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Abstract
First, we deal with modeling aspects leading to a certain system of structured integro-differential

equations in the context of cell motility. We introduce some of the challenges related to asymptotic
features of this system. We give some classical results in the theory of Volterra integral equations. We
then present the renewal equation and the generalized entropy method. Next, we introduce more specific
tools that turn out to provide explicit computations and new stability estimates. We end with a complete
asymptotic analysis of a delayed heat equation and show the convergence of its solutions towards the
solution of a heat equation where the time derivative is multiplied by a function accounting in some sense
the microscopic structure of the underlying adhesion mechanisms.

1



Contents

1 Introduction 3
1.1 Filament based lamelipodium model (FBLM) . . . . . . . . . . . . . . . . . 4

1.1.1 Modelling hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 The corresponding mathematical model . . . . . . . . . . . . . . . . . 6

1.2 Simplified (open) problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The renewal equation 9
2.1 Constructing the resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Existence of a resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Application to the case when total mass is less than 1 . . . . . . . . . 16

2.2 The resolvent for the renewal equation . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 The kernel belongs to some exponentially weighted Lebesgue’s space . 17
2.2.2 The total mass is one and no exponential weight is at hand . . . . . . 21

2.3 Generalized entropy method . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 The eigen-problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Regularity of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.4 Generalized relative entropy . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5 Long time asymptotic : entropy method . . . . . . . . . . . . . . . . 36

2.4 The elongation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.1 The kernel is dissipative . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.2 The elongation variable . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.3 A new scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.4 A stability result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 From delayed Poisson problem to the friction heat equation 52
3.1 A few words on Minimizing movements . . . . . . . . . . . . . . . . . . . . . 54
3.2 Delayed gradient flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Existence, uniqueness and stability of the discrete solution xε,∆ . . . . . . . . 56
3.4 Convergence when ∆ goes to zero . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 Some more stability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Convergence when ε vanishes . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2



1 Introduction

In these lecture notes, I will present basic concepts in order to handle the mathematical
analysis of adhesions terms in certain models for cell-motility.

In this introduction, I will briefly present the biological context and the axisymmetric
model derived by C. Schmeiser and D. Oelz [21, 22, 12]. I will focus on specific parts of
this approach related to adhesion mechanisms and try to show some mathematical problems
related to these. In particular certain formal asymptotics wrt an adimensionalised parameter
ε led to friction terms in the Euler Lagrange system associated to a gradient flow minimization
procedure. Our final goal is to prove rigorously that these formal computations are actually
true.

In a first step I will present a minimal toy model containing similar difficulties. This
minimum model turns out to be an equation of Volterra type commonly called the renewal
equation. I will then introduce mathematical standard tools based on the notion of resolvent
that allow to solve it in an abstract way [8, Chap. 2]. Then using this concept of resolvent,
we characterize the long-time asymptotics of the solution [8, Chap. 2, 4 and 7].

In order to give an overview of other types of existing methods, we present also the general
entropy method [25, Chap. 3]. It relies on Perron-Frobenius arguments and describes in
another way long time asymptotic features of the solutions.

Because it’s not clear how to extend general enthropy methods to our problems, we then
make supplementary hypotheses on Volterra equation’s kernel. Namely we assume that it
is in some sense dissipative. This allows conservation properties and much more of explicit
computations. In particular we show that it’s possible to re-formulate the problem thanks
to the elongation variable. This new framework allows to obtain a stability results and we’re
able to fully characterize, under minimal hypothesis on the kernel, the convergence of our
solutions to an asymptotic profile. This is not possible to our knowledge with the previous
methods.

In order to illustrate all these results in section ?? we present a numerical approximation
of our problem. To insure the consistency of our numerical discretization with the continuous
problem, we show that, when the discretization parameter ∆ tends to zero, solutions provided
by the numerical scheme converge to those of the continuous problem. Then we show some
numerical results that help to give partial conclusions and we list open problems of interest
also for biological reasons.

Because the final convergence problem involves the space variable, and an elliptic operator,
in the last section we introduce volterra equation supplemented by a Laplace operator in
space. From the modelling point of view, this represents an elastic filament whose reference
length is zero. In order to fit to the non-linear framework of the starting model we base
our approach on DeGiorgi’s minimizing movements and gradient flow techniques [2]. As the
Volterra integral operator introduces an infinitely distributed delay, we show how to extend
previously mentioned tools to our setting.

At the same time minimizing movements extend the numerical scheme presented in section
?? to this new framework. Energy estimates allow to pass to the limit wrt the discretization
parameter ∆ and since these are also uniform with respect to ε, they also hold for the
continuous solution. This allows to recover the continuous ε-limit as well.
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1.1 Filament based lamelipodium model (FBLM)

Cells migrate by protruding at the front and retracting at the rear. Protrusion occurs in thin
membrane bound cytoplasmic sheets, 0.2 to 0.3 mµ thick and up to several microns long,
termed lamellipodia. The major structural components of lamellipodia are actin filaments,
which are organised in a more or less two-dimensional diagonal array with the fast growing,
plus ends of the actin filaments directed forwards, abutting the membrane [30]. Protrusion
is effected by actin polymerisation, whereby actin monomers are inserted at the plus ends
of the filaments at the membrane interface and removed at the minus ends, throughout and
at the base of the lamellipodium, in a treadmilling regime [24]. Stabilisation of the actin
meshwork is achieved by the cross-linking of the filaments by actin-associated proteins, such
as filamin[20] as well as protein complexes, such as the Arp2/3 complex [26], although the
density and location of such cross-links remains to be established. Since actin polymerisation
is involved in diverse motile processes aside from cell motility, including endocytosis and the
propulsion of pathogens that invade cytoplasm, the question of how actin filaments are able
to push against a membrane has spawned the development of various models.

Comprehensive modelling efforts were initiated in 1996 and fall into two groups. The first
group includes continuum models for the mechanical behaviour of cytoplasm : a two phase
formulation for cytosol and the actin network [1]; a one dimensional viscoelastic model[7]; a
one dimensional model for the actin distribution[19]; and a two dimensional elastic continuum
model[27]. The second group makes presumptions about the microscopic organisation of the
actin network. The Brownian ratchet model for the polymerisation process introduced by
Mogilner and Oster considers actin cross-linking proteins as stabilisers of the lamellipodium
meshwork, allowing enough flexibility for actin filaments to bend away from the membrane to
accept actin monomers. Other models are based on the current idea, that the actin filaments
in lamellipodia form a branched network with the Arp2/3 complex at the branch points.

The filament density decreases from the front to the rear of the lamellipodium, indicative of
a graded distribution of filament lengths. According to this structural information, we present
a quasi-stationary modelling approach for the simulation of the turnover of the lamellipodium
in a circularly symmetric cell, corresponding to real situations such as cytoplasmic fragments
of keratocytes. Our approach differs from others in that we describe the lamellipodium in
terms of a continuous distribution of filaments of graded length and their linkages. The
model depends on four primary parameters : bending elasticity of actin filaments, cross-
links between the filaments; the resistance against polymerisation by the membrane; and
interactions between the filaments and the substrate via trans-membrane linkages. With
a selected set of parameters we compute the dynamics of the network organisation. The
simulations reproduce several features also found experimentally: treadmilling, the lateral
flow of filament plus ends along the front edge, and persistence of the network organisation
after achievement of a steady state.

1.1.1 Modelling hypotheses

A1 At each point in the lamellipodium, actin filaments have one of two directions in the
diagonal network, represented by oriented, slightly curved segments with the barbed ends
attached to the leading (outer) edge of the lamellipodium. Filaments are inextensible.

A2 The lamellipodium is two dimensional and rotationally symmetric, i.e., at any point in
time it has the shape of a circular ring. This compares with the situation of a radially
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Figure 1: Constituent elements of the model

spread cytoplast from a keratocyte.
A3 Filaments polymerise at the barbed ends with constant polymerisation speed. Depoly-

merisation at the pointed ends is a stochastic process with prescribed distribution.
As a consequence of A1 and A2 the lamellipodium has the organization depicted in Figure
1.

There are two families of locally parallel filaments. Looking from the centre of the lamel-
lipodium ring, the filaments in the first group bear to the left and the second group to the
right; referred to as clockwise and anti-clockwise filaments. As a consequence of rotational
symmetry, all filaments can be constructed from one reference filament (which, without loss of
generality, we shall take clockwise) with the maximal filament length. All clockwise filaments
can then be constructed by rotation of the reference filament and subsequent random cutting
at the pointed end; correspondingly, all anti-clock-wise filaments are created by reflection,
rotation and cutting.

A central feature of the model is the description of production and decay of cross-links
and integrins, consistent with dynamic association/dissociation of linkage molecules with the
actin network, leading to the next assumption.
A4 A cross-link is an elastic connection between a clockwise and an anti-clockwise filament.

The cross-link has both an elastic and a torsional component. Cross-links form and break
stochastically at the crossing between two filaments with at most one cross-link for any
pair of filament crossing points at any time.

A5 An adhesion is an elastic link between a filament and a point on the substrate via a
transmembrane linkage. Adhesions can form or break spontaneously, breaking being
dependent on the degree of link extension.

A6 The position of the filaments in time is determined by a quasistationary balance of elastic
forces resulting from bending of the filaments, stretching and twisting the cross-links,

5



stretching the adhesion linkages, and stretching the cell membrane.
The quasistationary assumption means that we neglect elastic oscillations, assuming that

the filament network is damped by viscous forces in the cytosol and that the system there-
fore always operates at minimal potential energy. Thus, the evolution of the network is a
consequence of actin polymerization dynamics together with the creation and breaking of
cross-links and adhesions. In summary, the model we present has two major ingredients
(1) the making and breaking of cross-links in the filament network and between the filaments

and the matrix, based on renewal equations; and
(2) minimisation of the potential energy of the system.

1.1.2 The corresponding mathematical model

In order to obtain a feasible mathematical description we adopt a homogenisation limit, based
on the assumption that the density of filaments within the lamellipodium is very high; we
let the number of filaments tend to infinity in order to obtain a model based on continuous
quantities instead of discrete ones.

With the maximal filament length L = 1, an arc length parameterisation of the ref-
erence filament at time t is given by {x(s, t) : 0 ≤ s ≤ 1}, where s = 0 corresponds to
the pointed and s = L to the barbed end. We shall need the representation x(t, s) =
|x(t, s)|(cosφ(t, s), sinφ(t, s)) in polar coordinates with the angle φ(s, t) ∈ S1. We expect
|x(t, s)| to be strictly increasing with respect to s. Then |x(t, 0)| is the inner radius of the
lamellipodium and |x(t, L)| the radius of its leading edge at time t. The reference filament
is assumed to be clockwise i.e. φ(s, t) is a strictly decreasing function of s. Note that
|∂sx(s, t)| = 1.

Once defined a set of mechanical energy terms related to the previous hypotheses, in [21],
the authors use DeGiorgi’s minimizing movements (this will be described with much details
in sections ?? and 3) and obtain the semi-discretized scheme and some stability estimates.
These estimates allow to pass to the limit wrt the time discretisation parameter and show that
the continuous vector solution (x, λ) satisfies Euler-Lagrange’s system of equations reading :

κB∂2
s (η∂2

sx)︸ ︷︷ ︸
bending

− ∂s(ηλ∂sx)︸ ︷︷ ︸
unextensibility constraint

+ηµADtx︸ ︷︷ ︸
adhesion

+

+ ∂s

(
η2µT (arccos (∂s |x|) − φ0) ∂sx

⊥)︸ ︷︷ ︸
twisting

+η2(µSDtφ
)
x⊥︸ ︷︷ ︸

stretching

= 0

|∂sx| = 1,

complemented by a set of natural boundary conditions that we do not detail here. It is a
force balance equation. Red terms in this system represent velocity terms scaled by constant
factors and that is why they are called friction terms. They are formal limits when ε goes to
zero of the following integral operators :

Lε[x](s, t) := 1
ε

∫
R+

(x(s, t) − x(s+ εva, t− εa)) ρε(s, a, t)da

and a similar one for the stretching part. The weight ρε is an unknown of the problem solving
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a non-local transport problem :
(ε∂t + ∂a + ζ(s, a, t, . . . )) ρε = 0, (s, a, t) ∈ Ω × R+ × (0, T )

ρε(s, 0, t) = β(s, . . . )
Å

1 −
∫

R+
ρε(s, a, t)da

ã
, (s, a, t) ∈ Ω × {0} × (0, T )

ρε(s, a, 0) = ρI(s, a), (s, a, t) ∈ Ω × R+ × {0}.

(1)

where β (resp. ζ) represents linkages’ on (resp. off) rate and the non-local term represents
a saturation effect accounting for availability of adhesion sites. When the on/off rates are
prescribed the ρε system can be solved independently and (ρε, xε) are weakly coupled. If
instead β depends on the position xε and ζ depends on the elongation

uε(s, a, t) := xε(s, t) − xε(s+ εva, t− εa)
ε

then the system is said to be strongly coupled. In these lectures no strong coupling should
be considered.

Note that a Taylor expansion of xε(s+εva, t−εa) at the point (s, t) leads to the expansion :

uε(s, a, t) = (∂t − v∂s)xε(s, t) +O(ε)

which defines Dt := (∂t − v∂s) naturally in the equations above. The main project of this
course and [15, 16, 18] etc is to give a rigorous meaning to this formal computations. In the
next section, we present our strategy in order to tackle this ambitious goal.

1.2 Simplified (open) problems

Terms of the first line above provide an equation for the equilibrium of a single filament
and represent to some extent the ultimate goal of this research : rigorous justification of
memory-like adhesion microscopic description towards friction. Indeed we want to show that
starting from the system :

1
ε

∫
R+

(xε(s, t) − xε(s, t− εa)) ρε(s, a, t)da+ x′′′′
ε − (λεx

′
ε)

′ = 0,

x′′
ε |s=0,1 = 0,
x′′′

ε − λεx
′
ε|s=0,1 = 0,

|x′
ε| = 1, ∀s ∈ (0, 1)

xε(s, t) = xp(s, t), ∀s ∈ (0, 1), ∀t < 0.

(2)

the solution xε converges towards the system [23]:

µ1,0(s, t)∂tx0 + x′′′′
0 − (λ0x

′
0)

′ = 0
x′′

0|s=0,1 = 0,
x′′′

0 − λεx
′
0|s=0,1 = 0,

|x′
0| = 1, ∀s ∈ (0, 1)

x0(s, t) = xp(s, 0), ∀s ∈ (0, 1), ∀t = 0.

where ρ0 := limε→0 ρε and µ1,0(s, t) :=
∫

R+
aρ0(s, a, t)da. Because even the problem (2) is

non-linear and too difficult to handle directly, in a series of works [15, 16, 17], we studied a
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simplified system where we focused on the integral part and replaced the remaining terms
with an imposed external force without any space dependence. This led to study the weak
coupling between (1) (forgetting the s-dependence) and a simple Volterra equation

1
ε

∫
R+

(xε(t) − xε(t− εa)) ρε(a, t)da = f(t), t > 0,

xε(t) = xp(t), t ≤ 0.
(3)

and we studied the convergence of xε towards the solution of the limit problem :®
µ1,0∂tx0(t) = f(t), t > 0,
x0(0) = xp(0), t = 0. (4)

In these lectures, in order to simplify even more the problem we assume that the kernel ϱ is
time and thus ε independent and is either a given fixed positive function ϱ ∈ L1(R+) or it
solves the limit (when ε → 0) equation associated to (1) which reads :®

(∂a + ζ(a)) ϱ = 0, a ∈ R+

ϱ(0) = β, a = 0 (5)

For ε = 1, one understands easily that (3) can be reformulated as

x(t) −
∫ t

0
x(t− a)k(a)da = f

µ0
+

∫ ∞

t
xp(t− a)k(a)da, k(a) := ϱ(a)

µ0
, µ0 :=

∫
R+
ϱ(a)da

which can be recasted into a standard Volterra equation

x(t) − (k ⋆ x)(t) = F (t), F (t) := f(t)
µ0

+
∫ ∞

t
xp(t− a)k(a)da

where the convolution is meant in the following sense :

(k ⋆ x)(t) =
∫ t

0
x(t− a)k(a)da.

with the particular feature that
∫

R+
k(a)da = 1, wich means that k(a)da is a unit measure.

In this case the latter equation is called renewal equation and has been widely studied in the
context of age structured populations.

It appears that the ε-scaling above is closely connected in some cases to the long time
asymptotic profile of x. This is why in first sections of these lectures we focus on describing
the leading profile of x when t grows large. To do so, we have at our disposal several tools :

• the Laplace transform (sec. 2.2),

• the General Entropy Method (sec. 2.3),

• the elongation variable formulation (sec 2.4)

This motivates the contents of the lectures and the order of exposition. In what follows we
show mainly that if

µ1 :=
∫

R+
aϱ(a)da < ∞,
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then, when t → ∞, x(t) ∼ f∞t/µ1 where f∞ := limt→∞ f(t) for instance, which is exactly
the profile satisfied for large times by x0 solving (4) above.

In order to illustrate what happens in the border cases when for instance, the first order
moment of ϱ becomes unbounded, we discretise our problem in the spirit of Gradient Flows
leading to the Implicit Euler discretization of the Volterra equation. We provide a complete
analysis of the convergence when the discretisation parameter ∆ = ∆t = ∆a tends to zero.
We then conclude by listing interesting open problems suggested by the numerics.

Extending the Gradient Flow method, in the last part (section 3), and in order to get
closer to the original problem, we introduce the space variable and a Laplace operator and
focus on the system : 

Lε[xε](s, t) − ∆xε(s, t) = f(s, t)
∂νxε |s=0,1 = 0,
xε(s, t) = xp(s, t), ∀s ∈ (0, 1), ∀t < 0.

(6)

Using DeGiorgi’s minimizing movements [2], we 1
2 -discretize the energy minimization proce-

dure associated with this problem in age and time (but not in space) and show that when ∆
goes to zero, the discrete solution converges towards xε solving (6). This is possible thanks
to specific energy estimates, more complicated to obtain than for the standard heat equation
for instance. Then show the convergence of xε to x0 solving the friction-heat equation :

µ1(s)∂tx0 − ∆x0(s, t) = f(s, t)
∂νx0 |s=0,1 = 0,
x0(s, t) = xp(s, 0), ∀s ∈ (0, 1), ∀t = 0.

(7)

This is possible thanks to stability estimates already obtained for the discrete scheme which
are stable both wrt ε and ∆ and a stronger supplementary estimate fully based on the
reformulation of the problem in the elongation variable.

2 The renewal equation

If we turn back to (3), for ε = 1 it can be rewritten as :

µ0x(t) −
∫ t

0
x(t− a)ϱ(a)da = f(t) +

∫ ∞

t
xp(t− a)ϱ(a)da

which, dividing by µ0 and redefining f accordingly, transforms into :

x(t) −
∫ t

0
x(t− a)k(a)da = f(t), k(a) := ϱ(a)

µ0

the latter function having total mass 1. By renewal equation we intend precisely that the
total mass of k is one, i.e. ∫

R+
k(a)da = 1.

Before treating this special case, we aim to give a general framework allowing to handle
Volterra equations of this kind.
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2.1 Constructing the resolvent

If k and x are measurable functions we denote

(k ⋆ x)(t) :=
∫ t

0
k(a)x(t− a)da.

We consider the problem find x in a suitable space s.t.

x(t) = k ⋆ x(t) + f(t), (8)

First we write few words about convolution :

Theorem 1. Let J be R+, or an interval with left end-point 0 and right end-point T ,
where 0 < T < ∞, and let a be measurable on J . Then each of the following conditions
implies that a ∈ L1(J) :

i) a ⋆ b ∈ L∞(J) for every b ∈ L∞(J)
ii) a ⋆ b ∈ L1(J) for every b ∈ L1(J)

Proof. We admit the proof since it is technical and far from the scope of this lecture notes.
Nevertheless, the interested reader can consult [8, Lemma 3.10.2 and 9.10.4 p.270–274]. ■

2.1.1 The Laplace transform

Definition 1. The Laplace transform of a function a defined on R+ is s.t.

