$ · n, v)∂Ω

+ (q,div Φ)Ω − ($,div v)Ω

use the rhs and the BC

(G ,Φ)Ω − (H, $)Ω − ((g , v)Ω − (h, q)Ω) = (σΦ,$ · n, ξτ )∂Ω − (Φ · nχ)∂Ω

if you can estimate Φ, $ as a function of the data g , h one obtains:

|(g , v)Ω − (h, q)Ω| ≤ ‖G‖H−1(Ω)‖Φ‖H1(Ω) + ‖H‖L2(Ω)‖$‖L2(Ω)

+ ‖ξ‖L2(∂Ω)‖σΦ,$nτ‖L2(∂Ω) + ‖χ‖H−1(∂Ω)‖Φ · nτ‖H1(∂Ω)

≤ C‖g‖L2(Ω) + C ′‖h‖H1(Ω)

So

‖v‖L2(Ω) = sup
g∈L2(Ω)

|(v, g)|
‖g‖L2(Ω)

≤ C ‖q‖H−1(Ω) = sup
h∈L2(Ω)

|(q, h)|
‖h‖H1(Ω)

≤ C ′
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The rough problem Homogenized first order terms

Wall law

System of equations satisfied by (Uε,Qε) ?

−∆Uε +∇Qε = 0 in Ω

divUε = 0

Uε = 0 on Γ1

Uε · τ = 0 on Γin ∪ Γout,

Qε = pin on Γin, Qε = 0 on Γout

Uε = εβ
∂Uε

∂x2
+ O(ε2) on Γ0

Implicit boundary condition of mixed type
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The colateral artery

1 Introduction
Industrial context

2 Deriving Navier-Stokes equations
The continuity equation
The momentum equation

3 The Stokes system
The abstract formalism
Application to the Stokes equations

4 The rough problem
Boundary layer theory for rough domains
Homogenized first order terms

5 The colateral artery
The modelling approach
Boundary layer theory for rough boundaries
Homogenized first order terms
Numerical evidence

6 Sacular aneurysm
The problem
Ansatz
Pressure of the sac
Numerics
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The colateral artery The modelling approach

Notations and Methodology

Γin

Γ1

Γ2

Γε

Γout,2

Γ0

Ωε,1

Ω2
Γ2

Γout,1

Z+

Z−

P

Σ

Γin

Γ1

Γ2

Γout,2

Γ0

Ω1

Ω2
Γ2

Γout,1

1 Construction of a complete boundary layer corrector: Ωε

2 Derivation of wall laws: Ω0

We denote:

- P = {y ∈ R2 s.t. y=r(cos(θ), sin(θ))},
- Ω the “smooth domain”, Γ0 the fictitious interface,

- x the slow space variable , y = x
ε the fast one.
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The colateral artery The modelling approach

The problem

The flow is laminar

−∆uε +∇pε = 0 in Ωε

div uε = 0

uε = 0 on Γ1 ∪ Γ2 ∪ Γε

uε,1 = 0 on Γin ∪ Γout,1

uε,2 = 0 on Γout,2

pε = pin on Γin, pε = pout,1 on Γout,1, pε = pout,2 on Γout,2,

Pressure imposed 6= Dirichlet velocity as in

C. Conca.

Étude d’un fluide traversant une paroi perforée. I & II.
J. Math. Pures Appl. (9), 66(1):1–70, 1987.
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The colateral artery The modelling approach

Expected behaviour

IsoValue
-1.43544
-1.11946
-0.803469
-0.487481
-0.171493
0.144495
0.460483
0.776471
1.09246
1.40845
1.72443
2.04042
2.35641
2.6724
2.98839
3.30437
3.62036
3.93635
4.25234
4.56832

Vec Value
0
0.0144546
0.0289092
0.0433639
0.0578185
0.0722731
0.0867277
0.101182
0.115637
0.130092
0.144546
0.159001
0.173455
0.18791
0.202365
0.216819
0.231274
0.245729
0.260183
0.274638

IsoValue
-1.46155
-1.16157
-0.861594
-0.561616
-0.261637
0.0383419
0.338321
0.638299
0.938278
1.23826
1.53824
1.83821
2.13819
2.43817
2.73815
3.03813
3.33811
3.63809
3.93807
4.23804

