Travaux Dirigés : Optimisation MACS 2

Vuk Milisic

TD n° 3, 7/11/2012

Exercice 0.1. Soit A une matrice à coefficients complexes $A \in \mathcal{M}_{d,d}(\mathbb{C})$. On veut maintenant minimiser la fonctionnelle

$$J(\mathbf{x}) = \frac{1}{2}(A\mathbf{x}, \mathbf{x})$$

sous la contrainte $K := \{ \mathbf{x} \in \mathbb{R}^d \text{ t. q. } |\mathbf{x}|_2 = 1 \}.$

- a) Quelles sont les directions admissibles au sens de Fréchet?
- b) Même question au sens de Gateaux?
- c) Conclure que satisfait le minimiseur de cette fonctionnelle?

Exercice 0.2 (Lemme de Farkas). On veut montrer

Lemme 0.3. Soient $\mathbf{a}, \mathbf{a}_1, \dots, \mathbf{a}_N$ vecteurs de \mathbb{R}^n avec $N \neq n$. Les deux point suivants sont équivalents

- i) Le vecteur $\mathbf{a} = \sum_{i=1}^{N} \lambda_i \mathbf{a}_i$ avec $\lambda_i \geq 0$ pour tout i. On dit que \mathbf{a} est une combinaison conique des vecteurs \mathbf{a}_i .
- ii) Tout vecteur \mathbf{h} satisfaisant $(\mathbf{h}, \mathbf{a}_i) \geq 0$ pour tout i satisfait aussi $(\mathbf{h}, \mathbf{a}) \geq 0$.

On se propose dans ce TD de démontrer ce lemme :

- I) Sens direct
 - a) Montrer que le sens direct i) \implies ii) est trivial.
 - b) Montrer que pour $\mathbf{a} = 0$ la réciproque du lemme est vérifiée.

On suppose maintenant que ii) est vérifiée.

II) Méthode géométrique

On définit $\Pi := \{ \mathbf{h} \in \mathbb{R}^d \text{ t. q. } (\mathbf{a}, \mathbf{h}) = -1 \} \text{ et } A_i := \{ \mathbf{h} \in \Pi \text{ t. q. } (\mathbf{a}_i, \mathbf{h}) \ge 0 \}.$

a) En prenant deux vecteurs dans \mathbb{R}^2 dessiner le cône, dessiner Π , A_1 et A_2 . Que peut on dire de $\bigcap_{i=1}^2 A_i$? Pour ceux qui sont bons en dessin recommencer en 3D avec 3 (ou 4) vecteurs.

- b) Montrer que $\bigcap_{i=1}^{N} A_i = \emptyset$
- c) On choisit la plus petite des familles A_1, \ldots, A_k telle que $I := \bigcap_{i=1}^k A_i \equiv \emptyset$ et telle que $\bigcap_{i=1, i \neq j}^k A_i \neq \emptyset$ pour tout $j \in \{1, \ldots, k\}$ On veut montrer que
 - 1) $\mathbf{a} \in \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_k\} =: E$, procéder par l'absurde : prendre \mathbf{f} la projection orthogonale sur E^{\perp} . A partir de \mathbf{f} construire un élément de I. Conclure
 - 2) la famille $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ est libre. C'est la partie la plus "dure" du TD : on suppose le contraire et on pose $A_i' := A_i \cap E$
 - a) Montrer que $\bigcap_{i=1}^k A_i' \equiv \emptyset$
 - b) En utilisant le **théoreme de Helly**: "On considère X_1, \ldots, X_m une famille de m ensembles convexes de \mathbb{R}^n avec $m \geq n+1$. On suppose que pour tout choix de n+1 convexes parmi les m X_i ces ensembles se rencontrent. Alors il existe un point qui appartient à **tous** les X_i . Montrer que $\bigcap_{i=1, i\neq j}^k A_i' \neq \emptyset$ "
- d) A ce stade on a montré que $\mathbf{a} = \sum_{i=1}^{k} \lambda_{i} \mathbf{a}_{i}$ avec $\lambda_{i} \in \mathbb{R}$ pour tout i. Par contradiction on suppose que $\lambda_{1} < 0$. On complète la famille libre dans \mathbb{R}^{n} pour en faire une base. Soit $\xi_{i}(x)$ la i-ème coordonnée de x dans cette dernière base.
 - a) En utilisant le théorème de Riesz montrer qu'il existe \mathbf{f} tel que : $\xi_1(x) = (\mathbf{f}, x), \quad \forall x \in \mathbb{R}^n$,
 - b) montrer que l'on peut construire un vecteur \mathbf{h} qui appartient à l'intersection des A_1, \ldots, A_k , d'où la contradiction.
 - c) conclure

Exercice 0.4. Soit

$$A = \begin{pmatrix} 5 & 1 \\ 1 & 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

a) Appliquer la méthode de la relaxation pour calculer la solution du problème

$$\min_{\mathbf{x} \in \mathbb{R}^2} J(\mathbf{x}), \quad J(\mathbf{x}) = \frac{1}{2} (A\mathbf{x}, \mathbf{x}) - (\mathbf{b}, \mathbf{x})$$

- b) Que dire de la vitesse de convergence de cette méthode?
- c) Quel pourrait être le test d'arrêt de la méthode?