â(z) :=
∫

R+
a(t) exp(−zt)dt

defined on those z ∈ C for which the integral exists as an absolutely convergent
Lebesgue’s integral. The (bilateral) Laplace transform of a functiona, defined on R,
is the function

â(z) :=
∫

R
a(t) exp(−zt)dt

which is defined for those z ∈ C for which the integral exists.

Theorem 2.
(i) If a ∈ L1(R), then â(z0) is defined and continuous on the line ℜz = 0, â(iω) → 0

as |ω| → ∞, and

â(iω) = 0, ∀ω ∈ R ⇔ a(t) = 0 a.e. t ∈ R

(ii) If a ∈ L1
loc(R), and â(z0) is defined for some z0 ∈ C, then â(z) is defined on the

vertical line ℜz = ℜz0.
(iii) If a ∈ L1

loc(R) and b ∈ L1
loc(R), then ÷(a ⋆ b)(z) = â(z)b̂(z) for all those z ∈ C for

which both â(z) and b̂(z) are defined.
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Theorem 3.
(i) If a ∈ L1(R+), then

• â(z) is defined and continuous on the closed half plane ℜz ≥ 0, it is analytic
in ℜz > 0,

• â(z) → 0 as |z| → ∞ in the half plane ℜz ≥ 0.
• Moreover â(z) = 0 for all z in ℜz ≥ 0 iff a(t) = 0 a.e. t ∈ R+.

(ii) If a ∈ L1
loc(R+), and â(z0) is defined for some z0 ∈ C then â(z) is defined in the

closed half plane ℜz ≥ ℜz0.

(iii) If a ∈ L1
loc(R+) and b ∈ L1

loc(R+), then ÷(a ⋆ b)(z) = â(z)b̂(z) for all those z ∈ C for
which both â(z) and b̂(z) are defined.

Proof. To prove the analyticity it suffices to observe that one can differentiateunder the
integral sign [28]. We concentrate on the decrease at infinity. If z = σ + iω, then

|â(z)| ≤
∫

R+
exp(−σt) |a(t)| dt

and, therefore, by Lebesgue’s dominated convergence theorem, â(σ + iω) → 0, as σ → ∞
uniformly in ω. It follows from Riemann-Lebesgue’s Lemma that for each σ the function
ω → â(σ + iω) ∈ BC0(R). The map σ → exp(−σt)a(t) is continuous from R+ into L1(R+),
and this implies that the map σ → â(σ + iω) is continuous from R+ into BC0(R). This
implies that â(σ + iω) → 0 as ω → ∞ uniformly in σ ∈ [0, σ0] for all σ0 > 0, which ends the
proof. ■

2.1.2 Existence of a resolvent

Theorem 4. Let k ∈ L1
loc(R+), then there exists a solution r ∈ L1

loc(R+) of the resolvent
equation :

r − k ⋆ r = k (9)
This solution is unique and depends continuously on k in the topology of L1

loc(R+).

Proof. First let us show that a solution r of (9) on an interval [0, T ] has to be unique. Suppose
that q satisfies q − k ⋆ q = k and r satisfies r − r ⋆ k = k. Then

r = k + r ⋆ k = k + r ⋆ (q − k ⋆ q) = k + r ⋆ q − r ⋆ k ⋆ q

= k + (r − r ⋆ k) ⋆ q = k + k ⋆ q = k + q − k = q

thus the solution is unique. Next, let us observe that it suffices to prove that for each
T ∈ (0,∞), there is a function rT ∈ L1(0, T ) s.t.

rT − k ⋆ rT = rT − rT ⋆ k = k

on [0, T ]. If this is true, then by uniqueness, for each j ∈ N, the restriction rj+1 to [0, j)
must be equal to rj. We get a unique solution in L1

loc(R+) by defining r(t) = rj+1(t) for
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t ∈ [j, j + 1). In the special case where
∫ T

0 k(a)da < 1 one can use the iteration method.
Indeed we set

rm :=
m∑

j=1
k⋆j

where k⋆j is the (j − 1)-fold convolution of k by itself :

k⋆2 =
∫ t

0
k(a)k(t− a)da.

A standard result of convolution provides that∥∥∥k⋆j
∥∥∥

L1(0,T )
≤ ∥k∥j

L1(0,T )

This means that {rm}∞
m=1 is a Cauchy sequence in L1(0, T ). Therefore there exists a function

r ∈ L1(0, T ) to which rm tends in L1(0, T ) as m → ∞. Each rm satisfies :

rm − k ⋆ rm−1 = rm − rm−1 ⋆ k = k

Again as
∥k ⋆ (rm − r)∥L1(0,T ) ≤ ∥k∥L1(0,T )∥rm − r∥L1(0,T )

one has also that k ⋆ rm → k ⋆ r and hence r must satisfy (9).
To finish the existence proof, it suffices to show that we may always, without loss of

generality, take
∫ T

0 |k(t)| dt < 1. By Lebesgue’s dominated convergence theorem, the function
exp(−σt)k(t) tends to 0 in L1(0, T ) as σ tends to ∞. So, by choosing σ large enough, we
may assume that a := exp(−σt)k(t) satisfies ∥a∥L1(0,T ) < 1. There exists q ∈ L1(0, T ) solving

q − a ⋆ q = q − q ⋆ a = a

define r := exp(σt)q(t), then r solves (9). Thus we have found a solution r ∈ L1(0, T ) of the
original equation. The continuous dependence on k is left as an exercise. ■

Exercise 1. Prove the continuous dependence on k

Proof. We set k = k1 − k2 and r = r1 − r2, then one has

r − k1 ⋆ r = k + r2 ⋆ k

and in the same way :
r − k2 ⋆ r = k + r1 ⋆ k

then taking the convolution wrt r1 in the first equation above and r2 in the second one
obtains :

r1 ⋆ r − r1 ⋆ k1 ⋆ r = k ⋆ (k1 ⋆ r2 + r1)
and similarly

r2 ⋆ r − r2 ⋆ k2 ⋆ r = k ⋆ (k2 ⋆ r1 + r2)
then using (9) one has for instance that :

k1 ⋆ r = k ⋆ (k1 ⋆ r2 + r1)

12



which finally gives that :

r = k1 ⋆ r + k + r2 ⋆ k = k ⋆ (k1 ⋆ r2 + r1) + k + r2 ⋆ k

then this latter expression provides the bound

∥r∥L1(0,T ) ≤ C(k1, r1, r2)∥k∥L1(0,T )

one concludes. ■

Exercise 2. If the function exp(−σt)k(t) belongs to L1(R+) for some σ ∈ R, then there
is a constant c such that the function exp(−ct)r(t) belongs to L1(R+), where r is the
resolvent of k.

Proof. If the function k̃ := exp(−σt)k(t) ∈ L1(R+) then there exists δ ∈ R large enough s.t.∥∥∥exp(−δ·)k̃(·)
∥∥∥

L1(R+)
< 1

and thus as in the proof of Theorem 4, we set a := exp(−δt)k̃(t) = exp(−(δ+σ)t)k(t). There
exists q ∈ L1(R+) s.t.

q − a ⋆ q = a

and setting r(t) := exp((σ + δ)t)q(t) is solves (9). Moreover as there exists C s.t.

∥q∥L1(R+) ≤ C

this implies that
∥exp(−(σ + δ)·)r(·)∥L1(R+) < C

which ends the proof. ■

Exercise 3. Show that if k(s) ≥ 0 for almost every s ∈ (0, T ), then so is r solving (9).

Proof. Let’s assume first that ∫ T

0
k(s)ds < 1.

Then
r =

∑
j≥1

k⋆j

and thus r ≥ 0 as long as k(s) ≥ 0. In the general case, chose σ small enough as in the proof
of Theorem 4, and set aσ(t) := exp(−σt)k(t) so that∫ T

0
aσ(s)ds < 1.

Thus there exists qσ ≥ 0 s.t.
qσ − aσ ⋆ qσ = aσ

and define r := exp(σt)qσ(t) which solves (9) and it is positive. ■
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Theorem 5. Let k ∈ L1
loc(R+). Then for every f ∈ L1

loc(R+), there exists a unique
solution x ∈ L1

loc(R+) of (8). This solution is given by the variation of constant formula :

x(t) = f(t) + (r ⋆ f)(t), t ∈ R+ (10)

where r is the resolvent of k. If f ∈ Lp
loc(R+) then x ∈ Lp

loc(R+).

Proof. Let f ∈ L1
loc(R+) and define x as in (10). Then x ∈ L1

loc(R+), and

x− k ⋆ x = x− k ⋆ (f + r ⋆ f) = x− (k + k ⋆ r) ⋆ f = x− r ⋆ f = f

so that x solves (8).
Conversely, let x be an arbitrary solution of (8) in L1

loc(R+). Then as f ∈ L1
loc(R+) and

x = f + k ⋆ x = f + (r − r ⋆ k) ⋆ x = f + r ⋆ (x− k ⋆ x) = f + r ⋆ f

and so x is given by (10). ■

Theorem 6. Let k be a positive Volterra kernel in L1
loc(0, T ), assume that x, f ∈

L1
loc(0, T ) and suppose that

x(t) ≤ (k ⋆ x)(t) + f(t), a.e. t ∈ (0, T ).

Then
x(t) ≤ y(t), a.e. t ∈ (0, T )

where y is the solution of the comparison equation y(t) = (k ⋆ y)(t) + f(t).

Proof. If x(t) ≤ (k ⋆ x)(t) + f(t) then there exists g ≥ 0 s.t.

x(t) = (k ⋆ x)(t) + f(t) − g(t).

and using the resolvent equation this reads :

x = (f − g) + r ⋆ (f − g)

then one computes :

k ⋆ x = (k + k ⋆ r) ⋆ (f − g) = r ⋆ (f − g) = r ⋆ f − r ⋆ g

and thus :

x(t) ≤ (k ⋆ x)(t) + f(t) = (r ⋆ f)(t) − (r ⋆ g)(t) + f(t) ≤ (r ⋆ f)(t) + f(t) = y(t)

where we used that r ≥ 0 and g ≥ 0 imply that r ⋆ g ≥ 0, which ends the proof. ■

This result can be generalized to non-convolution type kernels. The reader may consult
[8, Propositions 8.1 and Lemma 8.2]. Now we solve (8) :
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Remark 1. To get an explicit solution of the resolvent equation, one can use Laplace
transforms. Suppose that for some sufficiently large σ, the function exp(−σt)k belongs
to L1(R+). Then k̂(z) exists for ℜz > σ, and, by Exercise 2, r̂(z) exists in some other
half plane ℜz > c. Using the previous Theorem 3 (9) may be transformed and becomes :

r̂(z) = k̂(z)
1 − k̂(z)

, ℜz ≥ max(σ, c)

An inversion of the Laplace transform (which occasionally can be done in a closed form)
gives r.

Suppose that we know something about the asymptotic behaviour of the forcing function
f in (8). For example, f ∈ L1(R+). What conditions do we need on the kernel k in order to
conclude that the solution x of (8) has the same asymptotic behaviour as f?

Exercise 4. Prove that if f ∈ L1(R+) or f ∈ L∞(R+) then x ∈ L1(R+) is equivalent to
r ∈ L1.

Now one can ask the question : when is it true that r ∈ L1(R+) ? As we shall see below,
if k ∈ L1(R+), then one can give a complete answer to this question in terms of a Laplace
transform condition.

Theorem 7. [Half Line Paley-Wiener] Let k ∈ L1(R+), then the resolvent r of k satisfies :

r ∈ L1(R+)

if and only if
k̂(z) ̸= 1, ∀z ∈ C ; ℜz ≥ 0.

Proof. The Laplace condition is clearly necessary. Indeed, if r ∈ L1(R+) and r − k ⋆ r = k,
then we are allowed to transform (9) to get :

r̂ − k̂r̂ = k̂, ∀z ∈ C ; ℜz ≥ 0.

or equivalently
(1 − k̂(z))(1 + r̂(z)) = 1, ℜz ≥ 0

which clearly implies that k̂(z) ̸= 1, ℜz ≥ 0 because r̂ is bounded on ℜz ≥ 0 since r ∈ L1(R+).
Indeed, as k ∈ L1(R+) k̂ is continuous on ℜz ≥ 0. Assume there exists z0 ∈ {ℜz ≥ 0} s.t.
k̂(z0) = 1 then ∣∣∣(1 − k̂(z0))(1 + r̂(z0))

∣∣∣ ≤
Ä
1 + ∥r∥L1(R+)

ä ∣∣∣1 − k̂(z0)
∣∣∣ = 0

leading to a contradiction. The rest of the proof is admitted since beyond of these lectures’
scope . The interested reader can refer to the proofs of [8, Theorems 4.1 and 4.3]. ■
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2.1.3 Application to the case when total mass is less than 1

This gives :

Lemma 1. Assume that
∫

R+
k(a)da < 1, k̂(z) is well defined on ℜz ≥ 0 and

∀z ; ℜz ≥ 0, k(z) ̸= 1

Proof. Indeed, by Theorem 3, as k ∈ L1(R+), k̂(z) is defined and continuous on the closed
half-plane ℜz ≥ 0, moreover∣∣∣k̂(z)

∣∣∣ =
∣∣∣∣∫

R+
k(a) exp(−za)da

∣∣∣∣ ≤ ∥k∥L1(R+) < 1

and the claim follows. ■

Theorem 8. If ∥k∥L1(R+) < 1, one has in a straightforward manner that : there exist
r ∈ L1(R+) solving (9) s.t.

∥r∥L1(R+) ≤ 1
1 − ∥k∥L1(R+)

.

Moreover these estimates show also that if f ∈ L1(R+) then so is x solving (8). Same
results hold for any Lp(R+) norms for p ∈ (1,∞].

Corollary 1. Assume that f ∈ L1(R+), then

∥x∥L1(R+) ≤ ∥f∥L1(R+)(1 + ∥r∥L1(R+))

Obviously this implies that ∫ t+h

t

∣∣x(t̃)
∣∣ dt̃ → 0

when t grows large.

2.2 The resolvent for the renewal equation

If we turn back to (3), for ε = 1 it can be rewritten as :

µ0x(t) −
∫ t

0
x(t− a)ϱ(a)da = f(t) +

∫ ∞

t
xp(t− a)ϱ(a)da

which, dividing by µ0 and redefining f accordingly, transforms into :

x(t) −
∫ t

0
x(t− a)k(a)da = x− k ⋆ x = f(t), k(a) := ϱ(a)

µ0
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the latter function having total mass 1. By renewal equation we intend precisely that the
total mass of k is one, i.e. ∫

R+
k(a)da = 1.

In a first step we require a quite strong decrease of k at infinity, latter we refine our analysis
in order to relax as much as possible this constraint.

2.2.1 The kernel belongs to some exponentially weighted Lebesgue’s space

Definition 2. A positive function w on R is called sub-multiplicative, if w(0) = 1 and

w(s+ t) ≤ w(s)w(t)

for all s, t in R.
We define the weighted Lp-spaces Lp(0, T ) for p ∈ [1,∞] to be the set of functions f on
(0, T ) that satisfy wf ∈ Lp(0, T ), with norm ∥f∥Lp(0,T ;w) = ∥wf∥Lp(0,T ).

Examples of sub-multiplicative weights are
w1(t) := (1 + |t|)δ, t ∈ R, δ ≥ 0
w2(t) := (1 + log(1 + |t))γw1(t), t ∈ R, γ ≥ 0
w3(t) := exp(|t|α)w2(t), t ∈ R, 0 ≤ α < 1
w4(t) := exp(βt)w3(t), t ∈ R, β ∈ R

Proposition 1. Let w be a locally bounded sub-multiplicative, then

αw := − inf
t→−∞

ln(w(t))
t

, ωw := − inf
t→∞

ln(w(t))
t

exists and one has :

w(t) ≥ max (exp(−αwt), exp(−ωwt)) , ∀t ∈ R

We recall here the Paley-Wiener Lemma :

Lemma 2. Let a ∈ L1(R; C), let ϕ be a function that is bounded and continuous in the
closed half plane ℜz ≥ 0 and analytic in the open half plane ℜz > 0, and suppose that
â(z) = φ(z) for all ℜz = 0. Then a(t) = 0 for almost all t < 0, and â(z) = ϕ(z) for all
z ∈ C with ℜz > 0.

Proof. We set

a1(t) :=
®
a(t), t < 0,
0, t ≥ 0

, a2(t) :=
®

0, t < 0,
a(t), t ≥ 0

17



By hypothesis, one has

â(z) = â1(z) + â2(z) = φ(z), ℜz = 0.

φ(z) and â1(z) are continuous on ℜz ≥ 0 and analytic in ℜz > 0. Similarly as â1(−z) is the
ordinary LT of a(−t) we see that â1 is continuous on ℜz ≤ 0 and analytic in ℜz >< 0. It
follows that the function

G(z) :=
®
â1(z), ℜz ≤ 0
φ(z) − â2(z), ℜz > 0

is entire [28, Theorem 16.8, p 323]. As φ and â2 are bounded on ℜz ≥ 0, and similarly
because a1 ∈ L1(R−) â1 is bounded on ℜz ≤ 0, then G is bounded. By Liouville’s Theorem,
G is a constant. Since G(iω) → 0 when |ω| → ∞ G is identically zero. Then â1 = 0 and by
uniqueness of the LT, a1(t) = 0, for a.e. t < 0 thus a(t) = 0 a.e. t > 0. ■

Assume that φ is a sub-multiplicative weight, we define M(R+;φ; C) to be the set of
measures µ s.t. φµ(dt) ∈ M(R+; C), where M(R; C) is the set of finite complete Borel
Measures [28]. Here we state [8, Theorem 7.2.4].

Theorem 9. Let φ be a sub-multiplicative weight function on R for which αφ = ωφ, let
k ∈ M(R+;φ; C) have no singular part and suppose that

inf
ℜz=ωφ

∣∣∣1 − k̂
∣∣∣ > 0,

and
lim inf
|z|→∞
ℜz≥ωφ

∣∣∣1 − k̂(z)
∣∣∣ > 0

Then the resolvent r of k is of the form :

k(dt) =
m∑

ℓ=1

pℓ−1∑
j=0

Ωℓ,jt
j exp(zℓt)dt+ ξ(dt)

where each exponent zℓ is complex with ℜzℓ > ωφ, each Ωℓ,j is a complex coefficient and
ξ ∈ M(R+;φ; C).
More specially, the exponents zℓ are the zeros of the characterstic equation k̂(z) = 1 in
ℜz > ωφ and the coefficients Ωℓ,j are determined by the principal part of k̂(1 − k̂)−1 at
zℓ in the sense that, in some neighborhood of zℓ,

k̂(z)
1 − k̂(z)

=
m∑

ℓ=1

pℓ−1∑
j=0

j!Ωℓ,j

(z − zℓ)j+1 + ξℓ(z),

where the remainder ξℓ is analytic at zℓ.
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Theorem 10. We assume here that k is s.t.
• k(a) ≥ 0,
•

∫
R+
k(a)da = 1,

• there exists σ > 0 s.t.
k(·) exp(σ·) ∈ L1(R+)

then there exists h ∈ L1(R+, exp(σ·)) s.t. the resolvent r reads

r(a) = 1∫
R+
ãk(ã)dã + h(a), a.e. a ∈ R+

Proof. If k is positive and
∫
k(a)da = 1 then its Laplace transform exists and is analytic in

ℜz > 0. Moreover, k(·) exp(σ·) ∈ L1(R+) implies that∣∣∣k̂(−σ)
∣∣∣ =

∫
R+
k(a) exp(σa)da < ∞

which by Theorem 3 implies that k̂ is defined for Ωσ := {ℜz ≥ −σ}. Moreover k̂ is analytic
in ℜz > σ. Indeed, one has that
a) a.e. t ∈ R+, the map z ∈ Ωσ → exp(−zt)k(t) is differentiable on Ωσ and the derivative is

−t exp(−zt)k(t);
b) for every z ∈ Ωσ, the map t ∈ R+ → exp(−zt)k(t) is integrable on R+ (this is the

consequence of the previous result).
c) one has that for all σ′ < σ and all z ∈ Ωσ′ there exists tσ′ s.t. ,

|t exp(−zt)| k(t) ≤ max(exp(σt), tσ′ exp(σ′tσ′))k(t) ∈ L1(R+)

Indeed,
t exp(−zt) < t exp(σ′t)

and then there exists tσ′ s.t.