Vec Value
0
0.0137458
0.0274916
0.0412374
0.0549832
0.068729
0.0824748
0.0962206
0.109966
0.123712
0.137458
0.151204
0.16495
0.178695
0.192441
0.206187
0.219933
0.233679
0.247424
0.26117
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The colateral artery Boundary layer theory for rough boundaries

The limit solution when ε → 0

The Poiseuille flow

−∆u0 +∇p0 = [σu0,p0 ] · n δΓ0 in Ω

div u0 = 0

u0 = 0 on Γ1 ∪ Γ2

u0,2 = 0 on Γin ∪ Γout,1, u0,1 = 0 on Γout,2

p0 = pin on Γin, p0 = 0 on Γout,1 ∪ Γout,2

u0 6= 0 on Γε

where [σu0,p0 ] · n is the jump across Γ0

(u0, p0) is explicit and reads:u0(x) =
pin

2
(1− x2)x2e11Ω1 , ∀x ∈ Ω

p0(x) = pin(1− x1)1Ω1

Theorem 1.11

‖uε − u0‖H1(Ωε)2
+ ‖pε − p0‖L2(Ωε)

≤ k
√
ε

where the constant k does not depend on ε.
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The colateral artery Boundary layer theory for rough boundaries

Higher order approximation ?

No flow at zeroth order through Γout,2 !

Errors treefold
1 Dirichlet non homogeneous on Γε

2 Jumps at Γ0 of
∂u0,1

∂x2
3 Jumps at Γ0 of p0

Use of two kind boundary layers
1 verical
2 horizontal
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The colateral artery Boundary layer theory for rough boundaries

Dirichlet correction

Microscopic corrector à la Mikelić
−∆β +∇π = 0 in S

div β = 0

β = −y2e1 on P

β2 → 0, |y2| → ∞

Properties

Proposition 3

∃!(β, π), π defined up to a constant, s.t.

∇β ∈ L2(S)4, (β − β) ∈ L2(S), π ∈ L2
loc(S)

Moreover, one has:
β(y) → β±e1, y2 → ±∞

and
β2(y2) = 0, ∀y2 ∈ R
β1(y2) = ( ∂n( y2e1).y2e1)P − |∇β|2L2(S) + β(0), y2 > y2,P ,

β1(y2) = β1(0), y2 < 0

π(y2) = 0, y2 > y2,P and y2 < 0

where y2,P := maxy∈Py2.
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The colateral artery Boundary layer theory for rough boundaries

Normal derivative horizontal velocity correction

Microscopic corrector à la Mikelić
−∆Υ +∇$ = δΣe1 in S

div Υ = 0

Υ = 0 on P

Υ2 → 0, |y2| → ∞

Properties

Proposition 4

∃!(Υ, $), $ defined up to a constant, s.t.

∇Υ ∈ L2(S)4, (Υ−Υ) ∈ L2(S), $ ∈ L2
loc(S)

Moreover, one has:
Υ(y) → Υ±e1, y2 → ±∞

and 
Υ2(y2) = 0, ∀y2 ∈ R
Υ1(y2) = Υ(0) + β(0), y2 > y2,P ,

Υ1(y2) = Υ1(0), y2 < 0

$(y2) = 0, y2 > y2,P and y2 < 0

where y2,P := maxy∈Py2.
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The colateral artery Boundary layer theory for rough boundaries

Vertical correctors

Microscopic corrector à la Conca
−∆χ+∇η = 0 in S

divχ = 0

χ = 0 on P

χ2 → −1, |y2| → ∞

Properties

Proposition 5

∃!(χ, η), η defined up to a constant, s.t.