∀t > tσ′ , t exp(σ′t) ≤ exp(σt)

so that
t exp(−zt) ≤ t exp(σ′t) ≤

®
exp(σt) if t > tσ′

t′σ exp(tσ′) otherwise.
using the Theorem of derivation of an integral wrt a paramter, one has that

k̂′(z) = −
∫

R+
exp(−zt)tk(t)dt, ∀ℜz > σ.

When z is real and z ∈ (−σ,∞), k̂ is a positive strictly decreasing function :

k̂′(z) = −
∫

R+
exp(−zt)tk(t)dt

Indeed, the derivative is defined and strictly negative since there exists a set ω ⊂ (0,∞) of
positive measure for which k(a) > 0 and thus

k̂′(z) < 0, ∀z ∈ (−σ,∞).
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Since k ∈ L1(R+) it is clear that limz→∞ k̂(z) = 0, and since k̂(0) = 1 and k′(0) < 0, this
shows that there exists a unique real and simple root of the characteristic equation k̂ = 1.

If z1 is an eigenvalue, then so is z1, its conjugate. This leads to write that :

k̂(z1) + k̂(z1) = 2

which translates into : ∫
R+

(exp(−z1a) + exp(−z1a)) k(a)da = 2.

This can be rewritten as : ∫
R+

exp(−ℜz1a) cos(ℑz1a)k(a)da = 1

which can be estimated as

k̂(ℜz1) ≥
∫

R+
exp(−ℜz1a) cos(ℑz1a)k(a)da = 1 = k̂(0).

Because k̂ is a decreasing function on [−σ,∞), this means that ℜz1 ≤ 0. Suppose that
ℜz1 = 0 and ℑz1 ̸= 0, then one arrives at the equation :∫

R+
(1 − cos(ℑz1a))k(a)da = 0

and since the integrand is non-negative, this implies that for almost every a ∈ supp k one
has :

(1 − cos(ℑz1a))k(a) = 0,
since there is at least a non zero measure set K on which k(a) > 0 this leads to (1 −
cos(ℑz1a)) = 0 for a.e. a ∈ K thus ℑz1 = 0 which is a contradiction. This shows that
necessarily the strict inequality holds.

Since k̂ is analytic in ℜz > −σ, the zeros are isolated, there is no accumulation point in
ℜz > −σ. Thus there exists 0 < δ < σ s.t. in the strip ℜz ∈ (−δ,∞), z = 0 is the only root
of the characteristic equation k̂(z) = 1.

We are in the position to apply Theorem 9, which states that :

r(dt) = Rez
Ç

k̂(z)
1 − k̂(z)

, 0
å
dt+ ξ(dt)

where ξ ∈ M(R+; exp(δt); C). Then a simple computation shows that :

Rez
Ç

k̂(z)
1 − k̂(z)

, 0
å

= lim
z→0

k̂(z) z

1 − k̂(z)
= lim

z→0
k̂(z) lim

z→0

1
1−k̂(z)

z

= 1
−k̂′(0)

= 1∫
R+
ak(a)da.

As k ∈ L1(R+), the resolvent is in L1
loc(R+). The constant 1/

∫
R+
ak(a)da is also in L1

loc which
implies that ξ is also in L1

loc.
If a measure ξ ∈ M(R+; R) is finite and is also in L1

loc(R+; R) then there exists h ∈ L1(R+)
s.t. ξ(dt) = hdt. It is a consequence of the Lebesgue-Radon-Nikodym decomposition theorem
[28, Theorem 6.10, p.121] and the fact that the space of L1

loc(R+) functions coincides with
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absolutely continuous measures wrt Lebesgue’s measure [29, p. 18]. Indeed, Lebesgue’s
measure λ is σ-additive and positive, ξ is a finite measure s.t ξ ≪ λ (absolutelly continuous
wrt Lebesgue’s measure). Since it is also finite, there exists a unique h ∈ L1(R+) s.t.

ξ(E) =
∫

E
hdt, ∀E ∈ B.

where B denote the Borelian σ-algebra defined on R+. So ξ can be identified with h. ■

2.2.2 The total mass is one and no exponential weight is at hand

In this section we extend the previous result in a weaker case for which only integrability
and the boundedness of the first moment are required.

Definition 3. A function ϕ is said to belong locally to L̂1(w)
• at a point z0 ∈ C, with αw ≤ ℜz0 ≤ ωw, if there exists functions µ1, · · · , µk in
L1(R+;w) and a function ψ(z, ξ1, . . . , ξk), analytic at (z0, µ̂1(z0), . . . , µ̂k(z0)), s.t.
for some ε,

ϕ(z) = ψ(z, µ̂1(z), . . . , µ̂k(z))),
when |z − z0| < ε and αw ≤ ℜz ≤ ωw.

• at infinity if there exists functions µ1, · · · , µk in L1(R+;w) and a function
ψ(z, ξ1, . . . , ξk) analytic in (0, 0, . . . , 0) s.t. for some ε > 0,

ϕ(z) = ψ(1/z, µ̂1(z), . . . , µ̂k(z))),

when |z| > ε and αw ≤ ℜz ≤ ωw.
If ϕ belongs locally to L̂1(w) at every point z0 with αw ≤ ℜz ≤ ωw and at infinity, then
we say that ϕ belongs locally to L̂1(w).

The following theorem motivates the use of the words belongs locally L1(φ) in Definition
3. For the proof, see [6, Therorem 1, p. 82] and [10, Prop. 2.3, p.755.].

Theorem 11. If w is a locally bounded sub-multiplicative weight on R, and let ϕ ∈ L̂1(w)
and satisfy ϕ(∞) = 0. Then there exists a unique function a ∈ L1(R+;w) s.t. ϕ(z) = â(z)
for αw ≤ ℜz ≤ ωw.
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Theorem 12. Here consider problem (8) with the specific condition that k ≥ 0 and
∥k∥L1(R+) = 1. We assume moreover that the first moment of k is bounded i.e. :∫

R+
ak(a)da < +∞

there exists a function ν ∈ L1(R+), s.t.

r(t) = ν(t) +
∫ t

0
ν(s)ds

where r is the positive resolvent associated to k and one has :∫
R+
ν(s)ds = 1∫

R+
k(a)ada.

Moreover, if
∫

R+
a2k(a)da < ∞, then there exists γ := ν −

∫ ∞
t ν(a)da and γ ∈ L1(R+)

s.t.
r(t) = γ(t) + 1∫

R+
k(a)ada (11)

Proof. By construction we know that the resolvent r ∈ L1
loc(R+) is positive since

r :=
∞∑

j=1
k⋆j.

We set b(t) :=
∫ ∞

t k(a)da, since this is an integrable function its Laplace transform is analytic
in ℜz > 0, continuous in ℜz ≥ 0 and reads :

b̂(z) = 1 − k̂(z)
z

, ℜz > 0.

Moreover a simple computation shows that

b̂(0) =
∫

R+
b(t)dt = µ1

µ0
.

We set
ϕ(z) := z

(1 + z)
k̂(z)

(1 − k̂(z))
= z

(1 − k̂(z))
k̂(z)

(1 + z) = 1
b̂(z)

k̂(z)
(1 + z) .

If we denote ψ(z, ξ) := z
1+z

ξ
1−ξ

, it is thus analytic in (C \ {−1}) × (C \ {1}). Simple
computations and previous results show that,

∀z0 ∈ C \ {0}, s.t. ℜz0 ≥ 0, k̂(z0) ̸= 1,

(it is sufficient to distinguish between the case ℜz > 0 and z ∈ iR∗). Thus for all z0 ∈ ℜz0 ≥ 0
and z0 ̸= 0,

(z0, k̂(z0)) ∈ {ℜz ≥ 0, z ̸= 0} × (C \ {1}) ⊂ (C \ {−1}) × (C \ {1})

So that ψ(z, ξ) is analytic at (z0, k̂(z0)). Moreover one has that

ϕ(z) = ψ(z, k̂(z)), ∀z ∈ ℜz ≥ 0.
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This shows that ϕ is locally in L̃1(1) at points z0 ̸= 0 in ℜz ≥ 0.
We focus now at z0 = 0. We set

ψ̃(z, ξ1, ξ2) := 1
ξ1

ξ2

(1 + z) .

Obviously one has :
ϕ(z) = ψ̃(z, b̂(z), k̂(z)), ∀z ∈ ℜz ≥ 0.

Then one notices that ψ̃(z, ξ1, ξ2) is analytic in the neighborhood of

(0, b̂(0), k̂(0)) =
Å

0,
∫

R+
k(a)ada, 1

ã
.

Thus ϕ is in L̃1(1) at the point z0 = 0.
It remains to prove that actually ϕ is in L̃1(1) at infinity. To this aim, we set

φ(z, ξ) := 1
(1 + z)

ξ

1 − ξ

that should be analytic in (0, 0). Indeed,

φ(w1, w2) =
Ç

∞∑
n=0

(−1)nwn
1

åÇ
w2

∞∑
p=0

wp
2

å
=

∞∑
n,p=0

(−1)nwn
1w

p+1
2

which converges for (w1, w2) ∈ D(0, 1)2 (D(0, 1) is the open unit disc in C). Moreover for all
M ≥ 0, for all |z| > M , one has

ϕ(z) = φ(1/z, k̂(z)), ∀z s.t. ℜz ≥ 0.

The previous considerations show that ϕ defined above is in L̂1(1), in the sense of Definition
3 and Theorem 11 states that there exists ν ∈ L1(R) s.t.

ν̂(z) = ϕ(z), ℜz = 0.

By Lemma 2 [8, the Paley-Wiener Lemma 5.1 p.50], supp ν ⊂ R+ and ν̂(z) = ϕ(z) coincide
also on ℜz > 0. Now by linearity of Laplace’s transform one has trivially :¤�Å

ν +
∫ t

0
ν(s)ds

ã
= ν̂ +

¤�Å∫ t

0
ν(s)ds

ã
and using [4, Theorem 8.1 p.36], ν ∈ L1(R+) implies that¤�Å∫ t

0
ν(s)ds

ã
(z) = 1

z
ν̂(z), ∀ℜz > 0.

By uniqueness of the Laplace transform [4, Lerch’s Theorem 5.1, p.21] , if

r̂(z) =
Å

1 + 1
z

ã
ν̂(z) =

¤�Å
ν +

∫ t

0
ν(s)ds

ã
(z), ∀ℜz > 0
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one concludes that r(a) = ν(a) +
∫ a

0 ν(s)ds almost everywhere in R+. Moreover, one writes :∫
R+
ν(s)ds = ν̂(0) = 1

b̂(0)
= 1∫

R+
sk(s)ds.

Next, if the second order moment is bounded, one has that b ∈ L1(R+, (1 + a)) and thus also
ν ∈ L1(R+, (1 + a)) (thanks again to Theorem 11) which then ends the proof. ■

Corollary 2. If moreover k ∈ L2(R+), then γ ∈ L2(R+) in the previous claim.

Proof. Using the L2-isometry of the Fourier transform, one has that if ϕ(i·) ∈ L2(R) then its
inverse fransform is also in L2. Assume first that |ξ| > ε,

|ϕ(iξ)| ≤ C

∣∣∣∣∣ k̂(iξ)
1 − k̂(iξ)

∣∣∣∣∣
as k ∈ L1(R+), its Fourier transform is in C0(R) and thus

∣∣∣1 − k̂(iξ)
∣∣∣ → 1 when |ξ| → ∞, for

all δ ∈ (0, 1), there exists ξ0 s.t. ∀ξ s.t. |ξ| > ξ0∣∣∣1 − k̂
∣∣∣ > 1 − δ.

This provides that
∥ϕ(i·)∥L2(R\B(0,ξ0)) < ∞

On the other hand, ϕ(iξ) is continuous on B(0, ξ0) \ {0} and reaches a finite value in zero
1/b̂(0), it is then continuous on B(0, ξ0) and thus bounded. which shows that ∥ϕ(i·)∥L2(R) <

∞. Thus its inverse Fourier transform is also an L2(R) function. One denotes υ ∈ L2(R) s.t.

υ := F−1(ϕ)

Moreover one has that

F(υ)(ξ) = ϕ(iξ) = ν̂(iξ) = F(ν)(ξ), a.e. ξ ∈ R

the latter equality holding since the Fourier transform of a L1(R+) function extended by zero
on R− coincides with the definition of the Laplace transform pointwisely. Then in the sense
of tempered distributions S ′(R) one has

F(υ − ν) = 0,

which implies that υ− ν in S ′(R) as F is an isometry on S ′(R). And thus the equality holds
a.e. pointwisely. ■

One may ask what happens if for instance

lim
R→∞

∫ R

0
ak(a)da = +∞.

The question is of importance since it seems from above results that in this case the particle
should stop instead of going further as time grows large.
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2.3 Generalized entropy method

The transport form of the renewal equation is as follows :
(∂t + ∂a)n = 0 (t, a) ∈ (0,∞)2,

n(0, t) =
∫

R+
k(a)n(a, t)da t > 0, a = 0,

n(a, 0) = n0(a) a > 0, t = 0,

(12)

where we assume that :

Assumptions 1. We assume that
i) k(a) ≥ 0 a.e. a ∈ R+,
ii) B ∈ L1(R+)
iii) either ∫

R+
k(a)da > 1 (13)

or ∫
R+
k(a)da = 1 and

∫
R+
k(a)ada < ∞ (14)

If x solves (3), with a null term, then it is solution of (12). Indeed,

n(a, t) :=
®
x(t− a) if t ≥ a

xp(t− a) otherwise

solves the transport problem in R+ × (0, T ). If a = 0 then n(0, t) = x(t) =
∫

R+
k(a)n(a, t)da,

where k = ϱ/µ0 which provides the boundary condition. Chosing t = 0 in the definition above
defines n0 as n0(a) = xp(−a) and one recovers the initial condition in (12). Conversely, if n
solves (12), then setting x(t) = n(0, t) solves (3), with f = 0. Indeed,

x(t) = n(0, t) =
∫

R+
n(a, t)k(a)da =

∫ t

0
n(0, t− a)k(a)da+

∫ ∞

t
k(a)n0(a− t)da

=
∫ t

0
x(t− a)k(a)da+

∫ ∞

t
k(a)xp(t− a)da

2.3.1 The eigen-problem

First we consider the eigen elements of the equation. Namely we look for (λ,N) solving :(λ+ ∂a)N = 0, a > 0,

N(0) =
∫

R+
k(ã)N(ã)dã, a = 0, (15)

If such a solution exists then λ should satisfy the characteristic equation

F (λ) :=
∫

R+
k(a) exp(−λa)da = 1. (16)

We recover here that F (λ) is indeed k̂(λ).
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For λ ∈ R+, F (λ) is finite thanks to the definition of k. F is differentiable with respect to
λ on ℜλ > 0 and the derivative reads :

F ′(λ) = −
∫

R+
ak(a) exp(−λa)da < 0, ℜλ > 0

showing that F is a monotone decreasing function on R∗
+. If the first moment is bounded

then the derivative can be extended by continuity to λ = 0 (hint: use Lebesgue’s Theorem).
As seen above it is bounded and strictly negative.

As k is integrable, thanks to Theorem 3, one has :

lim
λ→+∞

F (λ) = 0

In order to conclude two possibilities occur :
• if (13) holds, then

F (0) > 1, F ′(λ) < 0, ∀λ > 0, lim
λ→+∞

F (λ) = 0

• if (14) is true, then

F (0) = 1, F ′(λ) < 0, ∀λ ≥ 0, lim
λ→+∞

F (λ) = 0

these facts allow to state that, in any case, there exists a unique λ0 ∈ R+ s.t. the characteristic
equation holds true.

For practical reasons we set N(0) = 1. These arguments lead to

Proposition 2. Under Assumptions 2, there exists a unique real non-negative eigenvalue
λ0 of (16)

We make an important observation :

Proposition 3. If there exists another λ s.t. ℜλ ≥ 0 and

F (λ) = 1

then necessarily one has :
ℜλ < λ0

Moreover solutions of the characteristic equation are isolated in ℜz > 0 if
∫

R+
kda > 1,

or in the case (14), there is only one eigenvalue in ℜz ≥ 0 which is thus isolated.

Proof. The proof is left as an exercise following the same steps as in Theorem 10. ■

The conclusions of the Proposition 3 are illustrated in Fig. 2.

Next, we look now for the dual problem associated with (15). It reads :(−λ+ ∂a)ψ(a) = −ψ(0)k(a)∫
R+
ψ(a)N(a)da = 1. (17)
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Figure 2: Pointwise spectrum in the complex plane

A simple computation shows that

ψ(a) =ψ(0) exp(λ0a)
(

1 −
∫ a

0
k(s) exp(−λ0s)ds)

)
=ψ(0) exp(λ0a)

∫ ∞

a
k(s) exp(−λ0s)ds

where the latter equality comes from the characteristic equation. One should notice that ψ
so defined is a non-negative function for all ages a ∈ R+. This is important in what follows.

Proposition 4. Under definition (17), one has the inclusion

ess supp k ⊂ suppψ.

Proof. We recall that for the continuous function ψ, the support suppψ is defined as the
closure of the set where ψ ̸= 0. Suppose that a0 /∈ suppψ this implies that there exists η s.t.
the open ball B(a0, η) s.t.

ψ(a) = 0, ∀a ∈ B(a0, η)
using the explicit definition of ψ this translates into :

0 = ψ(0) exp(λ0a)
∫ ∞

a
k(s) exp(−λ0s)ds, ∀a ∈ B(a0, η)

which implies because of the non-negativity of the integrand :

k(s) exp(−λ0s) = 0, a.e. s ∈ (a0 − η,∞)

which in turn means that k(s) = 0 for a.e. s ∈ (a0 − η,∞), i.e. a0 /∈ ess supp k. ■
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Remark 2. The converse is not true : take k(a0) = 0 for some a0 > 0 and assume that
there exist K ⊂ (a0,∞) s.t. k(a) > 0 for a.e. a ∈ K then there exist a0 ∈ suppψ that
does not belong to supp k.

The normalization condition ∫
R+
ψ(a)N(a)da = 1

then fixes ψ(0) since :∫
R+
ψ(a)N(a)da = ψ(0)

∫
R+

∫ ∞

a
k(s) exp(−λ0s)ds

= ψ(0)
∫

R+
k(s)s exp(−λ0s)ds = 1

providing that
ψ(0) := 1∫

R+
k(s)s exp(−λ0s)ds

Remark 3. In the case of assumption (13), the integral∫
R+
k(s)s exp(−λ0s)ds

makes sense since λ0 > 0 and thus∫
R+
k(s)s exp(−λ0s)ds ≤ 1

λ0 exp(1)∥B∥L1(R+).

while in the case of assumption (14), one simply has : λ0 = 0 and∫
R+
k(s)s exp(−λ0s)ds =

∫
R+
k(a)ada < ∞.

by hypothesis.

This leads to

Lemma 3. Under Assumptions 1, there exists a unique tuple (λ0, N, ψ) ∈ R+ ×L∞(R+)2

solving the eigen-problem associated to (12).

2.3.2 Existence and uniqueness

Since there is a positive growing mode in time we rescale (12) so to deal with bounded
quantities. Indeed we define

ñ(a, t) := n(a, t) exp(−λ0a)
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which satisfies : 
(∂t + ∂a + λ0)ñ = 0 (t, a) ∈ (0,∞)2,

ñ(0, t) =
∫

R+
k(a)n(a, t)da t > 0, a = 0,

ñ(a, 0) = n0(a) a > 0, t = 0,

(18)

Definition 4. We define a mild solution u of the problem
(∂t + ∂a + ζ(a, t))u = 0 (a, t) ∈ (0,∞) × (0, T )
u(0, t) = ub(t) a = 0, t > 0
u(a, 0) = uI(a) a > 0, t = 0.

(19)

with data :

ub ∈ L∞(0, T ), uI ∈ L∞(R+), ζ ∈ L∞(R+ × (0, T )), ζ ≥ 0

the solution defined by the Duhamel’s principle :

u(a, t) :=
®
ub(t− a) exp

(
−

∫ 0
−a ζ(a+ τ, t+ τ)dτ

)
if t ≥ a

uI(a− t) exp
(
−

∫ 0
−t ζ(a+ τ, t+ τ)dτ

)
if t ≤ a

(20)

Definition 5. We say that u is a weak solution of problem (19) if∫ T

0

∫
R+
u(a, t) (∂t + ∂a − ζ)φ(a, t)dadt

=
ï∫

R+
u(a, t)φ(a, t)da

òt=T

t=0
−

∫ T

0
u(0, t)φ(0, t)dt

(21)

for every test function φ ∈ D([0,∞) × [0, T ]).

Theorem 13. The mild solution of (19) is a weak solution. Moreover, we also have in
the sense of characteristics :

(∂t + ∂a + ζ(a, t)) |u| = 0, (a, t) ∈ (0,∞) × (0, T )
|u| (0, t) = |ub(t)| a = 0, t > 0
|u| (a, 0) = |uI(a)| a > 0, t = 0.

(22)

and if ui are mild solutions of (19) with data ui
b, u

i
I , ζi as above for i ∈ {1, 2} then the

product u1u2 solves (19) in the mild sense with data u1
bu

2
b , u

1
Iu

2
I , ζ1 + ζ2.

Proof. We set
J :=

∫
R+

∫ T

0
u(a, t) (∂tφ+ ∂aφ) dt da .
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Performing the change of variables x = (a− t/)/2, y = (a+ t)/2, one transforms R+ × (0, T )
into Ω = {(x, y)} = Ω1 ∪ Ω2 where Ω1 := {(x, y) ∈ R2 ; x ∈] − T/2, 0[ and y ∈ ] − x, x+ T [}
and Ω2 := {(x, y) ∈ R2 ; x ∈]0; ∞[ and y ∈ ]x, x + T [}. Setting φ̃(x, y) := φ(a, t) one has
then that

∂tφ+ ∂aφ = ∂yφ̃ ,

and
J = 2

∫
Ω1
u∂yφ̃ dy dx+ 2

∫
Ω2
u∂yφ̃ dy dx =: J1 + J2 .

We treat each term separately because they correspond to the two cases of Duhamel’s formula.

J1 = 2
∫ 0

− T
2

∫ x+T

−x
u(0,−x)g(x, y) ∂yφ̃(x, y) dy dx .

The function g(x, y) := exp
(
−

∫ y+x
0 ζ(s, s− 2x)ds

)
belongs to H1

y ((−x, x+ T )) and it holds
that φ̃ is C∞ ⊂ H1

y . Hence the integration by parts is well defined,

J1 = 2
∫ 0

− T
2

u(0,−x)
ß

[g(x, y)φ̃]y=x+T
y=−x +

∫ x+T

−x
ζ(x+ y, y − x)g(x, y)φ̃(x, y) dy

™
dx

= 2
∫ 0

− T
2

u(0,−x) {φ̃(x, x+ T )g(x, x+ T ) − φ̃(x,−x)} dx

+ 2
∫

Ω1
ζ(x+ y, y − x)uφ̃ dy dx

=
∫ T

0
u(a, T )φ(a, T )da−

∫ T

0
u(0, t)φ(0, t)dt

+
∫ T

0

∫ t

0
ζ(a, t)u(a, t)φ(a, t) da dt ,

and similarly one gets the complementary result for J2, which ends the proof. We reparametrize
(20) by ũ(x, y) = u(a, t) and obtain

ũ(x, y) =
®
ub(−2x) exp

(
−

∫ x+y
0 ζ(τ, τ − 2x)dτ

)
(x, y) ∈ Ω1

u0(2x) exp
(
−

∫ y−x
0 ζ(τ + 2x, τ)dτ

)
(x, y) ∈ Ω2

and then it is easy to realize that
(∂y + ζ) ũ = 0

in the domain Ω1 ∪ Ω2 parametrized by the variables (x, y). Solving this equation in the y
variable and thanks to the assumptions, it is easy to show that ũ is indeed Lipschitz with
respect to y for every fixed x. Thus, one can write in the weak sense that ∂y|ũ| = sgn(ũ)∂yũ
for every fixed x. Thus ∂y|ũ| + ζ|ũ| = 0 holds a.e. with respect to y for every fixed x. We
then integrate and transform back to obtain the system which is the analogous to (20). The
last claim involving the product u1u2 follows from Duhamel’s formula. ■
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Exercise 5. Prove the previous theorem when adding a rhs f ∈ L∞(R+ × (0, T )) to
(19). In particular prove that

(∂t + ∂a + ζ(a, t)) |u| = sgn(u)f(a, t), (a, t) ∈ (0,∞) × (0, T )
|u| (0, t) = |ub(t)| a = 0, t > 0
|u| (a, 0) = |uI(a)| a > 0, t = 0.

(23)

and that the product u1u2 solves :
(∂t + ∂a + ζ1(a, t) + ζ2(a, t))u1u2 = u1f2 + u2f1, (a, t) ∈ (0,∞) × (0, T )
u1u2(0, t) = u1

bu
2
b(t) a = 0, t > 0

u1u2(a, 0) = u1
Iu

2
I(a) a > 0, t = 0.

(24)

Hint : First set ζi = 0 in order to simplify the expressions. This gives :∫ 0

−a
f2(a+ s, t+ s)u1(a+ s, t+ s)ds =

∫ 0

−a
f2(a+ s, t+ s)u1(0, t− a)ds

+
∫ 0

−a
f2(a+ s, t+ s)

∫ s

−a
f1(a+ τ, t+ τ)dτds

and ∫ 0

−a
f1(a+ s, t+ s)u2(a+ s, t+ s)ds =

∫ 0

−a
f1(a+ s, t+ s)u2(0, t− a)ds

+
∫ 0

−a
f1(a+ s, t+ s)

∫ s

−a
f2(a+ τ, t+ τ)dτds

=
∫ 0

−a
f1(a+ s, t+ s)u2(0, t− a)ds+

∫ 0

−a
f2(a+ τ, t+ τ)

∫ 0

s
f1(a+ s, t+ s)dτds

where one swiches the order of integration in the last term in the rhs. Then summing both
the expressions ends the part related to the product.

Thanks to these considerations we can claim the following result :
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Theorem 14. Under the previous hypotheses and if moreover one has :

n0 ∈ L1(R+, ψ(a))

there is a unique solution in the weak sense of Definition 5 s.t. ñ ∈ C(R+ ×
L1(R+;ψ(a)da)) to (18) and we have :

i) if there exists C0 s.t.
|n0(a)| ≤ C0N(a), a.e. a ≥ 0,

then the maximum principle holds :

|ñ(a, t)| ≤ C0N(a), a.e. a ≥ 0, ∀t > 0,

ii) the comparison principle holds as well i.e.

n0,1(a) ≤ n0,2(a) ⇒ ñ1(a, t) ≤ ñ2(a, t), ∀t > 0,

iii) the conservation law and the L1(R+, ψ(a)) contraction principle,∫
R+
ñ(a, t)ψ(a)da =

∫
R+
n0(a)ψ(a)da,∫

R+
|ñ(a, t)|ψ(a)dx ≤

∫
R+

|n0(a)|ψ(a)dx

Proof. First we prove existence by a fixed point argument in X = C([0, T ]; L1(R)), with the
topology ∥n∥X := sup0≤t≤T ∥n(·, t)∥L1

a(R+). We define the following operator n := T [m] as
the solution of the problem :

(∂t + ∂a + λ0)n = 0 (t, a) ∈ (0,∞)2,

n(0, t) =
∫

R+
k(a)m(a, t)da t > 0, a = 0,

n(a, 0) = n0(a) a > 0, t = 0.

Namely we set n as the mild solution defined through Duhamel’s formula :

n(a, t) :=
®∫

R+
k(ã)m(ã, t− a)dã exp(−λ0a) if t > a

n0(a− t) exp(−λ0t) otherwise

First we check that T is endomorphic in X i.e. we want to show that if w is s.t.

∀ε > 0, ∀t > 0, ∃ηε,t > 0 ; ∀s ; |s− t| < ηε,t =⇒ ∥w(·, t) − w(·, s)∥L1(R+) < ε,

we have the same property for n. Lets assume that s < t (the opposite case works the same),∫ s

0
|n(a, t) − n(a, s)| da ≤

∫ s

0

∫
R+
k(ã)|m(ã, t− a) −m(ã, s− a)|da

≤ ∥B∥L∞(R+)

∫ s

0
∥m(·, t− a) −m(·, s− a)∥L1(R+)da

≤ ∥B∥L∞s sup
a∈(0,s)

∥m(·, t− a) −m(·, s− a)∥L1(R+)
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as a continuous function is uniformly continuous on compact sets,

∀ε > 0, ∀t > 0, ∃ηε,t > 0 ; ∀s ;
|s− t| < ηε,t =⇒ ∥w(·, t− a) − w(·, s− a)∥L1(R+) < ε, ∀a ∈ (0, s).

Then one has the term∫ t

s
|n(a, t) − n(a, s)| da ≤ ∥n∥L∞(R+×(0,T ))(t− s)

which can be made arbitrarily small. And finally :∫ ∞

t
|n(a, t) − n(a, s)| da ≤

∫
R+

|n0(ã+ t− s) − n0(ã)|dã

+ ∥n0∥L1(R+) |exp(−λ0t) − exp(−λ0s)|

By the continuity of the translation operator in L1(R+) the first term in the rhs can be made
arbitrarily small and because the exponential function is continuous as well, the second term
is controlled also. Thus T maps X into itself as soon as n is bounded.

The boundedness follows from the simple estimates : if a ≤ t

|n(a, t)| ≤ ∥B∥L∞∥w∥X ,

whereas if a > t, then
|n(a, t)| ≤ ∥n0∥L∞(R+).

In order to show contraction, we denote ni := T (wi) for i ∈ {1, 2} and∫
R+

|n2(a, t) − n1(a, t)|da =
∫ t

0
|n2(a, t) − n1(a, t)|da ≤ t∥B∥L∞∥w2 − w1∥X

< ∥w2 − w1∥X

provided that t∥B∥L∞ < 1. So for a final time T s.t. T∥B∥L∞ < 1, by the Banach fixed
point Theorem, there exists a unique fixed point ñ ∈ X s.t.

ñ(a, t) :=
®∫

R+
k(ã)ñ(ã, t− a)dã exp(−λ0a) if t > a

n0(a− t) exp(−λ0t) otherwise
(25)

As usual, we can iterate the operator on [T, 2T ], [2T, 3T ], ..., since the condition on T
does not depend on the iteration. According to Theorem 13, if ñ solves (25) then it is also a
weak solution i.e. it solves :∫

R+×(0,T )
ñ(a, t) (∂t + ∂a − λ0)φ(a, t)dadt−

ï∫
R+
ñ(a, s)φ(a, s)da

òs=T

s=0

+
∫ T

0
ñ(0, t)φ(0, t)dt = 0

(26)

for all φ ∈ C∞(R2
+) ∩ L∞(R2

+).
The comparison principle (ii) follows from the construction of the Banach-Picard fixed

point. To show this, consider two initial data n0,1, n0,2 and denote by T1 , T2 the corresponding
operators of step 1. If n0,1 ≤ n0,2 , then for all m we have T1[m] ≤ T2[m] and thus the fixed
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point itself (recall the Picard iteration process) satisfies n1 ≤ n2. As a direct consequence
the maximum principle holds true because ±C0N(x) are solutions and can be used in (ii).

Consider now n0 ∈ L1(R+, ψ(a)da) by density (recall that ψ is bounded), we can find a
sequence nk

0 ∈ L1(R+; da) such that nk
0 → n0 in L1(R+;ψ(a)da) when k → ∞. We denote by

ñk(a, t) the corresponding solution to (18). Combining (18) with the dual equation (17), we
compute for the solution n̂ = ñk − ñp,

(∂t + ∂a)(n̂(a, t)ψ(a)) = −ψ(0)k(a)n̂(a, t). (27)

This implies (cf. Theorem 13 and Exercise 5) the identity

(∂t + ∂a) (|n̂|ψ) = −ψ(0)k(a) |n̂|

after integrating in a we deduce that

d

dt

∫
R+

|n̂|ψda = −ψ(0)
∫

R+
k(a) |n̂| da+ ψ(0)

∣∣∣∣∫
R+
k(a)n̂(a, t)da

∣∣∣∣ ≤ 0

which after integration in time gives :∫
R+

|n̂(a, t)|ψ(a)da ≤
∫

R+

∣∣nk
0(a) − np

0(a)
∣∣ψ(a)da (28)

and thus {ñk}k∈N is a Cauchy sequence of C(R+;L1(R+, ψ(a))). Notice also the uniform
bound |ñk(a, t)| ≤ C0N(a). Therefore it converges strongly in C(R+;L1(R+, ψ(a)da)) and
weakly in L∞(R+ × R+) leading to a weak solution in the sense of Definition 5.

It is a unique solution since : (28) shows that two possible solutions coincide on the support
of ψ and thus on the support of k. So the difference of the two solutions solve an homogeneous
transport problem with zero boundary and initial data, thus it is zero. Integrating (27) wrt
a gives :

d

dt

∫
R+
ñ(a, t)ψ(a)da = 0,

from which we recover the conservation law iii). ■

2.3.3 Regularity of solutions

Later on, we will need some regularity results that we state now.

Theorem 15. Under hypotheses (1), and if the initial data n0 is Lipschitz i.e.

|n0(a)| ≤ C0N(a), |n′
0(a)| ≤ C1N(a), ∀a ∈ R+,

assume moreover that n0(0) =
∫

R+
k(a)n0(a)da, then the solution satisfies :

|∂tñ(a, t)| ≤ (C1 + λ0)N(a), |∂añ(a, t)| ≤ (C1 + λ0(1 + C0))N(a),

for all (a, t) ∈ R+ × R+.
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Proof. Since we assumed the compatibility condition n0(0) =
∫

R+
k(a)n0(a)da, (25) is contin-

uous through the interface t = a. Differentiating (25) wrt time, one recovers easily that it is
a weak solution of the problem :

(∂t + ∂a + λ0)∂tñ = 0 (a, t) ∈ R+ × R+

∂tñ(0, t) =
∫

R+
k(ã)∂tñ(ã)dã a = 0, t > 0

∂tñ(a, 0) = −n′
0(a) − λ0n0(a), a > 0, t = 0

(29)

and thus the maximum principle from Theorem 14 holds also for the time derivative :

|∂tñ(a, t)| ≤ (C1 + λ0)N(a), a ≥ 0

As now the time derivative is a bounded function, and since equation (18) holds in the sense
of distributions it is also true in a pointwise sense, one has that

|∂añ(a, t)| = |∂tñ+ λ0ñ| ≤ (C1 + λ0)N(a) + λ0C0N(a)

which gives the result. ■

Remark 4. If we do not assume the compatibility condition n0(0) =
∫

R+
k(a)n0(a)da,

then ñ is differentiable wrt time only in Ω1 ∪Ω2 where Ω1 := {t > a} and Ω2 := {t < a}.
We cannot use the comparison principle since the derivative does not solve (29). Indeed,
if ñ is a weak solution and ∂tñ is defined by derivation of (25) picewisely on Ω1 ∪ Ω2,
then setting φ = ∂tϕ as a test function in (26) provides after integration by parts that
∂tñ solves :

−
∫

R+×(0,T )
∂tñ(∂t + ∂a − λ0)ϕdadt−

ï∫
R+

(∂a + λ0)ñϕda
òt=T

t=0

+
∫ T

0
∂tñ(0, t)ϕ(0, t)dt+

(
n(0, 0+) − n(0+, 0)

)
ϕ(0, 0)

+
∫ T

0
[ñ(t, t)](∂t + ∂a − λ0)ϕ(t, t)dt = 0

where [ñ(t, t)] := lims→0 ñ(t, t + s) − ñ(t, t − s) and ñ(0+, 0) := lims→0+ ñ(s, 0) and the
same for ñ(0, 0+).
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2.3.4 Generalized relative entropy

Theorem 16. Under the assumptions of Theorem 14, for all locally Lipschitz convex
functions H : R → R one has :

i) for all t > 0,∫
R+
ψ(a)N(a)H

Å
ñ(a, t)
N(a)

ã
da ≤

∫
R+
ψ(a)N(a)H

Å
n0(a)
N(a)

ã
da

ii) denoting the probability measure dµ(a) = k(a)N(a)/N(0)da,∫
R+

ï∫
R+
H

Å
ñ(a, t)
N(a)

ã
dµ(a) −H

Å∫
R+

ñ(a, t)
N(a) dµ(a)

ãò
dt

≤
∫

R+
ψ(a)N(a)H

Å
n0(a)
N(a)

ã
da

Proof. We use that
(∂t + ∂a) ñ(a, t)

N(a) = 0,

so that by similar arguments as in Theorem 13,

(∂t + ∂a)H
Å
ñ(a, t)
N(a)

ã
= 0,

and finally

(∂t + ∂a)
Å
ψ(a)N(a)H

Å
ñ(a, t)
N(a)

ãã
= −ψ(0)k(a)N(a)H

Å
ñ(a, t)
N(a)

ã
.

After integration in a ∈ R+ we find

d

dt

∫
R+
ψ(a)N(a)H

Å
ñ(a, t)
N(a)

ã
da

= −ψ(0)N(0)
∫

R+
H

Å
ñ(a, t)
N(a)

ã
dµ(a) + ψ(0)N(0)H

Å
ñ(0, t)
N(0)

ã
= ψ(0)N(0)

ï
−

∫
R+
H

Å
ñ(a, t)
N(a)

ã
dµ+H

Å∫
R+

ñ(a, t)
N(a) dµ

ãò
≤ 0

for all convex functions H by Jensen’s inequality. The statements (i) and (ii) follow from
this inequality. ■

2.3.5 Long time asymptotic : entropy method

In practice, one observes the stable age distribution, i.e., the long time limit of ñ which is
expected to be proportional to the steady state N given by equation (15). In this section, we
prove a general statement without a rate. Assuming more restrictive hypotheses on k, one
can obtain exponential convergence.
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Theorem 17. Under hypotheses (1), and assuming that n0 ∈ L1(R+, ψ(a)da) ∩L∞(R+)
and that k(a) > 0 a.e. a ∈ R+, the solution given by Theorem 14 satisfies

lim
t→∞

∫
R+

|ñ(a, t) −m0N(a)|ψ(a)da = 0 (30)

where m0 :=
∫

R+
n0(a)ψ(a)da (a conserved quantity).

Proof. i) Truncating and regularizing n0 ∈ L1(R+;ψ(a)da), one can construct a sequence
{n0,k}k∈N approximating n0 in the L1(R+;ψ(a)da) norm s.t. for any fixed k the compat-
ibility constraint holds true and there exists constants (Ck

0 , C
k
1 ) such that we are fully in

the hypotheses of Theorem (15). The proof is left as an exercise. Using the comparison
principle we have :∫

R+
|ñ(a, t) − ñε(a, t)|ψ(a)da ≤

∫
R+

|n0(a) − n0,ε(a)|ψ(a)da =: rε → 0,

and also |m0 −m0,ε| ≤ rε. Therefore it is enough to prove the result for the regularized
initial data. Indeed∫

R+
|ñ(a, t) −m0N(a)|ψ(a)da ≤ 2rε +

∫
R+

|ñε −m0,εN(a)|ψ(a)da.

ii) In the regularized case, we set h(a, t) := ñ(a, t) − m0N(a), which is also a solution to
(18) and satisfies |h(a, t)| ≤ CN(a) and

∫
R+
h(a, t)ψ(a)da = 0. We prove that such a

solution vanishes over a long time. Notice that, by the GRE property, we have

f(t) :=
∫

R+
|h(a, t)|ψ(a)da → L ≥ 0, as t → ∞.