∇χ ∈ L2(S)4, (χ− χ) ∈ L2(S), (η − η) ∈ L2
loc(S)

Moreover, one has:

χ(y) → −χ±e2, y2 → ±∞

and {
η(y) = η±, ∀y2 ∈ R−×]y2,P ,+∞[,

|∇χ|2L2(S) = [η]+−

where y2,P := maxy∈Py2.
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The colateral artery Boundary layer theory for rough boundaries

Vertical correctors

Microscopic corrector

−∆wβ +∇θβ = 0 in Π

div wβ = 0

wβ = 0 on D ∪ B

wβ ∧ n = β2

θβ = π

}
on N

N

B

Π

D

the usual weighted Sobolev space :

W m,p
α (Ω) :=

{
v ∈ D′(Ω) s.t. |Dλv |(1 + ρ2)

α+|λ|−m
2 ∈ Lp(Ω), 0 ≤ |λ| ≤ m

}
Properties

Theorem 1.12

∃! (w, θ) ∈ W1,2
α (Π)2 ×W 0,2

α (Π) if α < 1
2
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The colateral artery Boundary layer theory for rough boundaries

Localizing

1 The corner cut-of Set ψ1 := ψ(x) and ψ2 := ψ(x − (0, 1)), where ψ
s.t.

ψ :=


1 if |x | ≤ 1

3

0 if |x | ≥ 2

3

NB: ∂nψ = 0 on Γin ∪ Γout,1.

2 The “far from the corner” cut-off
Φ complementary on Γin ∪ Γout,1 ∪ Γ2 s.t.{

ψ + Φ = 1

∂nΦ = 0,
on Γin ∪ Γout,1 ∪ Γ2

for instance Φ(x) := 1− ψ(0, x2) for all x ∈ Ω.
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The colateral artery Boundary layer theory for rough boundaries

Macro corrector



∆W +∇Z = 0, in Ωε

div W = 0

W ∧ n = ε

{
∂u0,1

∂x2
(βε − β)

}
∧ nΦ, and Z =

{
∂u0,1

∂x2
βπ

}
Φ on Γin ∪ Γout,1

W = 0 on Γε

W = ε

{
∂u0,1

∂x2
(βε − β)

}
Φ on Γ1

Proposition 6

∃ ! solution (W,Z ) ∈ H1(Ωε)× L2(Ωε), moreover:

‖W‖H1(Ωε)
+ ‖Z‖L2(Ωε)

≤ ke−
γ
ε

rate γ and constant k do not depend on ε.
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The colateral artery Boundary layer theory for rough boundaries

Macro corrector



∆W +∇Z = 0, in Ωε

div W = 0

W ∧ n = ε

{
∂u0,1

∂x2
(βε − β)

}
∧ nΦ, and Z =

{
∂u0,1

∂x2
βπ

}
Φ on Γin ∪ Γout,1

W = 0 on Γε

W = ε

{
∂u0,1

∂x2
(βε − β)

}
Φ on Γ1

define

Wε(x) := ε

{
ψ1(x)w

(x

ε

)
+ ψ2((1, 0)− x)w

(
(1, 0)− x

ε

)}
+ W(x),

Zε(x) :=

{
ψ1(x)θ

(x

ε

)
+ ψ2((1, 0)− x)θ

(
(1, 0)− x

ε

)}
+ Z (x),
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The colateral artery Boundary layer theory for rough boundaries

First order approximation

Vε := u0 + ε

{
∂u0,1

∂x2
(βε − β) +

[
∂u0,1

∂x2

]
(Υε −Υ) +

[p0]

[η]
(χε − χ) + u1

}
+ ε2

{
pin(κε − κ) + u2

}
+Wε

Pε := p0 +

{
∂u0,1

∂x2
πε +

[
∂u0,1

∂x2

]
$ε +

[p0]

[η]
(ηε − η) + εp1

}
+ εpin(µε − µ) + ε2p2 + Zε

multi-scale version of boundary layer correctors:

βε(x) := β
(x

ε

)
, Υε(x) := Υ

(x

ε

)
, χε(x) := χ

(x

ε

)
, κε(x) := κ

(x

ε

)
, ∀x ∈ Ωε.
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The colateral artery Boundary layer theory for rough boundaries

Higher order macroscopic correctors



−∆u1 +∇p1 = 0 in Ω1 ∪ Ω2

div u1 = 0

u1 = 0 on Γ1 ∪ Γ2

u1,2 = 0 on Γin ∪ Γout,1,

u1,1 = 0, on Γout,2

p1 = 0 on Γin ∪ Γout,1 ∪ Γout,2

u1 =

{
∂u0,1

∂x2
β
±

+

[
∂u0,1

∂x2

]
Υ
±
}

e1 +
[p0]

[η]
χe2 on Γ0

±

(u1, p1) give first order flow-rate trough Γ0
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The colateral artery Boundary layer theory for rough boundaries