Indeed for any increasing sequence of times {tp}p∈N, the quantity

qp := f(tp) =
∫

R+
|h(a, tp)|ψ(a)da

is a monotone non-increasing positive sequence which is thus convergent to some limit
L. Then for any ε there exists an k s.t. t ∈ [tk, tk+1) and thus f(tk+1) ≤ f(t) ≤ f(tk)
which implies that |f(t) − L| < ε which then shows the claim. And it remains to show
that L = 0.

iii) Now we define a sequence of functions :

hk(a, t) := h(a, t+ k),

which satisfies |hk(a, t)| ≤ CN(a). Using Theorem 16, for any strictly convex C1 function
H : R → R, one has :∫

R+

ï∫
R+
H

Å
hk(a, t)
N(a)

ã
dµ(a) −H

Å∫
R+

hk(a, t)
N(a) dµ

ãò
dt =: Ik → 0, as k → ∞

Indeed, from the very definitions of Ik and hk , we have

Ik =
∫ ∞

k

ï∫
R+
H

Å
h(a, t)
N(a)

ã
dµ(a) −H

Å∫
R+

h(a, t)
N(a) dµ(a)

ãò
dt
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which tends to zero by Lebesgue’s Theorem since the quantity inside the brackets is
positive and integrable. We define

Jk :=
∫ k+T

k

∫
R+
H

Å
h(a, t)
N(a)

ã
dµ(a)dt, Mk :=

∫ k+T

k
H

Å∫
R+

h(a, t)
N(a) dµ(a)

ã
dt

one has then that
0 ≤ Jk −Mk ≤ Ik → 0

which shows that
lim

k→∞
Jk −Mk = 0. (31)

One also notices that
(∂t + ∂a + λ0)hk = 0, a > 0, t > 0

hk(0, t) =
∫

R+
k(a)hk(ã, t)dã a = 0, t > 0∫

R+
hk(a, t)ψ(a)da = 0.

(32)

Next, using the regularity of h (via Theorem (15)), we may extract a sub-sequence (still
denoted hk) such that, for all T > 0,

hk → g in C(R+ × [0, T ]), 0 ≤ |g| ≤ CN(a),∫
R+
k(a)hk(a, t)da →

∫
R+
k(a)g(a, t)da in C([0, T ]),∫

R+
ψ(a)g(a, t)da = 0,

∫
R+
ψ(a)|g(a, t)|da = L.

Now we write :

lim
k→∞

Mk = lim
k→∞

∫ T

0
H

Å∫
R+

hk(a, t)
N(a) dµ

ã
dt

Lebesgue=
∫ T

0
H

Å∫
R+

g(a, t)
N(a) dµ

ã
dt

thanks to (31)= lim
k→∞

Jk

Since hk ≤ CN one has that∫
R+

∣∣∣∣H Åhk

N

ã∣∣∣∣ dµ ≤ sup
u∈B(0,C)

|H(u)|
∫

R+
dµ = sup

u∈B(0,C)
|H(u)| < ∞

the latter inequality being true since H defined on R. This allows to use Lemma 4, which
thus provides :∫ T

0

∫
R+
H

Å
g(a, t)
N(a)

ã
dµ(a)dt ≤ lim inf

k→∞

∫ T

0

∫
R+
H

Å
hk(a, t)
N(a)

ã
dµ(a)dt

= lim
k→∞

∫ T

0

∫
R+
H

Å
hk(a, t)
N(a)

ã
dµ(a)dt = lim

k→∞

∫ T

0
H

Å∫
R+

hk(a, t)
N(a) dµ(a)

ã
dt

=
∫ T

0
H

Å∫
R+

g(a, t)
N(a) dµ(a)

ã
dt

38



provides that ∫ T

0

∫
R+
H

Å
g(a, t)
N(a)

ã
dµdt ≤

∫ T

0
H

Å∫
R+

g(a, t)
N(a) dµ

ã
dt.

Since the reverse inequality holds thanks to Jensen, these two terms are in fact equal.
Using Lemma 9, one has that

g(a, t)
N(a) = C(t), a.e. a ∈ supp k ≡ R+, a.e. t ∈ (0, T ).

On the other hand, since g satisfies in the sense of distribution :

(∂t + ∂a + λ0)g = 0,

one has, also in the distributional sense, that

(∂t + ∂a)g(a, t)
N(a) = 0

and thus by [29, Section 2.4, Thm 1], C(t) is in fact constant in time. Thus there exists
α ∈ R s.t. C(t) = α and

g(a, t) = αN(a), a.e. a ∈ R+,

and using that ∫
R+
g(a, t)ψ(a)da = 0

we find that α = 0. Now we can conclude that the limit L of the second step vanishes
because, passing to the limit when k goes to ∞, we have L =

∫
R+

|g(a, t)|ψ(a)da = 0.
■

Lemma 4. Convex functional and convergent sequences Assume that H is con-
vex and lower semi continuous (l.s.c.). Assume moreover that there exists s ∈ ∂H(0),
assume as well that there exists a sequence fk s.t. fk → f in L1(R+, dµ) and that
supn ∥H(fn)∥L1(R+,dµ) < ∞, then one has∫

R+
H(f)dµ ≤ lim inf

n→∞

∫
R+
H(fn)dµ

Proof. As there exists s ∈ R s.t. s ∈ ∂H(0) this means that

H(w) ≥ H(0) + sw = sw, ∀w ∈ R

which implies that setting gn = H(fn) − sfn is a non-negative sequence, moreover,

sup
n

∥gn∥L1(R+,dµ) < ∞

by hypotheses. Then one has, thanks to the l.s.c. property of H, that H(f) − sf ≤ g :=
lim infn→∞ gn and∫

R+
H(f) − sfdµ(a) ≤

∫
R+
g(a)dµ(a) ≤ lim inf

n

∫
R+
gndµ(a)
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which reads : ∫
R+
H(f)dµ− s

∫
R+
fdµ ≤ lim inf

n

∫
R+
H(fn)dµ− s

∫
R+
fdµ

which ends the proof. ■

Corollary 3. Under the previous hypotheses, there exist a sequence of natural numbers
(nk)k∈N s.t.

∀ε > 0, ∃k0 ; ∀k > k0 =⇒ |ñ(0, t+ nk) −m0| < ε, a.e. t ∈ (0, 1)

Remark 5. One would like to show instead :

lim
t→∞

|ñ(0, t) −m0| = 0

but it does not seem straightforward.

Proof. By Theorem 17, one has :

∀ε > 0, ∃n0 ; t > n0 =⇒
∫

R+
|ñ(a, t) −m0N(a)|ψ(a)da ≤ ε

which gives after integration in time that

∀ε > 0, ∃n0 ; ∀n > n0 =⇒
∫ 1

0

∫
R+

|ñ(a, t+ n) −m0N(a)|ψ(a)dadt ≤ ε

There exists a sub-sequence (nk)k∈N s.t.

|ñ(a, t+ nk) −m0N(a)| → 0, a.e. (a, t) ∈ suppψ × (0, 1).

Where we used that Lp convergence of a sequence implies that there exists a sub-sequence
converging point-wisely. Since both terms of the difference are bounded in age, one can apply
Lebesgue’s Theorem, showing that for a.e. t ∈ (0, 1),∫

R+
|ñ(a, nk + t) −m0N(a)| k(a)da → 0,

then a simple estimate ends the proof :

|ñ(0, t+ nk) −m0| =
∣∣∣∣∫

R+
(ñ(a, t+ nk) −m0N(a))k(a)da

∣∣∣∣
≤

∫
R+

|ñ(a, t+ nk) −m0N(a)| k(a)da → 0,

■

For further applications and theory of General Relative Entropy (GRE), the reader can
consult [25, Chap. 3] from where the claims are extracted. Our contribution concerns
Theorems 13 and 15 and the extension of the GRE theory to the limit case 14 from Assumtions
1.
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2.4 The elongation problem
2.4.1 The kernel is dissipative

In what follows we assume that ϱ, linkages’ density, satisfies the following problem :®
∂aϱ(a) + ζ(a)ϱ(a) = 0, a.e. a > 0,
ϱ(0) = β, a = 0. (33)

In order to set up the problem in a certain frame, we make the following assumptions.

Assumptions 2. The data of problem (33) satisfies :
• ζ(a) ≥ 0 and ζ ∈ L∞(R+).

• moreover there exists a strictly positive decreasing function m ∈ L1(R+) s.t. m′ ∈
L∞(R+) and for a.e. a > a0,

ζ(a) ≥ −m′(a)
m(a)

Proposition 5. Under the previous assumptions, one has∫
R+
ϱ(a)da < +∞

Proof. Since (33) can be solved explicitly, one has according to the assumptions that : for
a.e. a ∈ (a0,∞),

0 ≤ϱ(a) = β exp
(

−
∫ a

0
ζ(ã)dã

)
= β exp

(
−

∫ a0

0
ζ(ã)dã

)
exp

Å
−

∫ a

a0
ζ(ã)dã

ã
≤ β exp

Å
−a0 inf

a∈(0,a0))
ζ(a)

ã
exp(lnm(a) − lnm(a0)) = C

m(a)
m(a0)

∈ L1(a0,∞)

■

Remark 6. Taking for instance ϱ(a) = 1
(1+a)σ , σ ∈ (1, 2) satisfies (33), with β = 1 and

ζ(a, t) = σ
(1+a) and one has

∫
R+
ϱ(a)da = 1/(σ − 1). Nevertheless,∫

R+
ϱ(a)ada = +∞.

Proposition 6. Assume that hypotheses 2 hold and that ϱ solves (33), then setting
k(a) := ϱ(a)/

∫
R+
ϱ(ã)dã one has

(1 + a)ζ(·)k(·) ∈ L1(R+)

41



Proof. Integrating by parts :

vR :=
∫ R

0
(1 + a)ζ(a)k(a)da = −

∫ R

0
(1 + a)∂ak(a)da = − [(1 + a)k(a)]Ra=0 +

∫ R

0
k(a)da

= k(0) − (1 +R)k(R) +
∫ R

0
k(a)da ≤ k(0) +

∫
R+
k(a)da = k(0) + 1

as (1+R)k(R) ≥ 0, vR is a monotone non-decreasing bounded from above function of R thus
it converges to some finite limit below k(0) + 1, which ends the proof. ■

Remark 7. Although this hypothesis is coommonly made in our references [15, 16, 17,
18, 14, 13], we do not want ζ to have a constant positive definite lower bound ζmin.
Indeed if there were ζmin > 0 s.t.

a.e. a ∈ R+, ζ(a) ≥ ζmin > 0

then
ϱ(a) ≤ β exp(−ζmina)

and ∫
R+
ϱ(a)apda ≤

∫
R+
β exp(−ζmina)apda = βΓ(p+ 1)ζ−(p+1)

min < ∞ ∀p ∈ R+

2.4.2 The elongation variable

If one sets,

u(a, t) :=
®
x(t) − x(t− a) t > a

x(t) − xp(t− a) t ≤ a

then u can be rewritten as :

u(a, t) =
®∫ t

t−a x
′(s)ds =

∫ 0
−a x

′(t+ s)ds, t > a∫ t
0 x

′(s)ds+ x(0+) − xp(t− a) =
∫ 0

−t x
′(t+ s)ds+ uI(a), t ≤ a

(34)

where we defined
uI(a) = x(0+) − xp(a).

In (34) we recognize Duhamel’s formula of a mild solution associated to the system :
(∂t + ∂a)u(a, t) = x′(t), a > 0, t > 0,
u(0, t) = 0, a = 0, t > 0,
u(a, 0) = uI(a), a > 0, t = 0.

(35)

Now we compute the problem solved by x′. As x solves :

x(t) = f

µ0
+

∫
R+
x(t− a)k(a)da = f

µ0
+

∫ t

0
x(t− a)k(a)da+

∫ ∞

t
xp(t− a)k(a)da
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one has differentiating

x′(t) = f ′

µ0
+

∫ t

0
x′(t− a)k(a)da+ k(t)

(
x(0+) − xp(0)

)
+

∫ ∞

t
x′

p(t− a)k(a)da

= f ′

µ0
−

∫ t

0
∂a(x(t− a))k(a)da−

∫ ∞

t
∂a(xp(t− a))k(a)da+ k(t)

(
x(0+) − xp(0)

)
= f ′

µ0
− [x(t− a)k(a)]ta=0 +

∫ t

0
x(t− a)∂ak(a)da

− [x(t− a)k(a)]∞a=t +
∫ ∞

t
xp(t− a)∂ak(a)da+ k(t)

(
x(0+) − xp(0)

)
= f ′

µ0
+ x(t)k(0) −

∫
R+
ζk(a)x(t− a)da

Integrating (33) in age one finds that

−k(0) +
∫

R+
ζ(a)k(a)da = 0

which then allows to rephrase the previous equation as

x′(t) = f ′

µ0
+

∫
R+

(x(t) − x(t− a))ζ(a)k(a)da = f ′

µ0
+

∫
R+
u(a, t)ζ(a)k(a)da (36)

Inserting this equality in (35), one obtains a closed problem where the only unknown is u
(we can forget x):

(∂t + ∂a)u = f ′

µ0
+

∫
R+
u(a, t)ζ(a)k(a)da, a > 0, t > 0,

u(0, t) = 0, a = 0, t > 0,
u(a, 0) = uI(a), a > 0, t = 0.

(37)

Once u is computed one can return to x using (36) and recover x writing :

x(t) = x(0+) +
∫ t

0

ß
f ′(s)
µ0

+
∫

R+
u(a, s)ζ(a)k(a)da

™
ds

2.4.3 A new scaling

We are interested in the long time asymptotics. For this sake, we make the following scaling
assumption :

xε(t̃) := εx

Å
t̃

ε

ã
, ∀t̃ ∈ (0, 1).

So whenever ε is small, one recovers large times when t̃ > 0. In this scaling one has :

∂txε(t̃) = ∂tx(t̃/ε), uε(a, t̃) := xε(t̃) − xε(t̃− εa)
ε

= x(t̃/ε) − x(t̃/ε− a) = u(a, t̃/ε).

We would like to check what equation uε solves.
(ε∂t + ∂a)uε = x′

ε(t) − x′
ε(t− εa) + x′

ε(t− εa) = x′
ε(t) = x′(t/ε)

=f
′(t/ε)
µ0

+
∫

R+
u(a, t/ε)k(a)da = f ′(t/ε)

µ0
+

∫
R+
uε(a, t)k(a)da
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while for the initial condition we write :

uε(a, 0) = xε(0) − xε(−εa)
ε

= x(0) − xp(−a) = uI(a)

So that finally uε solves :
(ε∂t + ∂a)uε = f ′(t/ε)

µ0
+

∫
R+
uε(a, t)ζ(a)k(a)da =: gε(t), a > 0, t > 0,

uε(0, t) = 0, a = 0, t > 0,
uε(a, 0) = uI(a), a > 0, t = 0.

(38)

And we make the assumptions on the data f :

Assumptions 3. The load f is
i) bounded : f ∈ L∞(R+)
ii) locally integrable and the derivative is integrable :

f ∈ L1
loc(R+), f ′ ∈ L1(R+) ∩ L∞(R+)

iii) and there exists f∞ ∈ R s.t. ∫
R+

|f(t) − f∞| dt < ∞.

In what follows, we aim first to give a meaning to a weak solution of (37) in a proper
framework. Then we show how this is equivalent to the renewal problem (3). We define the
weighted Banach space :

XT :=
{
u ∈ L1

loc(R+ × (0, T )) s.t. u(a, t)/(1 + a) ∈ L∞(R+ × 0, T )
}
.

Theorem 18. Under Assumptions 2 and 3, there exists a weak unique solution u ∈ XT

of problem (38).

Proof. The proof uses Proposition 6 and follows the same lines as in Theorem 14 and is left
as an exercise. ■

2.4.4 A stability result

Theorem 19. Under hypotheses 2 and 3, one has for almost every t ∈ (0, T )∫
R+

|uε(a, t)| k(a)da ≤ ∥f ′∥L1(R+) +
∫

R+
|uI(a)| k(a)da ≤ ∥f ′∥L1(R+) +

∣∣∣∣f(0)
µ0

∣∣∣∣+2∥xp∥L∞(R−)
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Proof. To be rigorous the proof uses the same arguments as in the proof of Theorem 13. So
the calculus is here only formal. In the sense of characteristics, one has

(ε∂t + ∂a) |uε| ≤ 1
µ0

|f ′(t/ε)| +
∫

R+
|uε(a, t)| ζ(a)k(a)da

then considering |uε|B as the unknown it solves :

(ε∂t + ∂a) (|uε(a, t)| k(a)) + ζ(a)k(a) |uε(a, t)| ≤ 1
µ0

|f ′(t/ε)| +
∫

R+
|uε(ã, t)| ζ(ã)k(ã)dã

Integrating in age this gives :

ε
d

dt

∫
R+

|uε(a, t)| k(a)da+
∫

R+
|uε(a, t)| ζ(a)k(a)da

≤ 1
µ0

|f ′(t/ε)| +
∫

R+
|uε(ã, t)| ζ(ã)k(ã)dã

since the two dissipation terms cancel, one gets the result noticing that
1
ε

∫ t

0

1
µ0

|f ′(s/ε)| ds =
∫ t

ε

0

1
µ0

|f ′(τ)| dτ ≤ ∥f ′∥L1(R+).

Now we detail, the bound on the initial condition :∫
R+

|uI(a)| k(a)da ≤
∣∣∣∣f(0)
µ0

∣∣∣∣+ 2
∫

R+
|xp(−a)| k(a)da ≤

∣∣∣∣f(0)
µ0

∣∣∣∣+ 2∥xp∥L∞(R−)

■

Corollary 4. Under the previous hypotheses, one has continuous dependence on the
data. Indeed, if ui solves (38) with data (fi, uI,i) for i ∈ {1, 2}, then one has : for a.e.
t ∈ R+,∫

R+
|u2(a, t) − u1(a, t)| k(a)da ≤ 1

µ0

∫ t

0
|f ′

2(τ) − f ′
1(τ)| dτ +

∫
R+

|uI,2(a) − uI,1(a)| k(a)da.

This result shows as well that u ∈ C(R+;L1(R+;B)) ( which means in the sense of
uniform convergence on compact subintervals of R+ in time).

Proof. Using the previous result, one has :∫
R+

|u(a, t+ h) − u(a, t)| k(a)da ≤
∫ t

0
|f ′(τ + h) − f ′(τ)| dτ +

∫
R+

|u(a, h) − uI(a)| k(a)da.

then one uses the continuity of the translation operator in L1(R+, B) and the L∞(0, T ) bound
establihed on gε in the previous results to show that∫

R+
|u(a, h) − uI(a)| k(a)da ≤

Ä
h∥gε∥L∞(0,T ) + ∥uI∥L∞(0,h)

ä ∫ h

0
k(a)da

+
∫

R+
|uI(a+ h) − uI(a)| k(a)da+ h∥gε∥L∞(0,T )

and concludes. ■
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Remark 8. What really matters here is the fact that the bound is uniform with respect
to ε.

Corollary 5. Under the previous assumptions, one has :∫
R+

|uε(a, t)| ζ(a)k(a)da < ∞, ∀t ∈ (0, T )

Proof. The proof is a simple consequence of the previous result and the fact that ζ ∈ L∞
a (R+).

■

Theorem 20. Under the previous assumptions, one has :

∥uε∥XT
≤ 1
µ0

∥f ′∥L∞ +
Ä
1 + ∥ζ∥L∞(R+)

ä Ä
∥f ′∥L1(R+) + 2∥xp∥L∞(R−)

ä
.