Main convergence results

Theorem 1.13

Very weak solutions à la Conca

‖uε − Vε‖L2(Ω1∪Ω2)
+ ‖pε − Pε‖H−1(Ω1∪Ω2)/R ≤ kε

3
2

−

At this point the approximation (Vε,Pε) is multi-scale
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The colateral artery Homogenized first order terms

Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

Uε := u0 + εu1

Qε := p0 + εp1

−∆Uε +∇Qε = 0 in Ω1 ∪ Ω2

divUε = 0

Uε = 0 on Γ1 ∪ Γ2

Uε ∧ n = 0 on Γin ∪ Γout,1 ∪ Γout,2,

Qε = pin on Γin, Qε = 0 on Γout,1 ∪ Γout,2

Uε = ε

{
∂u0,1

∂x2
β
±

+

[
∂u0,1

∂x2

]
Υ
±
}

e1 + ε
[p0]

[η]
χe2 on Γ0

±

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 72 / 89



The colateral artery Homogenized first order terms

Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

Uε := u0 + εu1

Qε := p0 + εp1

−∆Uε +∇Qε = 0 in Ω1 ∪ Ω2

divUε = 0

Uε = 0 on Γ1 ∪ Γ2

Uε ∧ n = 0 on Γin ∪ Γout,1 ∪ Γout,2,

Qε = pin on Γin, Qε = 0 on Γout,1 ∪ Γout,2

U+
ε · τ = ε(β

+
+ Υ

+
)
∂Uε,1

∂x2

+

,
U+

ε · τ

β
+

+ Υ
+ =

U−ε · τ

β
−

+ Υ
−

U+
ε · n = U−ε · n =

ε

[η]
([σUε,pε

] · n,n)
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The colateral artery Homogenized first order terms

Averaged macroscopic approximation

Suppress the oscillating boundary layer, keep the rest:

Uε := u0 + εu1

Qε := p0 + εp1

Theorem 1.14

Very weak solutions à la Conca

‖uε − Uε‖L2(Ω1∪Ω2)
+ ‖pε −Qε‖H−1(Ω′

1∪Ω2)/R ≤ kε
3
2

−

Proof.

Use the triangular inequality

‖uε − Uε‖L2(Ω1∪Ω2)
≤ ‖uε − Vε‖L2(Ω1∪Ω2)

+ ‖Vε − Uε‖L2(Ω1∪Ω2)

mostly only remains to estimate oscillations

‖Vε − Uε‖L2(Ω1∪Ω2)
≤ ε

∥∥∥β − β
∥∥∥

L2(Ω1∪Ω2)
+ · · ·+ O(ε2) ≤ ε

3
2

−

Vuk Milisic (WPI) Blood flow in stented arteries July 23, 2009 72 / 89



The colateral artery Homogenized first order terms

Compute the first order flow rate

velocity profile normal direction to Γ0

Uε,2(x) = (u0,2 + εu1,2)(x) ≡ −ε [p0]

[η]
(x)

Solve with a computer a cell problem (cheap even in 3D):

[η] = η
+ − η

−

First order flow rate

QΓ0 =
ε

[η]

∫ b

a
[p0] dx1
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The colateral artery Numerical evidence

Numerical evidence

Compute the exact problem

Compute the boundary layers single # cell

- Extract the constants at infinity

[η] = 52.6961

Compute the flow-rate
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Sacular aneurysm

1 Introduction
Industrial context

2 Deriving Navier-Stokes equations
The continuity equation
The momentum equation

3 The Stokes system
The abstract formalism
Application to the Stokes equations

4 The rough problem
Boundary layer theory for rough domains
Homogenized first order terms

5 The colateral artery
The modelling approach
Boundary layer theory for rough boundaries
Homogenized first order terms
Numerical evidence

6 Sacular aneurysm
The problem
Ansatz
Pressure of the sac
Numerics
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Sacular aneurysm The problem

Same problem
but . . .