Moreover, there are two possibilities :
• either

∫
R+
ak(a)da = ∞ and then

uε
∗
⇀ 0 in XT

• or
∫

R+
ak(a)da < ∞ and then

uε
∗
⇀u0 := f∞

µ0
∫

R+
ak(a)daa ≡ f∞∫

R+
aϱ(a)daa in XT

Proof. We denote
gε(t) := f ′(t/ε)

µ0
+

∫
R+
uε(a, t)ζ(a)k(a)da.

thanks to the previous results, gε ∈ L∞(0, T ) uniformly wrt ε. Using (34) adapted to the
ε-scaling, gives that

uε(a, t) =
®∫ 0

−a gε(t+ εs)ds if t > εa

uI(a− t/ε) +
∫ 0

− t
ε
gε(t+ εs)ds otherwise.

The latter L∞(0, T )-bound provides then that, when t > εa

|uε(a, t)| ≤ a∥g∥L∞(0,T ) ≤ (1 + a)∥g∥L∞(0,T )

whereas when t ≤ εa one has

|uε(a, t)| ≤ ∥uI∥L∞
a (R+) + t

ε
∥gε∥L∞(0,T ) ≤ ∥uI∥L∞

a (R+) + a∥gε∥L∞(0,T )

then dividing the inequality by the weight (1 + a) shows that :

∥uε∥XT
≤ ∥gε∥L∞(0,T ) + ∥uI∥L∞

a (R+)
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gathering estimates already established above ends this part of the proof.
Thanks to this latter bound one has that there exists u0 ∈ XT s.t.

uε
∗
⇀u0 weak − ∗ in XT .

which means that ∫ T

0

∫
R+
uε(a, t)φ(a, t)da →

∫ T

0

∫
R+
u0(a, t)φ(a, t)da

for all φ ∈ L1(R+ × (0, T ); (1 + a)). Indeed since uε/(1 + a) ∈ L∞(R+ × (0, T )) there exists a
limit ℓ(a, t) ∈ L∞(R+ × (0, T )) s.t. for all ϕ ∈ L1(R+ × (0, T ))∫ T

0

∫
R+

uε

(1 + a)ϕ(a, t)dadt →
∫ T

0

∫
R+
ℓ(a, t)ϕ(a, t)dadt

if φ ∈ L1(R+ × (0, T ); (1 + a)) then choosing ϕ(a, t) = (1 + a)φ shows that∫ T

0

∫
R+
uεφ(a, t)dadt →

∫ T

0

∫
R+
ℓ(a, t)(1 + a)φ(a, t)dadt

and setting u0(a, t) = ℓ(a, t)(1 + a) provides a well-suited limit in XT in this topology. The
weak form associated to (38) reads :

∫ T

0

∫
R+
uε(a, t) (−ε∂t − ∂a)φ(a, t)da+

ï∫
R+
uε(a, t)φ(a, t)da

òt=T

t=0

=
∫ T

0

ß
f ′(t/ε)
µ0

+
∫

R+
uε(ã, t)ζ(ã)k(ã)dã

™ ∫
R+
φ(a, t)dadt

for all φ s.t. (1 + a)φ ∈ W 1,1(R+ × (0, T )). Taking φ ∈ D(R+ × (0, T )) and then passing to
the limit thanks to the previous weak-* convergence result gives that

−
∫ T

0

∫
R+
u0(a, t)∂aφ(a, t)da =

∫ T

0

∫
R+
u0(ã, t)ζ(ã)k(ã)dã

∫
R+
φ(a, t)dadt

where we make the following computation regarding the source term part :∣∣∣∣∫ T

0

f ′(t/ε)
µ0

∫
R+
φ(a, t)dadt

∣∣∣∣ = ε

∣∣∣∣∫ T
ε

0

f ′(t)
µ0

∫
R+
φ(a, εt)dadt

∣∣∣∣ ≤ Cε∥f ′∥L1∥φ∥L∞(R+×(0,T ))

showing that it vanishes. For any φ ∈ D(R+ × (0, T )) one has thus the weak formulation :∫ T

0

∫
R+
u0(a, t)(−∂a)φ(a, t)dadt =

∫ T

0

∫
R+
g0(a)φ(a, t)dadt.

where g0(t) :=
∫

R+
u0(a, t)ζ(a)k(a)da. The latter weak expression translates into :

∂au0(a, t) = g0(t), in D′(R∗
+ × (0, T ))

but since∫ T

0

∫
R+

|u0(a, t)| k(a)daϕ(t)dt ≤ lim inf
ε→0

∫ T

0

∫
R+

|uε(a, t)| k(a)daϕ(t)dt < ∞, ∀ϕ ∈ L1
+(0, T )
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and because ζ ∈ L∞(R+), g0 is bounded. Thus u0(·, t) ∈ Lip(R+) for a.e. t ∈ (0, T ), returning
to the weak formulation satisfied by u0, one can integrate by parts, which shows that

u0(0, t) = 0.

Finally all this allows to write
u0(a, t) = g0(t)a.

We suppose at this point that
∫

R+
ak(a)da = ∞. Now we write :

∫ T

0

ßÅ∫ R

0
+

∫ ∞

R

ã
uε(a, t)k(a)da

™
φ(t)dt =

∫ T

0

f(t/ε)
µ0

φ(t)dt

we denote : bε,R(t) :=
∫ ∞

R uε(a, t)k(a)da it is a bounded function and the bound is uniform
wrt ε and R (cf Theorem 19) thus there exists a bounded weak-* limit b0,R. Thanks to
hypotheses made on f , f(t/ε) tends to f∞ as ε goes to zero (if not clear exercise). Thus one
writes : ∫ T

0

∫ R

0
g0(t)ak(a)daφ(t)dt =

∫ T

0
(f∞ + b0,R(t))φ(t)dt

this shows that∣∣∣∣∫ T

0

∫ R

0
g0(t)ak(a)daφ(t)dt

∣∣∣∣ =
∫ R

0
ak(a)da

∣∣∣∣∫ T

0
g0(t)φ(t)dt

∣∣∣∣ ≤ C

where due to the uniform boundedness of b0,R C does not depend on R. then this shows that
as

∫ R
0 ak(a)da → ∞ as R grows large∫ T

0
g0(t)φ(t)dt = 0, ∀φ ∈ D((0, T ))

and thus u0 = 0 for almost every (a, t) ∈ R+ × (0, T ).
At the contrary if

∫
R+
ak(a)da < ∞ then one has simply that∫ T

0

∫
R+
g0ak(a)daφ(t)dt =

∫ T

0

f∞

µ0
φ(t)dt

which by similar arguments as above shows that

g0(t) = f∞

µ0
∫

R+
ak(a)da

and the conclusion follows. ■

Corollary 6. Under the previous hypotheses, xε converges to x0 in C([0, T ]) i.e.

sup
t∈(0,T )

|xε(t) − x0(t)| ≤ oε(1)

where x0 solves :
µ1∂tx0 = f, x0(0) = xp(0)
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Proof. As we have seen above,

xε(t) = xε(0) +
∫ t

0

f(τ/ε)
µ0

dτ +
∫ t

0

∫
R+
ζ(a)k(a)uε(a, τ)dadτ

which leads to write :

[xε(t) − x0(t)] ≤ |xε(0) − xp(0)| + ε∥f∥L1(R+)/µ0 +
∣∣∣∣∫ t

0

∫
R+
ζ(a)ϱ(a) (uε(a, τ) − u0(a, τ)) dadτ

∣∣∣∣
Noticing that

xε(0) − xp(0) = ε
f(0)
µ0

+
∫

R+
(xp(−εa) − xp(0)) k(a)da

Moreover, ∫
R+
ζ(a)k(a)u0(a, t)da =

∫
R+
ζ(a)k(a)af(τ)

µ1
da = f(t)

µ1
, a.e. t ∈ (0, T )

since
∫

R+
ζ(a)ak(a)da = 1 (using (33)). ■

Theorem 21. Under the previous hypotheses and if moreover
∫

R+
ak(a)da < ∞, then

lim
t→∞

∣∣∣∣∣z(t)t − f∞

µ0
∫

R+
ak(a)da

∣∣∣∣∣ = 0

Proof. Recalling the change of unknowns xε(t) = εz(t/ε) where z solves the renewal equation
z − z ⋆ k = f/µ+

∫ ∞
t k(a)xp(t− a)da and thanks to the previous result one simply writes :

lim
ε→0

|εz(t/ε) − x0(t)| = 0, ∀t ∈ (0, 1]

Choosing t = 1 in the previous expression this translates into

∀δ > 0, ∃tδ > 0 : ∀t > tδ =⇒ |z(t)/t− x0(1)| < δ

from which the claim follows. ■

One notices than that setting u0(a) := γa, where γ := f∞/(µ0
∫

R+
ak(a)da),

p(a, t) =
∫ t

0
(u(a, τ) − u0(a))dτ

it solves
(∂t + ∂a)p(a, t) = f(t) − f(0)

µ0
+

∫
R+
p(ã, t)ζ(ã)k(ã)dã+ uI(a) − u0(a), a > 0, t > 0,

p(0, t) = 0 a = 0, t > 0,
p(a, 0) = 0 a > 0, t = 0,

together with the compatibility condition :∫
R+
k(a)p(a, t)da = 1

µ0

∫ t

0
(f(τ) − f∞) dτ.
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Setting p0 the steady state of the previous equation, it solves :∂ap0(a) = f∞ − f(0)
µ0

+
∫

R+
p0(ã)ζ(ã)k(ã)dã+ uI(a) − u0(a) a > 0,

p0(0) = 0 a = 0,

and should fulfill as well : ∫
R+
k(a)p0(a)da = 1

µ0

∫ ∞

0
f(τ) − f∞dτ.

setting p̂(a, t) := p(a, t) − p0(a) it solves :
(∂t + ∂a)p̂(a, t) = f(t) − f∞

µ0
+

∫
R+
p̂(ã, t)ζ(ã)k(ã)dã =: g(t) a > 0, t > 0

p̂(0, t) = 0 a = 0, t > 0
p̂(a, 0) = −p0(a) a > 0, t = 0

(39)

together with the compatibility condition :∫
R+
k(a)p̂da = − 1

µ0

∫ ∞

t
(f(τ) − f∞)dτ

Theorem 22. Assume that
∫

R+
(1 + a)2k(a)da < ∞ and that

f ′ ∈ L∞(R+)

and moreover that

∥f − f∞∥L2(R+) < ∞,
∫

R+
t|f(t) − f∞|dt < ∞.

Then
x(t) − γt− x(0) − ω → 0

as t → ∞ where the constant ω is defined as

ω :=
1

µ0

∫ ∞
0 (f(τ) − f∞) dτ −

∫
R+
k(a)

∫ a
0 (uI(ã) − u0(ã))dãda∫

R+
k(a)ada .

Proof. Applying the same arguments as in Theorem 19 and Corollary 5 to (39), one obtains
first that ∫

R+
ζ(a)k(a) |p̂(a, t)| da < ∞

for all times. This proves as well that

∥p̂∥X∞
< C,
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where we recall that X∞ := L∞(R+×R+; (1+a)−1). Multiplying (39) by k(a)p̂ and integrating
by parts one obtains :

1
2
d

dt

∫
R+
k(a)p̂2da+ 1

2

∫
R+
ζ(a)k(a)p̂2da =∫

R+
k(a)p̂(a, t)da

ß(f(t) − f∞)
µ0

+
∫

R+
p̂(ã, t)ζ(ã)k(ã)dã

™
= −

(∫ ∞

t
(f(τ) − f∞)dτ

)ß(f(t) − f∞)
µ0

+
∫

R+
p̂(ã, t)ζ(ã)k(ã)dã

™
< C

∫ ∞

t
|f(τ) − f∞| dτ

then this shows that ∫
R+
k(a)p̂(a, t)2da < ∞

for all times and that ∫
R+

∫
R+
ζ(a)k(a)p̂(a, t)2dadt < ∞

this shows that g(t) the rhs in (39) is in L2(0, T ). Now one uses Duhamel’s principle and
writes :

|p̂(a, t)| =
∣∣∣∣∫ t

t−a
g(s)ds

∣∣∣∣ ≤
√
a∥g∥L2((t−a,t)), t > a

where we used Cauchy Schwartz. So for every fixed a, |p̂(a, t)| tends to zero as t grows large.
Applying Lebesgue’s Theorem this shows that

lim
t→∞

∫
R+
ζ(a)k(a) |p̂(a, t)| 1(0,t)(a)da = 0,

whereas ∫ ∞

t
ζ(a)k(a) |p̂(a, t)| da ≤ ζmax

∫ ∞

t
k(a)(1 + a)da∥p̂∥X∞

→ 0

again by Lebesgue’s Theorem when t goes to infinity.
The limit function p0 is explicit. Indeed setting q := p0(a) −

∫ a
0 (uI(ã) − u0(ã))dã one has

∂aq = f∞ − f(0)
µ0

+
∫

R+
ζ(a)k(a)q(a)da+

∫
R+
ζ(a)k(a)

∫ a

0
(uI(ã) − u0(ã))dãda

as in the rhs there are only constants (wrt to a) this implies that there exists ω s.t. q = ωa
and thus

p0(a) =
∫ a

0
(uI(ã) − u0(ã))dã+ ωa

and the compatibility condition gives that∫
R+
k(a)p0(a)da = 1

µ0

∫ ∞

0
(f(τ) − f∞) dτ

which uniquely defines ω. Setting

x̂(t) = x(t) − γt, ∀t ∈ R

it solves : ∫
R+

(x̂(t) − x̂(t− a))k(a)da = f(t) − f∞

µ0
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and the associated elongation is u(a, t) − u0(a) so that one can write :

x̂(t) − x̂(0) = f(t) − f(0)
µ0

+
∫ t

0

∫
R+
ζ(a)k(a) (u(a, τ) − u0(a)) dadτ

= f(t) − f(0)
µ0

+
∫

R+
ζ(a)k(a)p(a, t)da

= f(t) − f(0)
µ0

+
∫

R+
ζ(a)k(a)p0(a)da+

∫
R+
ζ(a)k(a) (p(a, t) − p0(a)) da

Leading to

x(t) − γt− x(0) − f∞ − f(0)
µ0

−
∫

R+
ζ(a)k(a)p0(a)da = f(t) − f∞

µ0
+

∫
R+
ζ(a)k(a)p̂(a, t)da

as the rhs tends to zero thanks to the assumptions and the previous results. Now we aim at
understanding the structure of the previous Ansatz :∫

R+
ζkp0da =

∫
R+
k(a)∂ap0da =

∫
R+
k(a) {(uI(a) − u0(a)) + ω} da = f(0) − f∞

µ0
+ ω

this explains why the two terms above cancel and ends the proof. ■

Remark 9. One should compare this result with the precise characterization (11) of
Theorem 12. Denoting f̃(t) := f(t) +µ0

∫ ∞
t xp(t− a)k(a)da one has then thanks to (11)

that
x(t) = f̃/µ0 + 1 ⋆ f̃/µ1 + γ ⋆ f̃/µ0

then when t grows large it is now possible to define explicitly the limit of the last term
in the rhs.

3 From delayed Poisson problem to the friction heat equation

Here we consider the problem :
Lε[xε](t) − ∆sxε = f(s, t), s ∈ Ω, t > 0,
∂νxε (s, t) = 0 s ∈ ∂Ω, t > 0,
xε(s, t) = xp(s, t) s ∈ Ω, t ≤ 0.

(40)

where we denote

Lε[x](t) := 1
ε

∫
R+

(x(s, t) − x(s, t− εa))ϱ(a, s)da, ∆sx :=
d∑

j=1
∂2

s2
j
x

and we are interested in the limit when ε goes to zero. Indeed one aims to show that under
reasonable hypotheses, when ε goes to zero xε converges towards x0 solving®

µ1(s)∂tx0 − ∆sx0 = f(s, t), s ∈ Ω, t > 0,
x0(s, 0) = xp(s, 0) s ∈ Ω, t ≤ 0, (41)
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where µ1(s) :=
∫

R+
ϱ(s, a)da. We redefine the space where xε lives

XT := L∞((0, T );H1
0 (Ω)),

for every positive real T possibly infinite.
We assume that ϱ as in (33) solves an ODE in age that is nevertheless now depending on

s in the following manner :®
∂aϱ(s, a) + ζ(s, a)ϱ(s, a) = 0, a.e. a > 0, s ∈ Ω
ϱ(s, 0) = β(s), a = 0, s ∈ Ω. (42)

Assumptions 4. The data of (42) satisfy
• there exists ω ⊂ Ω s.t. |ω| ≠ 0 and ∃ a0 : Ω → R+ s.t.

∃ a0 > 0 ; a.e. s ∈ ω, a0(s) ≥ a0

and
a.e. (s, a) ∈ ω × (0, a0(s)), ζ(a, t) ≤ ζmax and β(s) ≥ βmin > 0

• there exist a decreasing function m ∈ L1(R+, (1 + a)2) and a1 ∈ R+ s.t. for a.e.
s ∈ Ω

ζ(s, a) ≥ −m′(a)
m(a) , a.e. a > a1

Proposition 7. Under the previous assumptions, for a.e. s ∈ Ω, there exists c1 > 0 s.t.

essinf
s∈ω

∫
R+
ϱ(s, a)da > c1, essinf

s∈ω

∫
R+
aϱ(s, a)da > c2

Proof. One writes :∫
R+
ϱ(s, a)da ≥

∫ a0(s)

0
ϱ(s, a)da ≥

∫ a0(s)

0
β(s) exp (−aζmax) da

= β(s)
ζmax

(1 − exp (−ζmaxa0(s))) ≥ βmin

ζmax
(1 − exp (−ζmaxa0(s)))

≥ βmin

ζmax

(
1 − exp

(
−ζmaxa0

))
> 0

and the same proof holds for the lower bound of the first moment on ω. ■

We now discretize (42) using the implicit scheme already defined in (??) for almost every
s ∈ Ω. ®

Rj+1(s) := (1 + ∆aζj+1(s))Rj(s), j ≥ 0, a.e. s ∈ Ω,
R0 := β(s), j = 0 (43)

We extend Proposition ??, to this new frame.
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Lemma 5. Assume that m(a) := 1/(1 + a)σ, then

∆a
∑
j∈N

(1 + j∆a)α ess sup
s∈ω

Rj(s) < ∞

for α < σ − 1.

Proof. If m is defined as in the claim, then

ζ(s, a) ≥ σ

(1 + a) , ∀a > a1, a.e. s ∈ Ω

and one has as in the proof of Proposition ??, ∀j > j1 = ⌊a1/∆a⌋,

pj ≤ C

(1 + j∆a)σ

thus ∀j > j1 = ⌊a1/∆a⌋,

ess sup
s∈ω

Rj(s) ≤ ∥β∥L∞(Ω)
C

(1 + j∆a)σ

and then : ∑
j∈N

(1 + j∆a)α ess sup
s∈ω

Rj(s) ≤ C∥β∥L∞(Ω)

®
1 +

∑
j≥j1

1
(1 + j∆a)σ−α

´
and the series in the rhs converges provided that σ − α > 1 which ends the proof. ■

Assumptions 5. The data related to (40) satisfies :
i) at time t = 0 we assume that xp(s, 0) has the following properties :

• xp(·, 0) is in H1
0 (Ω),

ii) when t ≤ 0 one assumes furthermore that :

xp ∈ C0(R−;L2(Ω)), ∂txp ∈ L∞(R−, L
2(Ω)).

the latter hypotheses translates into a Lipschitz constant which is L2 in space i.e. :

|xp(s, t2) − xp(s, t1)| ≤ Cxp(s)|t2 − t1|, ∀(t2, t1) ∈ (R−)2 (44)

where Cxp(s) ∈ L2(Ω).

iii) the source term f is s.t.
f ∈ H1((0, T );L2(Ω))

3.1 A few words on Minimizing movements

Assume H := H1(0, 1) is a Hilbert space, and Φ a convex functional H → R Φ(W ) :=∫ 1
0 |W ′(s)| ds. One define a semi-discrete solution Zn as

Zn := argmin En(W ), En(W ) :=
∥W − Zn−1∥2

L2(0,1)

2∆t + Φ(W )
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Since the energy is convex with respect to W one derives the Euler-Lagrange equation asso-
ciated to this minimization problem :Å

Zn − Zn−1

2∆t , V

ã
+ (Zn′, V ′) = 0, ∀V ∈ H

where the brackets denote the scalar product in L2(0, 1). Then by induction and using Lax-
Milgram, it is easy to show existence and uniqueness of Zn ∈ H provided that Zn−1 ∈ H.
Moreover one has as well that

Proposition 8. If Z0 ∈ H then one has :
N−1∑
i=0

∥Z
n+1 − Zn

∆t ∥2
L(0, 1)2∆t ≤ Φ(Z0) < ∞, Φ(Zn) ≤ Φ(Z0), ∀n ∈ {1, . . . , N}

and ∫ 1

0
Zn(s)ds =

∫ 1

0
Z0(s)ds, ∀n ∈ {1, . . . , N}

Proof. One writes :
En(Zn) ≤ En(Zn−1)

which translates into :
∥Zn − Zn−1∥2

2
2∆t + Φ(Zn) ≤ Φ(Zn−1)

which then summed up for n ∈ {1, . . . , N} provides the claim. ■

Let’s define the piecewise constant and linear interpolations
z∆ :=

N−1∑
n=0

Zn(s)1[n∆t,(n+1)∆t)(t), t ∈ (0, T ).

z̃∆(s, t) :=
N−1∑
n=0

ß
Zn(s) +

Å
t

∆t − n

ã
(Zn+1 − Zn)

™
1[n∆t,(n+1)∆t)(t), t ∈ (0, T ).

then the first claim in the previous Proposition translates into

Proposition 9. The piecewise linear interpolation of (Zn)n∈Z satisfies

z̃∆ ∈ C0,
(1−γ)

4 ([0, T ];C0,γ(Ω))

for every γ ∈ (0, 1), the bound is uniform with respect to ∆t and ε. Thus z̃∆ converges
strongly in C0(Ω × [0, T ]) when ∆t goes to zero. Moreover, z∆ converges strongly in
L∞((0, T );C(Ω)).

The proof of a similar result will be provided later on.
These estimates provide a two-fold convergence results :

∑
n

Zn − Zn−1

∆t 1[n∆t,(n+1)∆t] ⇀ ∂tz in L2
s,t weak
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and ∑
n

∇Zn1[n∆t,(n+1)∆t] ⇀ ∇z in L2
s,t weak

when ∆t → 0. Showing that z∆ converges in fact towards the solution of the heat equation
with natural boundary conditions. In what follows we should try to make the previous com-
putations more rigorous as well as adapt them to the case of the delayed problem presented
above.

3.2 Delayed gradient flows

Here we use the ideas of Minimizing movements from De Giorgi [2]. To this aim we make a
semi-discretization of our problem in time and age (but not in space).

We discretise the age domain R+ with a regular grid s.t. :

R+ = ∪j∈N [j∆a, (j + 1)∆a)

and the time interval setting ∆t = ε∆a s.t. N = ⌊T/∆t⌋ and thus

[0, T ) = ∪N
n=0 [n∆t, (n+ 1)∆t) + [N∆t, T )

but we will consider values of ε s.t. the last interval is always the null-set.
So we define the energy :

En(w) := ∆a
2ε

∑
j∈N

∫
Ω

∣∣w(s) − xn−j
ε (s)

∣∣2 Rj+1(s)ds+ 1
2

∫
Ω

|∇sw(s)|2 ds−
∫

Ω
fn+1(s)w(s)ds.

(45)
And we define

xn+1
ε := argmin

w∈H1(Ω)
En(w).

We complement the definition of the scheme by setting the past values for xn
ε when n < 0 :

xn
ε (s) := 1

∆t

∫ (n+1)∆t

n∆t
xp(s, τ)dτ =: xn

p (s), ∀n ∈ Z−, a.e. s ∈ Ω.

Again as above we define the piecewise constant functions thanks to the subscript ∆ :

xε,∆(s, t) :=
∑
n∈Z

xn
ε (s)1[n∆t,(n+1)∆t)(t), ∀t ∈ R, a.e. s ∈ Ω.

and afine extensions :

x̃ε,∆ :=
∑
n∈Z

ß
xn

ε +
Å
t

∆t − n

ã
δx

n+ 1
2

ε

™
1[n∆t,(n+1)∆t)(t),

where δxn+ 1
2

ε := xn+1
ε − xn

ε , while in what follows we denote as well δRi+ 1
2

:= Ri+1 −Ri an so
on.

3.3 Existence, uniqueness and stability of the discrete solution xε,∆

Existence of minimizers relies on the convexity of the Dirichlet norm and is standard as the
few properties listed below (see for instance Lemma 1 and 2, p. 973 [21]).
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Theorem 23. Under hypotheses 4, 5, for every n ≥ 0 there exists a minimizer xn
ε ∈

H1(Ω) of (45), i.e. there exists a minimizing subsequence (xn,k
ε )k∈N s.t. as k → ∞,

1) xn,k
ε ⇀ xn

ε weak in H1(Ω),
2) xn,k

ε → xn
ε strong in L2(Ω),

3) xn,k
ε → xn

ε a.e. s ∈ Ω.
the unique minimizer solves the Euler-Lagrange equation :

(Ln+1
ε , v) +

(
∇sx

n+1
ε ,∇sv

)
= (fn+1, v), ∀v ∈ H1(Ω), (46)

where
Ln+1

ε (s) := ∆a
ε

∑
j∈N

(
xn+1

ε (s) − xn−j
ε (s)

)
Rj+1(s), a.e. s ∈ Ω.

Proof. The functional En is convex wrt w, moreover it is also coercive since for every w ∈
H1(Ω) one has :

En(w) ≥ 1
2

∫
Ω

|∇sw(s)|2 ds,

moreover, the adminissible set is H1(Ω) which is non-empty. Thus by [5, Theorems 1 &
2, Chapter 8, Section 2] there exists a minimizer xn+1

ε s.t. if (xn+1,k
ε )k∈N is a minimizing

sequence i.e.
lim

k→∞
En(xn+1,k

ε ) = ℓ = inf
w∈H1(Ω)

En(w)

then there exists a sub-sequence (xn+1,kj
ε )j∈N and a function xn+1

ε ∈ H1(Ω) s.t. claims 1) and
2) follow and

En(xn+1
ε ) = ℓ.

By [5, Theorem 4, Chapter 8, Section 2], minimizers solve the Euler-Lagrange equation :

(Ln+1
ε , v) +

(
∇sx

n+1
ε ,∇sv

)
= (fn, v), ∀v ∈ H1(Ω).

where
Ln+1

ε (s) := ∆a
ε

∑
j∈N

(
xn+1

ε (s) − xn−j
ε (s)

)
Rj+1(s), a.e. s ∈ Ω

By Lemma 10, and the Lax-Milgram theorem, xn+1
ε is unique. ■

A way to insure convergence, when ε or ∆a go to zero, is to obtain some control on a
discrete time derivative of xε,∆, typically an L2

s,t-bound is obtained in the case of a classical
gradient flow directly from the minimization principle (cf Appendix in [23] and references
therein). Here the result is less immediate : first, in the next lemma, we obtain a dissipation
term in the energy estimates. These estimates provide a bound on the dissipation term. It
then appears as a source term in a closed equation on δx

n+ 1
2

ε that finally provides these key
estimates (cf. Proposition 10).
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Lemma 6. If (Ri)i∈N and (xn
ε )n∈N, are defined as above, one has :

∆a
2ε

∑
j∈N

∫
Ω

(
xn+1

ε − xn−j
ε

)2
Rj+1ds+

∫
Ω

∣∣∣xn+1
ε

′
∣∣∣ ds+

n∑
m=1

∆tDm

≤ E−1(x−1
ε ) +

∫
Ω
f 0x0

εds+
n∑

m=0

∫
Ω
fm
(
δx

m+ 1
2

ε

)
ds, ∀n ∈ N

(47)

where the dissipation term reads :

Dn := ∆a
2

∑
j∈N

∫
Ω

∣∣un
ε,j

∣∣2 ζj+1Rj+1ds, un
ε,j := 1

ε

(
xn

ε − xn−j
ε

)
,

and we denote by un
ε,j the discrete elongation variable for (j, n) ∈ N2. The generic

constant C in (47) is independent either of ε or ∆a.

Proof. By definition of the minimization process, one has

En(xn+1
ε ) ≤ En(xn

ε ),

since xn+1
ε minimises the energy at time step t = (n+ 1)∆t. This reads

En(xn+1
ε ) ≤ ∆a

2ε

∫
Ω

∞∑
j=0

|xn
ε − xn−j

ε |2Rj+1ds+ 1
2

∫
Ω

|∇sx
n
ε |2ds−

∫
Ω
fn+1(s)xn

ε (s)ds

≤ ∆a
2ε

∫
Ω

∞∑
j=1

|xn
ε − xn−j

ε |2Rj+1ds+ 1
2

∫
Ω

|∇sx
n
ε |2ds−

∫
Ω
fn+1(s)xn

ε (s)ds

≤ ∆a
2ε

∫
Ω

∞∑
j=1

|xn
ε − xn−j

ε |2 (Rj − ∆aζj+1Rj+1) ds+ 1
2

∫
Ω

|∇sx
n
ε |2ds−

∫
Ω
fn+1(s)xn

ε (s)ds

≤ −∆a2

2ε

∫
Ω

∞∑
j=1

|xn
ε − xn−j

ε |2ζj+1Rj+1 + ∆a
2ε

∫
Ω

∞∑
j=1

|xn
ε − xn−j

ε |2Rj

+ 1
2

∫
Ω

|∇sx
n
ε |2ds−

∫
Ω
fn+1(s)xn

ε (s)ds

≤ −∆t∆a2

∫ 1

0

∞∑
j=1

∣∣∣∣xn
ε − xn−j

ε

ε

∣∣∣∣2 ζj+1Rj+1ds+ ∆a
2ε

∫
Ω

∞∑
j=0

|xn
ε − xn−1−j

ε |2Rj+1

+ 1
2

∫
Ω

|∇sx
n
ε |2ds−

∫
Ω
fn+1(s)xn

ε (s)ds

≤ −∆tDn + En−1(xn
ε ) +

∫
Ω

(
fn(s) − fn+1(s)

)
xn

ε (s)ds

for all n ∈ N. For x0
ε, one has simply that

E−1(x0
ε) ≤E−1(x−1

ε ) ≤
∥∥∥x−1

ε

∥∥∥2

H1(Ω)
+ ∆a

2ε

∫
Ω

∞∑
j=0

Rj+1
∣∣x−1

ε − x−1−j
ε

∣∣2 ds−
∫

Ω
f 0(s)x−1

ε ds.

Using (44), one has that for almost every s ∈ Ω and j > 1

|x−1
ε − x−1−j

ε | ≤
Cxp(s)

∆t

∫ ∆t

0
|xp(s, t) − xp(s, t+ (1 − j)∆t)|dt ≤ Cxp(s)∆t(j − 1).
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Together these facts allow to give a bound on E0(x0
ε) uniform with respect to ε and ∆a :

E−1(x−1
ε ) ≤

∥∥∥(1 + a)2ϱ∆

∥∥∥
L1

a(R+;L∞
s (Ω))

∥∥∥Cxp

∥∥∥2

L2(Ω)
+

∥∥∥x−1
ε

∥∥∥2

H1(Ω)
+

∥∥∥f 0
∥∥∥

L2(Ω)

∥∥∥x−1
ε

∥∥∥
L2(Ω)

.

and by induction one obtains that :

En(xn+1
ε ) + ∆t

n∑
p=0

Dp ≤ E−1(x−1
ε ) +

∫
Ω
f 0x0

ε +
n−1∑
p=0

fp+1δx
p+ 1

2
ε ds−

∫
Ω
fn+1xn

εds

which gives the final claim. ■

Here we show one of the key estimates of the paper.

Proposition 10. Under hypotheses above, and for ∆t small enough, one has :
N∑

n=1
∆t
®∥∥∥∥∥xn+1

ε − xn
ε

∆t

∥∥∥∥∥
2

L2(Ω)
+ ε

∥∥∥∥∥∇ (xn+1
ε − xn

ε )
∆t

∥∥∥∥∥
2

L2(Ω)

´
≤ C,

where the constant does not depend neither on ε nor on ∆t.

Proof. Recalling the definition of un
ε,j one checks easily that

εδu
n+ 1

2
ε,j + ∆t

δun
ε,j− 1

2

∆a = δx
n+ 1

2
ε ∀j ≥ 1,

while un
ε,0 = 0. Equivalently, because of the specific CFL condition, un+1

ε,j+1 = un
ε,j + δx

n+ 1
2

ε /ε
for all j ≥ 1. Setting Tn

ε,j = Rju
n
ε,j for j ∈ N, one obtains using (43) :

εδTn+ 1
2

ε,j + ∆t
δTn

ε,j− 1
2

∆a + ∆tRjζju
n
ε,j−1 = Rjδx

n+ 1
2

ε ,

which, summing over j ∈ N∗, gives

ε
∑
j≥1

δTn+ 1
2

ε,j ∆a− ε∆aTn
ε,0 + ∆t

∑
j≥1

Rjζju
n
ε,j−1∆a = sn

ε δx
n+ 1

2
ε .

where sn
ε := ∆a∑

j∈N∗ Rj. By definition,

ε∆aTn+1
ε,0 ≡ 0.

Adding both equations gives :

εδLn+ 1
2

ε + ∆t
∑

j∈N∗
Rjζju

n
ε,j−1∆a = sn

ε δx
n+ 1

2
ε ,

since ∑
j∈N Tn

ε,j∆a = ∑
j∈N Rju

n
ε,j∆a = Ln

ε . Now we make the discrete difference of (46)
between steps n+ 1 and n, in order to express δLn+ 1

2
ε as a function of δxn+ 1

2
ε . This reads :

(δLn+ 1
2

ε ,v) +
(
∂x

(
δx

n+ 1
2

ε

)
, ∂xv

)
= (δfn+ 1

2 ,v)
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We now close the problem solved by δxn+ 1
2

ε :(
sn

ε δx
n+ 1

2
ε ,v

)
+ ε

(
∇
(
δx

n+ 1
2

ε

)
,∇v

)
= ∆t

Ç∑
j∈N∗

Rjζju
n
ε,j−1∆a,v

å
+ ε

Ä
δfn+ 1

2 ,v
ä
. (48)

where we assumed that µ0,min ≤ sε(s) for a.e. s ∈ Ω which is a very restrictive hypothesis.
This avoids possible detachment of adhesions on certain compact set of Ω. Thus setting
v = δx

n+ 1
2

ε in the weak formulation above, one writes finally :

µ0,min

∥∥∥∥δxn+ 1
2

ε

∥∥∥∥2

L2(Ω)
+ ε

∥∥∥∥∇δxn+ 1
2

ε

∥∥∥∥2

L2(Ω)

≤ ∆t
∥∥∥∥∥∥

∑
j∈N∗

Rjζju
n
ε,j−1∆a

∥∥∥∥∥∥
L2(Ω)

∥∥∥∥δxn+ 1
2

ε

∥∥∥∥
L2(Ω)

+ ε
∥∥∥δfn+ 1

2
∥∥∥

L2(Ω)

∥∥∥∥δxn+ 1
2

ε

∥∥∥∥
.

Using Young’s inequality on the right hand side above, one has :

1
∆t

N∑
n=0

∥∥∥∥δxn+ 1
2

ε

∥∥∥∥2

L2(Ω)
≲

N∑
n=0

∆t
∥∥∥∥∥∥

∑
j∈N

ζj+1Rj+1u
n
ε,j∆a

∥∥∥∥∥∥
2

L2(Ω)

+ ε2

∆t
∥∥∥δfn+ 1

2
∥∥∥2

L2(Ω)

≲ ∆t
N∑

n=0
∆a

∑
j∈N

∫
Ω
ζj+1Rj+1(un

ε,j)2ds+ C = ∆t
N∑

n=0
Dn + C

≤ C +
N∑

m=0
∥fm∥L2(Ω)

∥∥∥∥δxm+ 1
2

ε

∥∥∥∥
L2(Ω)

≤ C + 1
λ

∥f∆∥2
L2((0,T )×Ω) + λ

∆t

N∑
m=0

∥∥∥∥δxm+ 1
2

ε

∥∥∥∥2

L2(Ω)
.

where we used the estimates of Lemma 6 in order to bound the dissipation term with a
constant and the product of the source term with the finite differences of xn

ε . This ends the
proof by choosing λ small enough. ■

3.4 Convergence when ∆ goes to zero

Proposition 11. Under hypotheses 4 and 5, x̃ε,∆, the piecewise linear interpolation of
(xn

ε )n∈Z satisfies
x̃ε,∆ ∈ C0,

(1−γ)
4 ([0, T ];C0,γ(Ω))

for every γ ∈ (0, 1), the bound is uniform with respect to ∆t and ε. Thus x̃ε,∆ converges
strongly in C0(Ω × [0, T ]) when ∆t goes to zero. Moreover, xε,∆ converges strongly in
L∞((0, T );C(Ω)).

Proof. Thanks to Lemma 6, x̃ε,∆ belongs to L∞
t H1

x uniformly with respect to ε, which shows
weak-⋆ convergence in this space. Weak convergence in H1

t L2
x follows from Proposition 10.

The interpolation inequality

∥u∥C0,γ(Ω) ≤ c∥u∥H(γ+1)/2(Ω) ≤ c∥u∥
(1−γ)

2
L2(Ω)∥u∥

(1+γ)
2

H1(Ω)

holds for every u ∈ H1(Ω) and for every γ ∈ (0, 1). Combined with the L∞
t H1

x bound
provided by Lemma 6, this leads to :

∥x̃ε,∆(t2) − x̃ε,∆(t1)∥C0,γ(Ω) ≤ c(t2 − t1)
(1−γ)

4 .
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We complete the convergence proof for x̃ε,∆ by an application of the Ascoli-Arzela theorem.
■

Corollary 7. Under the previous hypotheses, the same result can be derived for xε :=
lim∆t→0 xε,∆, i.e.

xε ∈ C0,
(1−γ)

4 ([0, T ];C0,γ(Ω))
for every γ ∈ (0, 1), the bound is uniform with respect to ε. This implies that xε

converges to x0 strongly in C0(Ω × [0, T ]) when ε goes to zero.

Proof. Considering x̃ε,∆, the piecewise continuous function in time, ∂tx̃ε,∆ is bounded in L2
s,t

uniformly with respect to ε, thus ∂tx̃ε,∆ ⇀ ∂txε weakly in L2
s,t and one has that

∥∂txε∥L2
s,t

≤ lim inf
∆→0

∥∂tx̃ε,∆∥L2
s,t

= lim inf
∆→0

Ç
∆t

∑
n∈N

∥∥∥∥δxn+ 1
2

ε /∆t
∥∥∥∥2

L2(Ω)

å 1
2

.

A similar argument provides an L∞
t H1

s bound for xε. One can then follow again the same
steps as in the proof of Proposition 11. ■

Next, we consider the convergence of Lε,∆(s, t) := ∑N
n=0 1(n,n+1)∆t(t)Ln

ε (s).

Proposition 12. Under hypotheses 4 and 5, for every fixed ε > 0, the discrete delay
term converges to the continuous limit when ∆a goes to zero, i.e.∫ T

0

∫
Ω

Lε,∆(s, t)φ∆(s, t)dsdt →
∫ T

0

∫
Ω

Lε(s, t)φ(s, t)dsdt

for all φ ∈ C0([0, T ];L2(Ω)) and φ∆(s, t) := ∑N
n=0 1(n,n+1)∆t(t)φn(s) where φn(s) :=∫ (n+1)∆t

n∆t φ(s, t)dt/∆t.