−∆uε +∇pε = 0 in Ωε

div uε = 0

uε = 0 on Γ1 ∪ Γ2 ∪ Γε

uε,1 = 0 on Γin ∪ Γout,1

uε = 0 on Γout,2

pε = pin on Γin, pε = pout,1 on Γout,1,

Γin

Γ1

Γ2

Γε

Γout,2

Γ0

Ωε,1

Ω2
Γ2

Γout,1

Pressure imposed at inlet and outlet but not at Γout,2
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Sacular aneurysm Ansatz

When ε goes to 0

The Poiseuille flow

−∆u0 +∇p0 = [σu0,p0 ] · n δΓ0 in Ω

div u0 = 0

u0 = 0 on Γ1 ∪ Γ2 ∪ Γout,2

u0 ∧ n = 0 on Γin ∪ Γout,1

p0 = pin on Γin, p0 = 0 on Γout,1

u0 6= 0 on Γε

(u0, p0) is explicit and reads:u0(x) =
pin

2
(1− x2)x2e11Ω1 , ∀x ∈ Ω

p0(x) = pin(1− x1)1Ω1 + p−0 1Ω2 , ∀p−0 ∈ R

Theorem 1.15

‖uε − u0‖H1(Ωε)2
+ ‖pε − p0‖L2(Ωε,1)

+ ‖pε − p0‖L2(Ω2)/R ≤ k
√
ε

where the constant k does not depend on ε.
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Sacular aneurysm Ansatz

First order approximation
Again the same trick

Vε := u0 + ε

{
∂u0,1

∂x2
(βε − β) +

[
∂u0,1

∂x2

]
(Υε −Υ) +

[p0]

[η]
(χε − χ) + u1

}
+ ε2

{
pin(κε − κ) + u2

}
+Wε

Pε := p0 +

{
∂u0,1

∂x2
πε +

[
∂u0,1

∂x2

]
$ε +

[p0]

[η]
(ηε − η) + εp1

}
+ εpin(µε − µ) + ε2p2 + Zε

multi-scale version of boundary layer correctors:

βε(x) := β
(x

ε

)
, Υε(x) := Υ

(x

ε

)
, χε(x) := χ

(x

ε

)
, κε(x) := κ

(x

ε

)
, ∀x ∈ Ωε.
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Sacular aneurysm Pressure of the sac

The pressure in the sac

−∆u1 +∇p1 = 0 in Ω1 ∪ Ω2

div u1 = 0

u1 = 0 on Γ1 ∪ Γ2 ∪ Γout,2

u1 ∧ n = 0 on Γin ∪ Γout,1,

p1 = 0 on Γin ∪ Γout,1

u1 =

{
∂u0,1

∂x2
β
±

+

[
∂u0,1

∂x2

]
Υ
±
}

e1 +
[p0]

[η]
χe2 on Γ0

±

divergence condition and normal veolicty imposed on Γ0:∫
Ω2

div u1dx =

∫
∂Ω2

u1 · ndσ =

∫
Γ0

u1 · ndσ = 0

gives in the sac

|Γ0|p−0 =
∫
Γ0

p+
0 (x1, 0)dx1
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Sacular aneurysm Numerics

Numerics
A numerical “pathological” case

IsoValue
-1.21793
-0.977521
-0.817249
-0.656977
-0.496704
-0.336432
-0.17616
-0.0158872
0.144385
0.304657
0.46493
0.625202
0.785474
0.945747
1.10602
1.26629
1.42656
1.58684
1.74711
2.14779
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Sacular aneurysm Numerics

Numerics
A numerical “stented” case

IsoValue
-0.947748
-0.737473
-0.597289
-0.457105
-0.316921
-0.176737
-0.0365536
0.10363
0.243814
0.383998
0.524182
0.664366
0.804549
0.944733
1.08492
1.2251
1.36528
1.50547
1.64565
1.99611
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Sacular aneurysm Numerics

Numerics
A more realistic geometry: the “pathological” case
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Sacular aneurysm Numerics

Numerics
A more realistic geometry: the “stented” case
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Sacular aneurysm Numerics

Norma velocity acros Γ0
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Sacular aneurysm Numerics

Conclusion & Perspectives

Conclusion

Our approach introduces the vertical correctors

- Not present in the literature
- General setting

Perspectives

Time dependent case: Womersley profile

Curved boundaries

Navier-Stokes

Cell growth
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Sacular aneurysm Numerics
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Sacular aneurysm Numerics
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Sacular aneurysm Numerics
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Sacular aneurysm Numerics
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