Proof. Lets consider the term

L∆(s, t) :=
N∑

n=0
1Jn(t)∆a

∑
j∈N

xn−1−j
ε (s)Rj+1(s) =

N∑
n=0

1Jn(t)
∫

R+
xε,∆(s, n∆t−εa)R∆(s, a+∆a)da

we aim at showing that L∆ is close to L̃∆(s, t) :=
∫

R+
xε,∆(s, t − εa)R∆(s, a + ∆a)da. Here

we extend ideas of the convergence proof of Proposition ??. The difficulties come from the
presence of the space variable. The term L∆ is well defined. Indeed, we start considering the
following sum :

∆t
N∑

n=0
∆a

∑
j∈N

∫
Ω

∣∣xn−1−j
ε (s)

∣∣2 Rj+1(s)ds ≤ ∆t
N∑

n=0
∆a

∑
j∈N

∥∥∥xn−1−j
ε

∥∥∥2

L2(Ω)
∥Rj+1∥L∞(Ω)

≤ T
{

∥xε,∆∥2
L∞

t L2
s

+
∥∥∥Cxp

∥∥∥2

L2(Ω)
+

∥∥∥x−1
ε

∥∥∥2

L2
s

}
∆a

∑
j∈N

(1 + j∆a)2 ∥Rj∥L∞(Ω)

≤ T
{

∥xε,∆∥2
L∞

t L2
s

+
∥∥∥Cxp

∥∥∥2

L2
s

+
∥∥∥x−1

ε

∥∥∥2

L2
s

}
∥(1 + a)R∆∥L1

aL∞
s
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where we split the sum wrt j in two parts : in the first part, for which j ∈ {0, n− 1}, we use
the L2

t,s bound provided by the derivative in 10, the second part uses the Lipschitz property
of the past data (cf Assumptions 5 ii)). These estimates show that L∆ ∈ L2

t,s. Indeed :
∫

s

∫
t
|L∆(s, t)|2 dtds =

∫
s

∑
n

∫
Jn

∣∣∣∣∫
R+
xε,∆(s, n∆t− εa)R∆(s, a+ ∆a)da

∣∣∣∣2 dtds
≤

∫
s

∑
n

∫
Jn

∫
R+
R∆(s, a+ ∆a)da

∫
R+

|xε,∆(s, n∆t− εa)|2 R∆(s, a+ ∆a)dadtds

where one should notice that we have used, in the second line, Jensen’s inequality in order to
recover the square inside the integral. Since one manipulates positive quantities integrals and
sums commute by the Monotone Convergence Theorem (Beppo Levi), this allows to write :∫

s

∫
t
|L∆(s, t)|2 dtds

≤
∑

n

∫
Jn

∫
Ω

ß∫
R+
R∆(s, a+ ∆a)da

∫
R+

|xε,∆(s, n∆t− εa)|2 R∆(s, a+ ∆a)
™
dsdadt

≤
∑

n

∫
Jn

∥R∆∥L1
aL∞

s

∫
R+

∥xε,∆(·, n∆t− εa)∥2
L2

s
∥R∆(·, a+ ∆a)∥L∞

s
dadt

= ∥R∆∥L1
aL∞

s
∆t

N∑
n=0

∆a
∑
j∈N

∥∥∥xn−1−j
ε

∥∥∥2

L2
s

∥Rj+1∥L∞
s

the last term has already been estimated above which proves the claim. In the same way one
shows that L̃∆ ∈ L2

s,t. Combining the previous arguments and the proof of Proposition ??,
one has as well that∫

s

∫
t

∣∣L∆(s, t) − L̃∆(s, t)
∣∣ dtds ≤ C

∑
n

∆t∆a
∑
j∈N

∥∥∥xn−j−1
ε − xn−j−2

ε

∥∥∥2

L2
s

∥Rj+1∥L∞
s

and by the same kind of arguments as in Proposition ??, we conclude using Proposition 10
and the Lipschitz properties of the past data that the latter rhs is O(∆a). The rest of the
proof follows similar arguments adapted to this framework. ■

Proposition 13. Under the previous hypotheses, g∆(s, t) := ∑N
n=0 1Jn(t)δxn+ 1

2
ε (s)/∆t

converges weakly in L2((0, T );H1(Ω)) to ∂txε solving∫ T

0

∫
Ω
µ0(s)∂txε(s, t)φ(s, t) + ε∇sφ · ∇s∂txεdsdt =

∫ T

0

∫
Ω
∂tfφdsdt

+
∫ T

0

∫
Ω

∫
R+
ζ(s, a)uε(s, a, t)ϱ(s, a)daφ(s, t)dsdt

Proof. At the discrete level it is enough to take (48) with v replaced by φn and integrate wrt
n. Then since one has :

µ0,∆ → µ0 in L∞(Ω) strong,
g∆ ⇀ ∂txε in L2(Ω × (0, T )) weak,
∇sg∆ ⇀ ∇s∂txε in L2(Ω × (0, T )) weak
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one has that

∆t
∑

n

(
sn

ε

δx
n+ 1

2
ε

∆t , φn

)
→

∫ T

0

∫
Ω
µ0∂txεφdsdt.

Indeed adapting Theorem ?? to the space dependent case one obtains :∑
j∈N

ess sup
s∈Ω

|Rj+1 −Rj| ≤
∑
j∈N

ζmax∆a ess sup
s∈Ω

Rj

which means that ρ0,∆ ∈ BVaL
∞
s which is compactly embedded in L1

aL
∞
s . Thus∫

R+

∫
Ω
ρ0,∆φdsda →

∫
R+

∫
Ω
ρ0φdsda, ∀φ ∈ L∞

a L
1
s

in particular if φ is constant wrt a this proves that∫
Ω

∫
R+
ρ0,∆φdsda →

∫
Ω
µ0φds, ∀φ ∈ L1

s.

Since ε is fixed one uses as well the estimates on the gradient of g∆ in order to obtain the
limit of the elliptic part. By strong convergence of xε,∆ in L∞((0, T );C(Ω)) the convergence
of the rhs follows. ■

Theorem 24. Under previous hypotheses, xε,∆ converges in C([0, T ], H1(Ω)) ∩
H1((0, T );L2(Ω)) towards xε solving :∫ T

0

∫
Ω

{Lε[xε](s, t)φ(s, t) + ∇sxε · ∇sφ} dsdt =
∫ T

0

∫
Ω
f(s, t)φ(s, t)dsdt (49)

for all φ ∈ C([0, T ];L2(Ω)), where the continuous delay operator reads :

Lε[xε](s, t) := 1
ε

∫
R+

(xε(s, t) − xε(s, t− εa)) ρ0(s, a)da =:
∫

R+
uε(s, a, t)ρ0(s, a)da.

3.5 Some more stability results

Now the problem solved by uε reads :
(ε∂t + ∂a)uε = (µ0 − ε∆s)−1

∫
R+

(ζρ0uε)(s, a, t)da, (s, a, t) ∈ Ω × R+ × (0, T )

uε(s, 0, t) = 0 (s, a, t) ∈ Ω × {0} × (0, T )
uε(s, a, t) = 0 (s, a, t) ∈ ∂Ω × R+ × (0, T )
uε(s, a, 0) = uε,I(s, a) (s, a, t) ∈ Ω × R+ × {0}

(50)

where uε,I(s, a) := xε(s,0)−xp(s,−εa)
ε

.
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Theorem 25. Under hypotheses 4 and 5, and if∫
Ω×R+

ρ0(s, a)|uI(s, a)|dads < ∞,

one has : ∫
Ω×R+

ρ0(s, a)|uε(s, a, t)|dads ≤
∫

Ω×R+
ρ0(s, a)|uI(s, a)|dads

moreover if uI s.t.
sup
a∈R+

∫
Ω |uI(s, a)|ds

(1 + a) < ∞,

then ∫
Ω

|uε(s, a, t)|ds ∈ YT := L∞
Å

(0, T ) × R+,
1

1 + a

ã
and the bound is uniform wrt ε.

Proof. A simple use of Lemma 6, and convergence arguments above, one shows that∫
Ω×R+

ζρ0(uε)2dads ≤ ζmax

ε
E(xp(·, 0)),

which then using again Jensen’s inequality provides that∫
Ω

Å∫
R+
ζρ0|uε|da

ã2
ds ≤ ζ2

max
ε

E(xp(·, 0)).

which then insures that for fixed ε, f(s, t) :=
∫

R+
ζρ0uεda belongs to L∞((0, T );L2(Ω)). If

we solve the problem : for a given f(s, t) find v(s, t) solving®
µ0v − ε∆v = f, in Ω,
v = 0, on ∂Ω.

For almost every t ∈ (0, T ) one solves the elliptic problem, thus there exists a unique
v ∈ L∞((0, T );H2(Ω) ∩H1

0 (Ω)) by Lax-Milgram and standard elliptic regularity. These con-
siderations allow to fulfill hypotheses of the main theorem in [3], namely for a.e. t ∈ (0, T ),
v(·, t) ∈ L1(Ω), ∆v(·, t) ∈ L1(Ω) and ∂νv (·, t) ∈ L1(∂Ω) which insures that v(·, t) ∈ X where

X :=
{
u ∈ W 1,1(Ω) s.t.

∣∣∣∫ ∇u · ∇ψds
∣∣∣ < C∥ψ∥L∞(Ω) ∀ψ ∈ C1(Ω)

}
.

and thus a Greens inequality holds (cf. Theorem 1.3, [3]) :∫
Ω

∇v+ · ∇ψds ≤
∫

∂Ω
Hψ −

∫
Ω
Gψ, ∀φ ∈ C1(Ω),

where v+ denotes the positive part of v and G ∈ L1(Ω) and H ∈ L1(∂Ω) are given by :

G :=
®

∆v on {v > 0}
0 on {v ≤ 0}

, H :=


∂νv on {v > 0}
0 on {v < 0}
min ( ∂νv , 0) on { v = 0}.
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Applying the latter result to |v| := v+ − v− and as v vanishes on the boundary, one obtains
that ∫

Ω
∆v sgnv ds ≤ 0.

Returning to (50), one has
ε∂tuε + ∂auε = v

which gives, in the sense of characteristics :

ε∂t

∫
R+
ρ0|uε|da+

∫
R+
ζρ0|uε|da ≤ µ0|v|

Integrating in space one obtains

ε
d

dt

∫
Ω×R+

ρ0|uε|dads+
∫

Ω×R+
ζρ0|uε|dads ≤

∫
Ω
µ0|v|ds

But then∫
Ω
µ0|v|ds =

∫
Ω

Å∫
R+
ζρ0uεda

ã
sgnvds+ ε

∫
Ω

∆v sgnv ds ≤
∫

Ω×R+
ζρ0 |uε| dads.

This leads to
ε
d

dt

∫
Ω×R+

ρ0|uε|dads ≤ 0

which applying Gronwall’s Lemma gives :∫
R+

(ρ0|uε|)(s, a, t)da ds ≤
∫

R+
(ρ0|uI |)(s, a)da ds

this gives the first result. Then, one has that q(a, t) :=
∫

Ω |uε|ds solves

ε∂tq + ∂aq ≤ 1
µ0,min

∫
Ω
µ0|v|ds ≤ 1

µ0,min

∫
Ω×R+

ζρ0 |uε| dads

≤ ζmax

µ0,min

∫
R+
ρ0|uI |dads < C

applying then the same results as in theorem 6.1 [16], one concludes that q ∈ YT . ■

The question is now to show that under hypotheses 5, the assumptions of theorem 25 are
fulfilled.

Lemma 7. Under assumptions 5,

J :=
∫

Ω×R+
ρ0|uI |dads < C

where the generic constant C is finite and independent on ε.

Proof. A triangular inequality gives :

J ≤
∫

Ω

|xε(s, 0) − xp(s, 0)|
ε

µ0,I(s)ds+
∫

Ω×R+

|xp(s, 0) − xp(s,−εa)|
ε

ρ0(s, a)dads
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Then by similar arguments as in the theorem above, one considers the problem solved by
ẑε(s, 0) := xε(s, 0) − xp(s, 0) which reads :

µẑε(s, 0) − ε∆ẑε(s, 0) =
∫

R+
(xp(s, 0) − xp(s,−εa)) ρ0(s, a)da+ ε∆xp(s, 0)

where, thanks to elliptic regularity and the assumption that ∆xp(s, 0) ∈ L1(Ω), one fulfills
again the hypotheses of [3] and one states in the same way as above that

∥µ0,I ẑε(·, 0)∥L1(Ω) ≤
∥∥∥∥∥
∫

R+
(xp(s, 0) − xp(s,−εa)) ρ0(s, a)da

∥∥∥∥∥
L1(Ω)

+ ε∥∆xp∥L1(Ω)

which together with the Lipschitz-like assumption 5 (ii) ends the proof. ■

Lemma 8. Under assumptions 5, one has also that the second requirement on uI holds :

K := sup
a∈R+

∫
Ω |uI(s, a)|ds

(1 + a) < C,

where the generic constant is independent on ε.

Proof. The same triangular inequality holds but we do not integrate in age :∫
Ω
|uI |ds ≤

∫
Ω

|xε(s, 0) − xp(s, 0)|
ε

ds+
∫

Ω

|xp(s, 0) − xp(s,−εa)|
ε

ds

≤
∫

Ω
µ0,I

|xε(s, 0) − xp(s, 0)|
εµ0,min

ds+ a
∫

Ω
Cxp(s)ds ≤ C + a

√
|Ω|

∥∥∥Cxp

∥∥∥
L2(Ω)

then dividing by (1 + a) and taking the supremum on R+ ends the proof. ■

3.6 Convergence when ε vanishes

We then prove the convergence result when ε goes to zero.

Theorem 26. Under the previous hypotheses, xε converges toward x0 solving :∫ T

0

∫
Ω

{µ1(s)∂tx0(s, t)φ(s, t) + ∇sx0 · ∇sφ} dsdt =
∫ T

0

∫
Ω
f(s, t)φ(s, t)dsdt (51)

Proof. We only focus on the convergence of the delay part since the rest is standard by
weak convergence and linearity of the gradient operator. Recalling that the definition of the
elongation∫

QT

∫ ∞

0
ρ0(s, a)uε(s, a, t)φ(s, t) da ds dt =

∫
R+

∫
QT

ρ0(s, a)uε(s, a, t)(s, a, t)φ(s, t) ds dt da

=
∫ T/ε

0

ß Å∫ T

εa

∫
Ω
ρ0uε(s, a, t)φdsdt

ã
a+

∫ εa

0

∫
Ω
ρ0uεφds

™
da+

∫ ∞

T/ε

∫
QT

ρ0(s, a)uε(s, a, t)φ(s, t) ds dt da

=: J1 + J2 + J3
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where we set
uε(s, a, t) := (xε(s, t) − xε(s, t− εa))

ε
.

Now J1 can be rewritten as :

J1 =
∫ T/ε

0

ß∫ T

εa

∫
Ω
ρ0

(xε(s, t) − xε(s, t− εa))
εa

φdsdt

™
ada

for almost every fixed a ∈ (0, T/ε) one has convergence of the term

a
∫ T

εa

∫
Ω
ρ0

(xε(s, t) − xε(s, t− εa))
εa

φdsdt → a
∫ T

0

∫
Ω
ρ0∂tx0φdsdt

because of weak convergence in L2(QT ) of the sequence (xε(t)−xε(t−εa))
εa

for every φ ∈ L2(QT ).
Moreover thanks to the estimates on ρ0 one has that∫ T

εa

∫
Ω
ρ0

(xε(s, t) − xε(s, t− εa))
ε

φdsdt =
∫ T

εa

∫
Ω
ρ0(s, a)uε(s, a, t)φ(s, t)dsdt

≤ C (1 + a) ess sup
s∈Ω

ρ0(s, a)
∥∥∥∥∥

∫
Ω |uε| ds
1 + a

∥∥∥∥∥
L∞

s,a

∥φ∥L∞
s,t

the rhs being a L1 function in age. Applying then Lebesgue’s Theorem to the function
fε(a) := a

∫ T
εa

∫
Ω ρ0

(xε(s,t)−xε(s,t−εa))
εa

φdsdt 1(0,T/ε)(a) gives the main limit term. For what
concerns the rest :

J2 + J3 =
∫ T

0

∫ ∞

t/ε

∫
Ω
ρ0(s, a, t)uε(s, a, t)ds da φ(s, t) dt =:

∫ T

0
gε(t)dt

but
gε(t) ≤

∫ ∞

t/ε
Cρ0(a)(1 + a) sup

a∈R+

∫
Ω |uε|ds
(1 + a) ∥φ∥L∞(QT )da

≤ C

Å
1 + t

ε

ã ∥∥∥(1 + a)2ρ0

∥∥∥
L1

aL∞
s

sup
a∈R+

∫
Ω |uε|ds
(1 + a) ∥φ∥L∞(QT )

which integrated in time gives that

|J2 + J3| ∼ O(ε |ln ε|).

On the other hand by standard arguments of weak convergence, one easily proves thanks to
the energy estimates that∫

QT

∇xε · ∇φ ds dt →
∫

QT

∇x0 · ∇φ ds dt.

This proves that the limit equation is exactly the weak form of 51 stated in the claim. For
the consistency with the initial condition it follows from Lemma 7. ■
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Appendix

Lemma 9. If H is strictly convex function on R and µ a probability measure, if∫
R+
H(f(a))dµ(a) = H

Å∫
R+
f(a)dµ(a)

ã
(52)

then f is constant on the support of µ.

Proof. Assume that there is a set K ⊂ suppµ s.t. µ(K) > 0 and f(a) ̸= f :=
∫

R+
f(ã)dµ(ã)

for almost every a ∈ K. As H is strictly convex on R, it is also strictly convex at the point
f , i.e. there exists ζ ∈ R s.t.

H(x) > H(f) + ζ(x− f), ∀x ̸= f

thus on K one has :

H(f(a)) > H(f) + ζ(f(a) − f), a.e. a ∈ K

then integrating over R+ one recovers :∫
R+
H(f(a))dµ(a) > H(f)

which contradicts (52) so f must be equal to its average on the support of µ. ■

Using similar techniques as in the proof of the Poincaré-Wirtinger inequality we show that

Lemma 10. Let Ω be an open bounded connected set and ω ⊂ Ω. Define the norm :
∥x∥V := ∥x′∥L2(Ω) + ∥x∥L2(ω) and V := {u ∈ L2

loc(Ω) ; ∥u∥V < ∞} then there exists a
constant cV s.t.

∥x∥H1(Ω) ≤ cV ∥x∥V , ∀x ∈ V

Proof. Following [5, Theorem 5.8.1, p. 275], we argue by contradiction. Were the stated
estimate false, there would exist for each integer k ∈ N a function uk ∈ V s.t.

∥uk∥H1(Ω) > k∥uk∥V .

we renormalize by defining
vk := uk

∥uk∥H1(Ω)

then ∥vk∥H1(Ω) = 1 and the previous inequality becomes :

∥vk∥V <
1
k

(53)

Since H1(Ω) is compactly embedded in L2(Ω), there exists a subsequence (vkj
)j∈N ⊂ (vk)k∈N

and a function v ∈ L2(Ω) s.t.
vkj

→ v ∈ L2(Ω).
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From the normalization, it follows that ∥v∥H1(Ω) = 1. On the other hand, (53), implies that
for each φ ∈ D(Ω),∫

Ω
v(s)φ′(s)ds = lim

j→∞

∫
Ω
vkj

(s)φ′(s)ds = − lim
j→∞

∫
Ω
v′

kj
(s)φ(s)ds = 0.

Consequently v ∈ H1(Ω), with v′ = 0 a.e. s ∈ Ω. Thus v is constant, since Ω is connected.
However this conclusion contradicts the fact that ∥v∥H1(Ω) = 1, since

∫
ω v

2(s)ds = 0 and
we must have v ≡ 0 on ω in which case ∥v∥H1(Ω) = 0. This contradiction establishes the
claim. ■
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